
Adaptive Binning and Dissimilarity Measure for
Image Retrieval and Classification

Wee Kheng Leow and Rui Li
School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543, Singapore
leowwk, lir@comp.nus.edu.sg

Abstract

Color histogram is an important part of content-based
image retrieval systems. It is a common understanding that
histograms that adapt to images can represent their color
distributions more efficiently than histograms with fixed bin-
nings. However, among existing dissimilarity measures,
only the Earth Mover’s Distance can compare histograms
with different binnings. This paper presents a detailed
quantitative study of fixed and adaptive binnings and the
corresponding dissimilarity measures. An efficient dissimi-
larity measure is proposed for comparing histograms with
different binnings. Extensive test results show that adaptive
binning and dissimilarity produce the best overall perfor-
mance, in terms of good accuracy, small number of bins, no
empty bin, and efficient computation, compared to existing
fixed binning schemes and dissimilarity measures.

1. Introduction

Histograms are often used to estimate the distributions of
color over an image. There are two methods of generating
histograms: fixed binning and adaptive binning. Typically,
a fixed binning method induces histogram bins by partition-
ing the color space into rectangular bins. Once the bins are
derived, they are fixed and the same binning is applied to
all images. On the other hand, adaptive binning adapts the
bins to the actual distributions of the images. As a result,
different binnings are induced for different images.

It is a common understanding that adaptively binned his-
tograms can represent the distributions more efficiently than
histograms with fixed binning [7]. But, the comparative
advantages have not been quantitatively studied. More-
over, among existing dissimilarity measures, only the Earth
Mover’s Distance can be used to compare histograms with
different binning schemes [7].

This paper presents a detailed quantitative study of fixed

and adaptive binnings and the corresponding dissimilarity
measures. An efficient dissimilarity measure is proposed
for comparing histograms with different binnings. Exten-
sive test results show that the combination of adaptive bin-
ning and dissimilarity measure yields the best overall per-
formance compared to existing fixed binning and dissimi-
larity measures in image classification and retrieval tasks.

2. Related Work

There are two types of fixed binning schemes: regular
partitioning and clustering. The first method simply par-
titions the axes of a target color space into regular inter-
vals, thus producing rectangular bins [3, 9, 10]. The sec-
ond method partitions a color space into a large number of
rectangular cells, which are then clustered by a clustering
algorithm such as the

�
-means [2, 5, 13].

Adaptive binning is similar to color space clustering in
that

�
-means clustering or its variants are used to induce

the bins [8]. However, the clustering algorithm is applied
to the colors in an image instead of the colors in an entire
color space. Therefore, adaptive binning produces different
binning schemes for different images.

Note that different binning schemes require different
color quantization methods. For regular partitioning, a color
is quantized to the centroid of the rectangular bin containing
the color, producing a rectangular tessellation of the color
space. On the other hand, for color space clustering and
adaptive clustering, a color is quantized to the centroid of its
nearest cluster, thus producing a Voronoi tessellation of the
color space. We shall call the histograms produced by the
three methods regular, clustered, and adaptive histograms.

Among commonly used dissimilarity measures, Earth
Mover’s Distance (EMD) is the only one that can compare
histograms with different binnings [7]. Puzicha et al. per-
formed a systematic evaluation of the performance of vari-
ous dissimilarity measures in classification, segmentation,
and retrieval tasks [7]. They concluded that dissimilari-
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ties such as ��� , Kullback-Leibler divergence, and Jessen
difference divergence1 performed better than other mea-
sures for larger images, while EMD, Kolmogorov-Smirnov,
and Cramer/von Mises performed better for smaller images.
The study of Puzicha et al. focused mainly on measuring the
performance of dissimilarity measures.

This paper complements the Puzicha et al. study in the
following ways: (1) It provides a quantitative evaluation of
the performance of the three types of binning schemes (Sec-
tion 3). (2) It proposes a dissimilarity measure that can com-
pare histograms with different binnings (Section 4). Since
the dissimilarity measure does not require an optimization
procedure, it can be computed more efficiently than EMD.
(3) This paper proposes different methods for benchmark-
ing the combined performance of binning and dissimilar-
ity measure in classification and retrieval tasks (Section 5).
These benchmarking tests more closely resemble the re-
trieval of complex images with one or more regions of in-
terests than those in [7].

3. Adaptive Binning

Adaptive binning can be achieved by the
�

-means clus-
tering algorithm or its variants. This section describes an
adaptive variant that can automatically determine the ap-
propriate number of clusters required. The algorithm can
be summarized as follows:

Adaptive Clustering

Repeat
For each pixel � ,

Find the nearest cluster
�

to pixel � .
If no cluster is found or distance �����
	�� ,

create a new cluster with pixel � ;
Else, if �
������� ,

add pixel � to cluster
�

.
For each cluster � ,

If cluster � has at least ��� pixels,
update centroid ��� of cluster � .

Else, remove cluster � .
The distance � ��� between the centroid � � of cluster

�

and pixel � with color � � is defined as the CIE94 color-
difference equation:

� ����� �
��� �"!
��# � #%$ �'&

�(� )*!+-,
�/. � .0$ �1&

�2� 34!+-,
��5 � 5�$ �-687:9 �

(1)
where

���%!
,
�
)*!+-, , and

� 3;!+-, are the differences in light-
ness, chroma, and hue between �
� and �<� , � # �>= , � . �

1The formula that Puzicha et al. [7] called “Jeffreys divergence” is more
commonly known as “Jessen difference divergence” in Information Theory
literature [1, 12].

= &@?�AB?DCFEHG)*!+I, , � 5 �J= &H?KA ? = ELG)*!+-, , and
��# � �/. � �/5 �= for reference conditions. The variable
G)*!+-, is the geo-

metric mean between the chroma values of ��� and �<� , i.e.,G)*!+-, �NM ) !+-,:O � ) !+-,:O � . The CIE94 color-difference equation

is used instead of the Euclidean distance in CIELAB be-
cause recent psychological studies show that CIE94 is more
perceptually uniform than does Euclidean distance [6, 11].

The adaptive clustering algorithm groups a pixel � into
its nearest cluster if it is near enough ( � ��� �>� ). On the
other hand, if the pixel � is far enough ( �����P	Q� ) from its
nearest cluster, then a new cluster is created. Otherwise, it is
left unclustered and will be considered again in the next it-
eration. This clustering algorithm, thus, ensures that each
cluster has a maximum radius of � and that the clusters
are separated by the distance of approximately � called the
nominal cluster separation. The value of � is defined as a
multiple R of � , i.e., � � RS� . Reasonable values of R range
from 0 (for complete overlapping of the clusters) to 2 (for
non-overlapping of clusters). Since the algorithm creates
a cluster only when a color is far enough from all existing
clusters, it can determine the number of clusters required to
effectively represent the colors in an image. It also ensures
that each cluster has a significant number of (at least � � )
pixels; otherwise, the cluster is removed. In the current im-
plementation, � � is fixed at 10.

This adaptive clustering algorithm is similar to that of
Gong et al. [4]. Both algorithms ensure that the clusters
are not too large in volume and not too close to each other.
However, our adaptive algorithm is simpler than that in [4].
Moreover, it does not require seed initialization, and can
automatically determine the appropriate number of clusters.

4. Weighted Correlation

The Earth Mover’s Distance (EMD) is currently the only
dissimilarity measure for histograms with different bin-
nings. It performs linear optimization which is computa-
tionally expensive. This section defines a dissimilarity mea-
sure that can be computed without optimization.

Let TVU �XW , � �Y=/Z AIA[A Z]\ , denote the bin counts of his-
togram ^ with centroids T_� �`W . Define histogram ^La in a
similar manner. Since ^ and ^La have different binnings,
their bin centroids are not identical.

To understand how to measure the dissimilarity between^ and ^ba , let us first consider how to measure the similarity
between two bins U � and Ucad with different bin centroids � �
and � ad . Let Ufehgfi and U a ejgfi denote the actual distributions of
colors, where g denote the 3D color coordinates. Then, the
similarity k � d between the two distributions can be defined
as the correlation between them:

k[� d �ml Ufehgfi:U a ehgfiX��g A (2)
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Equation 2 is integrated over the 3D space, and is very te-
dious and time-consuming to compute even for normal dis-
tributions. To simplify the computation, let us assume that
the distributions are uniform within the bins and 0 outside.
Then, Eq. 2 has to be integrated over the intersecting vol-
ume only, yielding:

k � d � l U �� Ucad� a ��g � ������ a U � U ad (3)

where
�

and
� a are the volumes of the bins and

���
is the

volume of intersection. Therefore, the similarity between
two bins can be defined as the weighted product of the bin
counts U � and U ad , with the weight � a� d defined in terms of
the volume of intersection

� �
.

In a perceptually uniform color space such as CIELAB,
color similarity is roughly isotropic. That is, the histogram
bins are spherical. From solid geometry, the volume of in-
tersection

� �
between two equal-sized spherical bins of ra-

dius � , separated by a distance � between their centroids,
can be derived as:� � � ���	� � � � & �=�
 �
� (4)

where
� � C � � ����� is the volume of a sphere. For mathe-

matical convenience, the cluster separation � can be speci-
fied as a multiple of � , i.e., � ��� � ,

? � � � 
 , and the
weight �2a� d can be defined as

� a� d � � �� � �� � = � �C � & ==�� ��� if
? � � � 
?

otherwise.
(5)

Note that � a� d is bounded between 0 and 1, and is sym-
metric: � a� d � � ad � . It can be shown empirically that
Eq. 5 closely approximates a Gaussian function of the form����� e � �F� ��� �[i with an appropriate � .

The dissimilarity � e ^ Z ^ba i between histograms ^ and^ba can be defined as the following weighted correlation:

� e ^ Z ^ a i � = � �! �#" 7
�%$!d " 7 � a� d Uc� U ad

A
(6)

with the following normalization:

�! �#" 7
�!d " 7 � � d Uc� U d �

� $! �#" 7
� $!d " 7 � a a� d U a� U ad � = (7)

where � � d and �2a a� d are the corresponding weights between
the bin centroids.

5. Quantitative Evaluation

Quantitative evaluation of the adaptive clustering and
weighted correlation was performed with three tests. The

first test evaluated the accuracy of adaptive clustering in re-
taining color information. The second and third tests eval-
uated the combined performance of adaptive clustering and
weighted correlation in image retrieval and classification.

5.1. Color Retention

In this test, the performance of the adaptive clustering
was compared with those of regular partitioning and color
space clustering. The colors of the images were assumed to
be represented in the sRGB space and the target color space
was CIELAB.

Test Setup

The adaptive clustering was tested with cluster radius �
ranging from 7.5 to 22.5 and nominal cluster separation fac-
tor R ranging from 1.1 to 1.5. For regular partitioning, the�"!

-axis of the CIELAB space was partitioned into & equal
intervals ( & = 8, 10, 12, 14, 16), and the ' ! - and ( ! -axes
were partitioned into ) equal intervals ( ) = 5, 8, 10 and) �*& ). The centroids of the bins were mapped back to
the sRGB space and bins with illegal sRGB values were
discarded. For color space clustering, the CIELAB space
was partitioned into � 
,+ � 
�+ � 
 equal partitions and the bin
centroids were clustered using the same adaptive clustering
algorithm, with - A E � �J� 
 ? and = A = ��R � = ABE .

As the test images, 100 visually colorful images were
randomly selected from the Corel 50,000 photo collection.
The images had sizes of either 
 E ��+ �%. C or �%. C +/
 E � . Color
histograms were generated for each image using the three
binning methods.

The performance of the three binning methods were
measured by three indicators, namely, the number of bins or
clusters produced, the number of empty bins, and the mean
color error measured as the mean difference between the ac-
tual colors and the quantized colors (in CIE94 units). These
performance indicators were averaged over all the images.

Color Error

Experimental results show that the larger the bin volume
(or cluster radius � ) and the larger the bin separation R , the
smaller is the number of bins and the larger is the mean
color error. Figure 1 shows that regular partitioning pro-
duced slightly larger mean color error compared to color
space clustering, while adaptive clustering produced the
smallest error. Given a fixed number of bins, regular and
clustered histograms have errors that are about twice those
of adaptive histograms.

Empty Bins

Figure 2 shows the average percentage of empty bins in the
regular and clustered histograms. With a large number of
bins, both histograms have 50% or more empty bins. With
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Figure 1. Comparison of mean color errors of
regular, clustered, and adaptive histograms.
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Figure 2. Average percentage of empty bins
in regular and clustered histograms.

a small number of bins, clustered histograms have as few as
20% empty bins. The adaptive histograms have no empty
bins. These test results show that adaptive histograms can
retain color information more accurately with fewer bins
than do regular and clustered histograms.

Discussion

Existing systems typically use 64-bin clustered histograms
or more than 150 bins for regular histograms. Their respec-
tive mean color errors are about 8 and 6, with 45% and 50%
empty bins. In comparison, 64-bin adaptive histograms can
achieve a color error of about 3.5, lower than human accept-
ability threshold [11], with no empty bins.

In the subsequent tests, the parameter values of clustered
and adaptive binning methods were fixed at � � = ? andR � = ABE because this combination yielded good color re-
tention with small number of bins. With these parameter
values, the adaptive binning method produced an average
of 37.8 bins with a mean color error of 4.53, and the color
space clustering method produced 80 bins, a mean color er-
ror of 7.19, and 42% empty bins. In principle, the mean
color error of color space clustering can be reduced to, say,
below 5 so that it is comparable to that of adaptive binning.

However, this will require the clustered histograms to have
much more than 250 clusters—a value that is both impracti-
cal and beyond our experimental range. It was not necessary
to test regular partitioning further because its performance
was similar to that of color space clustering.

5.2. Image Retrieval

This test assessed the combined performance of binning
schemes and dissimilarity measures in image retrieval.

Test Setup

In the image retrieval test of Puzicha et al. [7], random sam-
ples of pixels were extracted from the test images. Samples
that were drawn from the same image should have similar
distributions and were regarded as belonging to the same
class. This kind of test samples is useful for testing the
performance of various similarity measures in computing
global similarity between two images.

A different kind of test samples was prepared for our
tests. Each of the 100 images used in the color retention
test (Section 5.1) was regarded as forming one query class.
These images were scaled down and each embedded into
20 different host images, giving a total of 2000 composite
images at each scaling factor. The scaled images were used
as query images, and the composite images that contained
the same embedded images were regarded as relevant. This
test paradigm should be useful for testing the combined per-
formance of binning schemes and dissimilarity measures in
retrieving images that contain a particular target region or
color distribution of interest. We feel that this test more
closely resembles the retrieval of complex images contain-
ing one or more regions of interests compared to that in [7].
In the test, scaling factors for image width/height of 1/4,
1/2, and 3/4 were used. These values gave rise to embed-
ded images with area scaling factors of 1/16, 1/4, and 9/16
compared to the original images.

The test was performed with
� � (i.e., Euclidean) dis-

tance, Jessen difference divergence (JD), EMD, and the
weighted correlation (WC) measure described in Section 4.� � served as the base case. JD and EMD were re-
ported in [7] to yield good performance, respectively,
for large and small sample sizes. Other dissimilarity
measures evaluated in [7] were expected to yield simi-
lar results and were therefore omitted. Both

� � and JD
could be tested only with clustered histograms. The pro-
gram for EMD was downloaded from Rubner’s web site
(http://robotics.stanford.edu/ rubner), and was tested only
with adaptive histograms due to its longer execution time.
The CIE94 distance was used as EMD’s ground distance be-
cause it is more perceptual uniform than Euclidean distance
in the CIELAB space. WC was tested with both clustered
and adaptive histograms.
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Figure 3. Precision-recall curves of various combinations of binning methods (c: clustered, dashed
line; a: adaptive, solid line) and dissimilarities (JD: Jessen difference divergence, WC: weighted
correlation, L2: Euclidean, EMD: Earth Mover’s Distance). (a) Scaling = 1/2, (b) scaling = 3/4.

Results and Discussion

Figure 3 plots the precision-recall curves of the image re-
trieval results for width/height scaling factors of 1/2 and
3/4. The curves for scaling factor of 1/4 are not shown be-
cause all combinations of binnings and dissimilarity mea-
sures performed poorly. They all had very low precision of
less than 0.2 at recall rate of 0.1, and their precision dropped
to about 0.01 at recall rate of 0.3 and above.

All five combinations performed significantly better for
the larger scaling factor of 3/4 than for 1/2. For both scal-
ing factors, clustered histograms together with JD (c + JD)
performed best, with the adaptive histograms and WC
(a + WC) combination following closely behind. The
a + WC combination performed significantly better than
c + WC, which had roughly the same performance as c +

� � .
These results show that, given the same dissimilarity mea-
sure, adaptive histograms perform better than clustered his-
tograms because they can describe color information more
accurately and yet use fewer bins (Section 5.1).

Somewhat surprisingly, EMD (with adaptive his-
tograms) performed poorer than

� � . Compared to the re-
sults in [7], which show that EMD performed better for
small sample sizes, it is noted that our smallest scaling
factor of 1/4 corresponds to an image size of 6144 pixels,
which is far larger than the sample sizes used in [7]. More-
over, the adaptive histograms have an average of 37.8 bins,
and they correspond to medium sized histograms in [7].
These parameter values may have obscured the strengths
of EMD in extreme cases of small sample sizes and small
number of bins. On the other hand, our choice of the num-
ber of bins, which was supported by the color retention test
(Section 5.1), and the sample sizes should better resemble
the retrieval of complex images with multiple regions.

5.3. Image Classification

This test assessed the combined performance of binning
schemes and dissimilarity measures in image classification.

Test Setup

The composite images generated in the retrieval tests (Sec-
tion 5.2) were used for image classification test. The com-
posite images that contained the same embedded image
were considered as belonging to the same class. This would
correspond to the practical application in which images con-
taining the same region are considered as identical.

The
�

-nearest-neighbor classifier with leave-one-out
procedure was applied on each of the 2000 composite im-
ages. Odd values of

� � =DZ � Z E Z - Z�� were chosen to remove
the possibility of ties. Classification error, averaged over
all 2000 images, were computed for each combination of
binning scheme, dissimilarity measure, and

�
value.

Results and Discussion

Figure 4 shows the classification performance for
width/height scaling factors of 1/2 and 3/4. The curves
for 1/4 scaling are not shown because all combinations of
binnings and dissimilarity measures performed poorly.

All five combinations performed significantly better for
the larger scaling factor of 3/4 than for 1/2. Moreover, their
classification accuracies increased with increasing number
of nearest neighbors

�
. Similar to the image retrieval re-

sults, c + JD gave the best performance for both scaling
factors, with a + WC following closely behind. The a + WC
combination performed better than c + WC, and c +

� �
again had the lowest accuracy. These results again show
that, given the same dissimilarity measure, adaptive his-
tograms perform better than clustered histograms. Unlike
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Figure 4. Classification accuracy of various combinations of binning methods and dissimilarities.

in the retrieval tests, the performance of a + EMD was very
good in the classification tests. The classification accuracy
of a + EMD closely matched that of a +WC, especially for
the larger scaling factor of 3/4.

6. Conclusions

This paper presented an adaptive clustering method and a
dissimilarity measure for comparing histograms with differ-
ent binnings. The adaptive clustering algorithm is an adap-
tive variant of the

�
-means clustering algorithm and it can

determine the number of clusters required to effectively de-
scribe the colors in an image. The dissimilarity measure
computes a weighted correlation between two histograms,
and the weights are defined in terms of the volumes of inter-
section between overlapping spherical clusters. Since this
measure does not require optimization, it executes more ef-
ficiently than Earth Mover’s Distance (EMD) does.

Extensive tests were performed to evaluate the per-
formance of adaptive clustering and weighted correlation
(WC) on color retention, image retrieval, and image classi-
fication tasks. Compared to fixed binning schemes, adaptive
clustering can retain color information more accurately with
fewer bins and no empty bin. The combined performance of
adaptive clustering and WC is comparable to that of Jessen
difference divergence and better than those of

� � and EMD.
Given the same dissimilarity measure, adaptive clustering
performs better than fixed binning. Therefore, the combina-
tion of adaptive clustering and weighted correlation achieve
the best overall performance of good accuracy, small num-
ber of bins, no empty bin, and efficient computation.
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