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Abstract

Although great progress has been made in the field of computational intelligence
for games in the past decades, learning board games remained a complex task until
today. Machine-learning techniques – such as Temporal Difference learning (TDL) –
commonly have to deal with a variety of problems when they are applied to complex
board games. Although Temporal Difference learning is known as one of the success-
ful techniques for learning board games by self-play, the success is highly dependent
on the correct selection of parameters. In [37], it was shown that even with a careful
selection of the parameters for a game with moderate complexity like Connect-4,
learning convergence only occurs after a several million of self-play games. In this
work we investigate the impact of several online-adaptable learning rates on reducing
the parameter selection dependency in order to speed up the learning process. We
show, that Temporal Coherence Learning (TCL) and Incremental Delta Bar Delta
(IDBD) have only a small impact on the learning speed. Later, we propose a more
successful approach in speeding up the learning process, called TCL-EXP with ’geo-
metric’ learning rate changes. Additionally, we apply eligibility traces to our system
for the first time. We found eligibility traces to be a very important ingredient in
reducing the number of game plays required for training an almost perfect playing
agent.

Keywords: Machine learning, board games, connect four, Tic Tac Toe , self-play,
Reinforcement Learning, Temporal Difference Learning (TDL), temporal coherence,
Q-learning, eligibility traces, Incremental Delta Bar Delta (IDBD), learning rates,
self adaptation, online adaptation, n-tuple systems.
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Chapter 1

Introduction

1.1 Learning

Board games often have simple rules but complex strategies and this is a reason which
makes them a hot topic in artificial intelligence. Easy representation of the states
and well defined rules in board games provide an ideal test-bed for benchmarking
the decision making algorithms. Despite the broad research in machine learning,
complex board games like chess are still far from being solved. However, a perfect
playing agent for such a game is not found yet, current trained agents for many
games are not competitive for professional human players.

We often have difficult decision making situations in board games because of
a late payoff for any action. Every action will be graded based on its effect on
the final game result. One of the most advanced methods in machine learning to
address the mentioned issue is reinforcement learning (RL). The basic idea of RL is
interaction with the environment through trial and error due to learning about the
problem positive or negative rewards recieved after a sequence of actions, instead
of hard-coding human knowledge about the problem. Temporal difference learning
and Q-learning are known as thriving examples of reinforcement learning in various
applications of artificial intelligence like robotics or board games.

In this work which is an extension of the work done by Thill in [36, 37], the
successful agent is trained by temporal difference learning, which is able to win in
more than 90 percent of the matches against a perfect playing Minimax agent. The
search for an optimal playing agent is a sort of optimization problem. In contrast to
conventional optimization tasks such as supervised learning, in board games there
is no trivial objective function to assess the quality of an action. Therefore, we use
self-play strategy and the agent plays many games against itself and learns from the
experiences it makes. In other words, we are trying to imitate the learning procedure
of a child with very constrained knowledge about the world around, which starts to
learn from few interactions with the environment by trial and error.
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As it is reported in [37], the temporal difference approach, used for learning the
Connect-4 game, required a couple of million games and a very precise selection of
parameters. This slow convergence is different from our expectation of this mimic of
human learning process, because our knowledge about learning is still very limited.
Humans are very efficient and fast in learning complicated tasks in new domains.
Therefore, we can claim that there are missing elements in the TDL approach of
[37]. As Sutton [30] has pointed out, information theoretic arguments suggest that
the human learning progress is often too rapid to be justified by the data of the
new domain alone. The key to success is, as it is commonly believed, that humans
bring a set of correct biases from other domains into the new domain. These biases
allow to learn faster, because biases direct them to prefer certain hypotheses over
others or certain features over others. If machine learning algorithms can achieve a
performance similar to humans, they probably need to acquire biases as well. Where
do these biases come from?

Already in 1992 Sutton [30] introduced the Incremental Delta Bar Delta (IDBD)
algorithm where the biases are understood as learning rates which can be different
for different trainable parameters of any underlying algorithm. The key idea of
IDBD is that these learning rates are not predefined by the algorithm designer but
they are adapted as hyperparameters of the learning process themselves. Sutton [30]
expected such adaptable learning rates to be especially useful for nonstationary tasks
or sequences of related tasks and he demonstrated good results on a small synthetic
nonstationary learning problem (featuring 20 weights). A similar idea was suggested
as Temporal Coherence Learning (TCL) by Beal and Smith in 1999 [6, 7]. This work
aimed at directly modifying the Temporal Difference Learning (TDL) algorithm to
take into account self-tuning learning rates.

In this work we will present the result of the implementation of TCL and IDBD
techniques on the Java framework developed by Thill in [36]. We show the impact
of these techniques on the learning process. We also propose a new approach which
is a variant of TCL and we call it TCL-EXP. The proposed technique shows higher
impact on speeding up the learning process than the conventional TCL technique.

Although adding TCL-EXP approach yields a faster learning convergence than
the results reported before, still half a million games are necessary to reach 80 percent
of the max. success rate. The architecture of the problem and temporal difference
learning is the one responsible for this late convergence. In many games play, updates
happen only at the end of the game and many games are required to transfer the value
gained in the last states to the initial states. Eligibility traces bring us a solution to
overcome this problem by updating not only value of the state which has deserved
a reward but all sequence of the states which yield to it. Of course, as further the
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state is from the actual rewarded one the effect should be reduced. Eligibility traces
implementation indicates a high impact on learning convergence.

1.2 Related Work

Several online learning rate adaptation schemes have been proposed over the years:
IDBD [30] from Sutton is an extension of Jacobs’ [13] earlier DBD algorithm: it
allows immediate updates instead of batch updates. Sutton [31] proposed with the
algorithms K1 and K2 some extensions to IDBD and compares them with the Least
Mean Square (LMS) algorithm and Kalman filtering. Koop [15] used TDL methods
for learning the game Go. She used the IDBD algorithm for online adaptation and
investigates general aspects of temporal coherence. Almeida [2] discussed another
method of step-size adaptation and applied it to the minimization of nonlinear func-
tions. Schraudolph [23] extended on the K1 algorithm and showed that it is superior
to Almeida [2].

For the game Connect-4 – although solved on the AI-level – only rather few at-
tempts to learn it (whether by self-play or by learning from teachers) are found in the
literature: Schneider et al. [22] tried to learn Connect-4 with a neural network, using
an archive of saved games as teaching information. Sommerlund [26] applied TDL to
Connect-4 but obtained rather discouraging results. Stenmark [27] compared TDL
for Connect-4 against a knowledge-based approach from Automatic Programming
and found TDL to be slightly better. Curran et al. [10] used a cultural learning ap-
proach for evolving populations of neural networks in self-play. All the above works
gave no clear answer on the true playing strength of the agents, since they did not
compare their agents with a perfect-playing Minimax agent.

Lucas showed that the game of Othello, having a somewhat greater complexity
than Connect-4, could be learned by TDL within a few thousand training games with
the n-tuple approach [17]. Krawiec et al. [16] applied the n-tuple-approach in (Co-)
Evolutionary TDL and outperformed TDL in the Othello League [18]. This stirred
our interest in the n-tuple approach and we applied it successfully to Connect-4 in
our previous work [37]. The results against a perfect playing Minimax agent are
summarized.

1.3 Report Structure

This case study is mainly focused on learning techniques to train a capable agent
for the game of Connect-4. Tic Tac Toe which is a simpler game with significantly
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less number of possible states, is just used as an initial illustration. We will give
a brief overview about both games in 2.1 and 2.2. In Section 2.3 fundamentals of
reinforcement learning will be discussed in detail. Temporal Difference learning and
Q-learning will be explained in the same section. Additionally eligibility traces and
its mathematical expressions are shown. Section 2.4 belongs to fundamentals of n-
tuple system. Meta parameter learning techniques are explained in the following
sections: 2.5 and 2.6. After explaining the fundamental of techniques and problem,
we give the experimental setup details in Chapter 3, this information can be useful
in order to repeat any of these experiments and gain similar results as ours which
are presented in Chapter 4.

Chapter 4 contains detailed information about our test results in Connect-4. Our
proposed technique (TCL-EXP) is formulated in Section 4.4 and the results are
presented in the same section. In Chapter 5 we give a summary of all results and
describe future work.
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Chapter 2

Fundamentals

2.1 Connect Four

Connect Four is a popular board game for two players (typically Yellow and Red),
played on a grid with seven columns and six rows. The aim of the both opponents
is to create a row of four connected pieces with their color, horizontally, vertically
or diagonally. The player who can achieve the goal first, wins the game. One main
characteristic of the game is the vertical arrangement of the board, which allows
both opponents to throw their pieces only into one of the seven columns (slots).
Starting with Yellow, both players alternately drop one of their pieces into a slot.
Due to gravity, the pieces fall down to the first free row of the according slot. A
column containing six pieces is considered as full and reduces the number of possible
moves for both players by one (initially, seven moves are possible). After 42 plys, all
columns will be completely filled and, in this case, if player Red did not connect four
own pieces with his last piece, the match ends with a draw.

Determining the state space complexity of Connect Four is substantially more
difficult than for other games such as Tic Tac Toe. An initial estimation of 342 ≈ 1020

is an upper bound but, however, very vague. The exact number of 4531985219092 ≈
4.5·1012 states [12] is fairly large. In comparison with games such as chess or checkers
this number is still rather small. Connect Four was first solved by Allis in 1988 [1]:
He found out, that the active (starting) player Yellow wins the game by placing his
first piece in the middle column of the board.
In 1994 Tromp completed a database containing all positions with exactly 8 pieces [3].
The evaluation of all 67, 557 positions took him around 40, 000 hours (≈ 4.5 years)
using several computers. Even nowadays, it is not trivial to develop a computer-
program that is able to solve Connect Four in acceptable time. For instance, the
popular program Mustrum [9] needs around 17 hours on a Pentium-4 machine and
a 60 MB transposition-table to find the best move for the empty board (without the
help of databases).



2.2. TIC TAC TOE 6

Figure 2.1: A typical position for the game Connect Four. The position was created by two
perfect-playing agents. Player Yellow won the game with his last piece. However, Red was able to
delay his defeat as far as possible.

2.2 Tic Tac Toe

Tic Tac Toe is a strategic board game for two players, which is very similar to
Connect Four. The game is played on a board with 3× 3 cells. Goal of both players
(X and O) is to place three own pieces in a row, either horizontally, vertically or,
diagonally. In contrast to Connect Four there is no gravity component in Tic Tac
Toe, all nine spots on the initial empty board can be occupied by the players. The
pieces are placed alternating by both opponents, starting with player X. The game
ends after nine plys, if both sides cannot achieve a row of three pieces, with a tie.
Two example positions can be found in fig. 2.2.
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Figure 2.2: Two example positions for the game Tic Tac Toe. Left: A typical situation in Tic
Tac Toe after six plys. Right: A position with a win for player X who connects three of his own
peices diagonally with his last move.

It can easily be shown with a full-depth MiniMax search that every match of
perfect players ends with a tie.
The number of states for Tic Tac Toe is fairly small. A first estimation is simply
39 = 19683 states, which however, includes many illegal states. With a computer
program we calculate an exact count of 5478 possible legal position.

2.3 Reinforcement Learning and TDL

Reinforcement Learning (RL) describes a field in machine learning tasks, in which
agents learn how to take a sequence of actions in an unknown, dynamic environment
in order to maximize a given reward. In contrast to supervised learning methods,
Reinforcement Learning learns just by experiences (trial and error principle) and has
no access to further knowledge provided by an external supervisor.

In the classical RL-model, the agent is able to observe his environment. This
observation generally represents the environmental state s ∈ S, with a set of all
possible states S. By interacting with his environment, the agent can transform
the current state st into a new environmental state st+1. This is done by mapping
the current state into an action a (that maximizes the cumulative predicted reward);
typically, the agent selects a from a set of possible actions A(s). Based on this action
the environment performs a transition to a new state and returns an immediate
reward to the agent. However, an action taken by the agent, does not only affect
the immediate reward. In general, also future rewards are influenced. One main
feature of RL is, that it can handle problems with delayed rewards. Strategic board
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Figure 2.3: Reinforcement Learning model showing the interaction of an agent with his envi-
ronment. Based on the current state st the agent determines and performs an action at which
transforms the state st of the environment to a new state st+1. Additionally, the environment
returns a reward to the agent. Maximizing the cumulative future rewards is the main aspect, that
is driving the agent to learn a convenient strategy (policy) π. The figure is taken from [32].

games such as Connect Four belong into this category; a whole sequence of moves is
necessary before a reward can be determined.
The main challenge for RL is performing the mapping from a state to an action in
order to maximize the long-term success. A set of rules is needed, that can predict
the future rewards (e.g. by value-functions) and select an action for the current
state based on the estimations. The mapping S → A(S) is commonly denoted as
the policy π of an agent. Often, the agents policy is also defined as a probability
distribution π(s, a), that gives the probability of selecting an action a for the state
s.
However, in Reinforcement Learning there is always a trade-off between exploration
and exploitation. A greedy agent, which just bases its decisions on old experiences
and selects an already known action, that appears to be the best currently, will
likely fail in finding a suitable policy. For the agent a certain degree of exploration is
necessary, by simply trying unknown actions that could then yield in an even higher
expected overall reward. Finding the balance between exploration and exploitation
in practice is often not trivial (typically, an over time decreasing exploration-rate is
chosen during the training process of the RL-agent).
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2.3.1 Value Functions and their Approximation

As mentioned before, the policy of a RL-agent is often based on a value function,
that estimates the future rewards for a given state or a state-action pair. In contrast
to the reward function that is clearly defined in the environment, it is generally not
a trivial task finding a convenient value function. Formally, the state-value function
is defined as:

V π(s) = Eπ {Rt|st = s} = Eπ

{
T∑
k=0

γkrt+k+1

∣∣∣∣st = s

}
, (2.1)

where π is the policy followed by the agent, Eπ is the expected reward – starting
at time t with state st – if the agent follows its policy π.

Accordingly, the action-value function is described by:

Qπ(s, a) = Eπ {Rt|st = s, at = a} = Eπ

{
T∑
k=0

γkrt+k+1

∣∣∣∣st = s, at = a

}
. (2.2)

The discount-factor γ is commonly used to decrease future rewards slightly and is
therefore typically chosen in a range of 0 ≤ γ ≤ 1. A discount of γ < 1 is especially
needed for infinite episodes with T =∞ to ensure that the series converges.

The task of the RL-agent is to learn a value function by exploring his environ-
ment and interacting with it. The value function should be capable of mapping every
possible state of the system to a real value. A naive approach for a value function
could simply manage a lookup table of |S| values, by assigning each environmental
state to exactly one table-entry. However, this approach is not practicable in many
cases, for at least two reasons: On the one hand, the amount of required memory
would simply be too large. And on the other hand, it would be necessary for the
agent to visit every state at least once, in order to learn the correct behavior.
Thus, for complex problems a representation is needed, that is able to generalize
sufficiently and only requires a reasonable amount of memory. The generalization
implies a certain degree of approximation, which introduces an error in the predic-
tions made by the agent. This makes it challenging, to find an appropriate balance
between the level of generalization and the accuracy of the approximation.

A typical approach for approximating state values are linear functions in the form

V (s) = f(~w,~g(s)) = ~w · ~g(s), (2.3)
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with a parameter vector ~w and a feature vector ~g(s) (commonly simply w and g(s)).
Finding appropriate features for g(s) differs from task to task and is very often not
trivial and requires expert knowledge. We will later introduce the so called n-tuple
systems that create a mighty feature space without requiring any special knowledge
of the considered task.
As all approximations, also linear functions induce a certain approximation error.
Normally, when changing a single parameter (weight) in ~w, we adjust the values of
many states. This leads to the question, how to determine a parameter vector ~w
in order to get a good approximation of all relevant states. One measure to assess
the quality of the linear function could be the commonly chosen mean squared error
(MSE ). The MSE at a given time t is then:

MSE( ~wt) =
∑
s∈S

P (s)

[
V π(s)− Vt(s)

]2

, (2.4)

where V π(s) describes the perfect value-function when following policy π, Vt(s) is an
approximating (linear) function and, P (s) is a probability distribution which is used
to weight the errors of all states. This weighting has to be done, because normally
there are states in a system that are more relevant than others and require a better
approximation. However, by increasing the value-accuracy for one state, other states
will have a loss of precision ([32], ch. 8.1).

An analytical solution for finding ~wt that minimizes the MSE is not possible in
most cases. Therefore, commonly gradient descent methods are used ([32], ch. 8.2).
Instead of minimizing the error for the complete sum in Eq. 2.4, we try to minimize
the error for individual states st that we reach during the training. In many cases
this approach also indirectly addresses the problem of weighting the state-errors, as
done in Eq. 2.4 (we assume, that important states are visited more often, e.g., the
initial position in Connect Four).
We evaluate theMSE for a given example st. If Vt(st) = f( ~wt, ~g(s)) is a differentiable
function we can calculate the gradient with respect to ~wt and take a small step into
the opposite direction by adjusting ~wt. The gradient is:

∇ ~wt

[
V π(st)− Vt(st)

]2

= −2

[
V π(st)− Vt(st)

]
∇ ~wtVt(st) (2.5)
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Assuming a linear function

V (s) =
N∑
i=1

wi · gi(s) = w1 · g1(s) + w2 · g2(s) + . . .+ wN · gN(s), (2.6)

we can rewrite ∇ ~wtVt(st) as:

∇~wtVt(st) =

 g1(s)
...

gN(s)

 = g(s), (2.7)

which is simply the feature-vector. By selecting an appropriate step-size parameter
(learning rate) α, we can now adjust the parameter vector with

~wt+1 = ~wt + α

[
V π(st)− Vt(st)

]
∇ ~wtVt(st) (2.8)

and for the linear case with

~wt+1 = ~wt + α

[
V π(st)− Vt(st)

]
g(st) (2.9)

The missing factor 2 from Eq. 2.5 is considered as part of the learning-rate α.
The two above formulas can now be used in order to find the (local) minima of the
MSE -function in Eq. 2.4. However, both, Eq. 2.8 and Eq. 2.9 have one issue: In
practice the value of V π is not known and can not be derived easily. One approach,
to solve this problem, is presented in the following section.

2.3.2 Temporal Difference Learning

In the last section we briefly described how to minimize the error of an approximat-
ing value function for RL-problems by applying a gradient descent method on the
MSE -function. In this way, the approximation of the real value-function converges
to a (local) optimum ([32], ch. 8.1). However, the value function V π(st) is unknown
and cannot be retrieved in many cases. Nevertheless, it can be shown, that if an
unbiased estimate vt is used instead, the parameter vector ~wt converges to a local
optimum ([32], ch 8.1).
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Temporal Difference Learning is a Reinforcement Learning method that describes
such an approach by estimating V π with the value of the successor state st+1. Al-
though the estimate is not unbiased in all cases, this method proved to be a very
well suitable as a bootstrapping method. The main idea behind TD-learning is,
estimating V π in the following way:

V π(st) ≈ E {rt + γV (st+1} , (2.10)

where γ is again the discount factor (as described in section 2.3.1) and rt the current
reward. Inserting this approximation into Eq. 2.8 leads to the following formula,
which is the central element of TD-Learning ([32], ch 6.1):

~wt+1 = ~wt + α

[
rt + γV (st+1)− Vt(st)

]
∇~wtVt(st). (2.11)

The above equation can be rewritten in the following way:

~wt+1 = ~wt + αδt et (2.12)

with the expressions

Tt+1 = rt + γV (st+1) (2.13)

δt = Tt+1 − Vt(st) (2.14)

et = ∇~wtVt(st). (2.15)

Again, for a linear value function we get

et = g(st). (2.16)

The vector et is commonly referred to as the eligibility traces vector. A more
general definition is

et+1 = γλet +∇wf
(
w; g(st+1)

)
(2.17)

In the following section we will discuss eligibility traces in more detail.



Fachhochschule Köln
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Algorithm 1 General TD(0) algorithm.

Initialize V (s) arbitrarily, π to the policy to be evaluated

for Each episode do

Initialize s

for Each step of episode do

a := action given by π for s

Take action a; observe reward, and next state (st+1)

V (s) := V (s) + α[r + γV (st+1)− V (s)]

st := st+1

end for . until s is terminal

end for

2.3.3 Eligibility Traces

Most board games such as Connect Four have in common, that rewards – given by
the environment – are delayed (intermediate rewards would indicate some supervisor
involved in the learning process). An action a generally does not lead to a direct
reward, so that a complete sequence of actions is necessary to reach a state in which
the effective reward is given. As described in the last section, Temporal Difference
methods are useful techniques for solving Reinforcement Learning problems with
delayed rewards. Even though simple (one-step) TD methods are able to learn
value functions that predict the expected future reward, they still have to deal
with some delays in the updates of their value functions: TD methods estimate
the approximation error for a state-value based on the current prediction of the
successive state rather than on the final outcome (reward). This means that a
reward given at the end of a sequence of actions is only used to adjust the last
prediction, but not the predictions before the last one.

As a simple example, assume, an inexperienced agent constantly follows a policy
π, which results in an episode with in total T time steps and a final reward rT at
time step T . After completing the first episode the agent receives a reward from the
environment and updates the value for V (sT−1). During the second episode the value
V (sT−2) can be adjusted and so on. For this example, T −1 repeated episodes would
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Algorithm 2 Incremental TD(λ) algorithm for board games.

Assume p0 ∈ {+1,−1}, the initial state s0 and the partially trained function
f
(
w; g(st)

)
function tdlTrain(p0, s0, f

(
w; g(st)

)
)

e0 := ∇wf
(
w; g(st)

)
. Initial eligibility traces

for
(
p := p0, t := 0 ; st /∈ SFinal ; p← (−p), t← t+ 1

)
do

Vold := f
(
w; g(st)

)
. Value for current state st

generate randomly q ∈ [0, 1] . Uniformly distributed

if (q < ε) then . Random move with prob. ε

Randomly select st+1 . Explorative move

else

Select after-state st+1, which maximizes

p ·

{
R(st+1), if st+1 ∈ SFinal
f
(
w; g(st+1)

)
, otherwise

. Greedy move

end if

V (st+1) := f
(
w; g(st+1)

)
. Response of linear/neural net

rt+1 := R(st+1) . Reward from environment

Tt+1 :=

{
rt+1, if st+1 ∈ SFinal
γ · V (st+1), otherwise

. Target-signal

δt := Tt+1 − Vold . Error-signal

if (q ≥ ε or st+1 ∈ SFinal) then

w ← w + αδtet . Update for non-random move

end if

et+1 := γλet +∇wf
(
w; g(st+1)

)
. Eligibility Traces

end for . End of the self-learning algorithm

end function
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be required, until a delayed reward finally affects V (s0) (assuming, that s0 is not
reached at other time steps t). Having large T , this could be thoroughly problematic
and result in a slow convergence of the process. However, if the agent constantly
follows his policy π then the predicted values of all states should ideally converge to

the final reward that they predict
(
V (s0) = V (s1) = · · · = V (sT ) = rT

)
.

As already indicated before, classical 1-step TD methods update the value
function in every time step just for the current state st. However, it could be
convenient to assign some credit to the previous states {st−1, st−2, · · · } as well, since
these states led to the current situation, the agent is in now.
Monte Carlo Methods follow this idea, by approaching the backups in a rather
different way in comparison to simple TD methods [32]: Instead of updating the
value function based on temporal differences, Monte Carlo algorithms first complete
a whole episode of length T and then update the value of each state visited during
this specific episode. In contrast to TD methods, the backups for st are not based on
any predictions, only the observed rewards from time step t until T are considered.
Again, for board games such as Connect Four, only the final reward rT is provided
by the environment, which is then used to equally update the values for all visited
states of the corresponding episode. However, one main disadvantage of Monte
Carlo algorithms is that the actual learning step has to be performed after the final
outcome of the episode is known, so that the agent cannot directly adjust its policy
and try to avoid this state, when a bad state is experienced.

In the following we show how to efficiently combine Monte Carlo algorithms and
simple TD methods, creating a new class of learning algorithms. The main idea
is to first break down the episodic update scheme of MC methods into temporal
differences, similar to the simple TD methods (the main steps are taken from [28]).
Assume all predictions Pt = V (st) of a sequence (s0, · · · , sT ) predict outcome r. We
then get an recommended weight change (RWC), if we want to minimize the MSE
for every time step with

∆wt = αδt∇wPt (2.18)

with δt = r − Pt. The problem is, that for time step t the final outcome/reward r is
unknown. This is for instance the reason that TDL is an bootstrapping process that
approximates V ∗(st) ≈ V (st+1). We can rewrite the error δt = r − Pt:

δt = r − Pt =
T−1∑
k=t

Pk+1 − Pk where PT = r (2.19)
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When evaluating the sum, it can be seen that all terms of the sum cancel out, except:
PT − Pt = r − Pt. Inserting (2.19) back into (2.18) leads to:

∆wt = α

T−1∑
k=t

(Pk+1 − Pk)∇wPt. (2.20)

If the weights shall be updated after one episode (as MC methods do), we get the
following weight backup:

w ← w +
T−1∑
t=0

α
T−1∑
k=t

(Pk+1 − Pk)∇wPt. (2.21)

We now rewrite (2.21) with the identity
∑m

k=0

∑k
j=0 akj =

∑m
j=0

∑m
k=j akj:

w ← w +
T−1∑
k=0

α
k∑
t=0

(Pk+1 − Pk)∇wPt (2.22)

By replacing k with t and vice versa (since t ranges from 0 to T−1), the sum changes
to:

w ← w +
T−1∑
t=0

α
t∑

k=0

(Pt+1 − Pt)∇wPk. (2.23)

From the above formula we again can extract ∆wt:

∆wt = α
t∑

k=0

(Pt+1 − Pt)∇wPk = α(Pt+1 − Pt)
t∑

k=0

∇wPk (2.24)

Note, that this representation is different to the former one, which was:

∆wt = α(r − Pt)∇wPt (2.25)

Nevertheless, (2.24) and (2.25) are equivalent. The main advantage of (2.24) is,
that it can be calculated incrementally, thus, step by step during an episode, similar
to simple TD methods. We do not have to wait until an episode is completed.
Sutton [28] introduced an exponentially decaying factor λ, which allows a weighting
according to the recency of the events, which was the main step towards the TD(λ)
algorithm. The TD(λ) algorithm, introduced by Sutton [28], describes an efficient,
incremental way of combining simple TD methods and Monte Carlo algorithms,
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utilizing the advantages of both approaches. The new ingredient in TD(λ) – as
mentioned before – is the so called eligibility trace vector, containing a decaying
trace ei for each weight wi [28]:

~et =
t∑

k=0

(λγ)t−k∇~w V (sk)

= λγ~et−1 +∇~w V (st),

~e0 = ∇~w V (s0),

(2.26)

with a trace decay parameter λ and a discount factor γ (we assume γ = 1 through-
out this report), which decay the individual traces ei by the factor λγ in every time
step. Thus, the effect of future events on the corresponding weights wi exponentially
decreases over time. By choosing λ in a range of 0 ≤ λ ≤ 1, it is possible to shift
seamlessly between the class of simple one-step TD methods (λ = 0) and Monte
Carlo methods (λ = 1) [29].
The definition of the conventional eligibility traces in Eq. (2.26) implies, that each
trace accumulates a value ∆ei = ∇wi

V (st) in every time step t if the corresponding
weight is activated. In certain cases, this behavior may be undesired, since specific
states can be visited many times during one episode. As a result, the according
traces build up to comparably large values and future TD errors give higher credit to
frequently visited states, which could negatively affect the overall learning process.
For instance, an agent that reaches an undesirable state several of times, but still
manages to achieve a good final reward, will give higher credit to this undesirable
state, which in consequence, may negatively affect the overall learning process.
Although it is unlikely or even impossible in many problems (including Connect-4)
that states are revisited during an episode, the use of generalizing function approxi-
mators typically leads to reoccurring features, so that certain traces are repeatedly
addressed [25].
Replacing eligibility traces, proposed by Singh & Sutton [25], depict an approach
to overcome this potential problem related to conventional eligibility traces. The
main idea behind replacing traces is to reset a trace to ei = ∇wi

V (st) each time
the corresponding weight is activated, instead of accumulating its value. As before,
the traces of non-active weights gradually decay over time and make the weights less
sensitive to future events.
In this work, we will investigate both approaches, conventional and replacing eligi-
bility traces. An example illustrating both types of traces is given in Fig. 2.4.
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c

a

b

Figure 2.4: Schematic view of different eligibility trace variants: Line a shows the situation
without elig. traces, a weight is activated only at isolated time points. The dotted vertical line
represents a random move. Line b shows the eligibility trace with reset on random move. Line c
shows replacing traces, this time without reset on random move.

The TD(λ) algorithm usually requires a certain degree of exploration during
the learning process, thus, the execution of random moves from time to time –
ignoring the current policy. When performing random moves, the value V (st+1) of
the resulting state st+1 is most likely not a good predictor for V (st). The weight
update based on V (st) is normally skipped in this case. This also raises the question
how to handle exploratory actions regarding the eligibility traces. We will consider
two options: 1) Simply resetting all trace vectors and 2) leaving the traces unchanged
although a random move occurred. Both options may diminish the anticipated effect
of eligibility traces significantly, if higher exploration rates are used (which is not the
case in our experiments).

2.3.4 Q-Learning

Q-Learning proposed by Watkins in 1989, is known as one of the most beneficial
techniques in reinforcement learning studies. While TD-learning should handle the
combination of prediction and control tasks simultaneously [34], Q-Learning is ap-
pearing superior in some specific applications to TD-Learning because of having an
off-policy control algorithm.

The main idea which we follow in TD-learning is, to approximate values of every
state and gradually converge to the real state values. Whereas all of this is done
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in order to evaluate the policy and finally find the optimal one. In an active TD-
learning approach, policy is not fixed and should be set to a better estimate after
every update. Controlling policy by extracting the current optimal one cannot be
solved completely by means of TD-learning. In every update, new policy should be
determined by Equation (2.27 ). Q(s, a) represents the estimated value of being in
state s and performing action a.

π(s) = arg max
a

[Q(s, a)] (2.27)

V (st)← V (st) + α(r + λV (st+1)− V (st)) (2.28)

Q(st, at)← Q(st, at) + α(r + λmax[Q(st+1, a)]−Q(st, at)) (2.29)

Q-learning tries to approximate Q∗, which is a function dependent on state-action
pairs (Equation (2.29)). In this technique the estimation of Q(st, at) is independent
of the followed policy which results in converging to the optimal policy even by doing
suboptimal moves. Therefore, Q-learning can learn even if explorative actions are
performed. Here we explain the mentioned advantage of Q-learning by a simple
example.

Assume, that we have only five possible states s ∈ {A,B,C,D,E}, shown in
figure 2.5. We can start from any arbitrary state. In every state there are at most
four actions possible, a ∈ {left, right, up, down}. Any action which results in exiting
from the board, finishes one episode. The target is exiting from state D therefore
receiving +10 as reward otherwise reward will be −10. Values of the states are
initialized by zero. In figure 2.5, we show the TD-learning approach for this problem
after three episodes and the same procedure will be shown in figure 2.6 for Q-learning.
Every episode’s details are listed in the Table 2.1. In this small experiment we have
used α = 1/2 and λ = 1, despite the fact that α = 1/2 is pretty large for real
examples with more states.

In episode 1 (figure 2.5) just the last move results in an update and yields in
V (D) = +5. Therefore, whenever we go through states which were not met be-
fore update will not occur until the final state. This late update can cause a slow
convergence for problems which have large number of states or weights. Assigning
eligibility traces is a way to cope with this issue. In the second episode, the second
move causes an update and V (C) = 2.5 and again V (D) will be updated and gets a
higher value than before. Last episode has an update in every move. First move in
the last episode will change V (E) from 0 to 1.25. Second move reduces value of the
state C because is a wrong move. Finally, the last move of the episode three updates



2.3. REINFORCEMENT LEARNING AND TDL 20

Figure 2.5: TD-learning approach for episodes shown in table 2.1. Every state value updates,
based on the Equation (2.28).

V (A) to −5. What we can see is that now state of A has a bad value while E has
a good value and we know that these two states are very similar in many ways. We
can observe, in a non-greedy move is possible to update some weights with wrong
values.

In the figure 2.6, same episodes have occurred with Q-learning approach. There-
fore, we update Q(s, a) after every move, instead of V (s). After episode 1 the only
weight which is updated is Q(D, right). After episode 2 there are still a lot of not
touched weights. Q(C, right) = 2.5 and Q(D, right) changes from 5 to 7.5. The
main advantage that appeared in this technique in comparison with TD-learning is
that even by moving toward a wrong state the correct weight values will not be re-
duced. Sub-optimal states will be set to the correct values even if we do a non-greedy
wrong move. Q(E, up) = 1.25 and Q(C, right) is still keeping its correct good value
independent on the policy.

Table 2.1: Episodes. Three first episodes used in state board experiment with TD-learning and
Q-learning approaches.

Episode 1 Episode 2 Episode 3
st a st+1 r st a st+1 r st a st+1 r
B right C 0 E up C 0 E up C 0
C right D 0 C right D 0 C up A 0
D right exit +10 D right exit +10 A up exit −10
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Figure 2.6: Q-learning approach for episodes shown in table 2.1. Every state value updates, based
on the Equation (2.29).

2.4 N-Tuple Systems

Even though n-tuple systems were already introduced in 1959 for character recog-
nition purposes [8], the application to board games is rather new. Lucas applied
n-tuple systems to the strategic board game Othello and could achieve remarkable
results using n-tuple systems in combination with TDL [17]. In this section, we will
introduce n-tuple systems, based mainly on Lucas’ work [17], that can be used as
linear functions to approximate the real value function.

The main idea behind n-tuple systems is to map a low dimensional space (e.g.,
the board of a game) to a high dimensional space by sampling the low-dimensional
space and applying an indexing function to the samples. In detail:
A n-tuple is defined as a sequence Tv = (τv0, τv1, . . . , τvn−1) with the length n. Every
n-tuple is a subset of a set of sampling points P , therefore T ⊆ P . In Connect Four
the sampling points would be the set of board cells (in total |P | = 42), Tic Tac Toe
on the other hand would have |P | = 9 possible sampling points.
Every sampling point pj can have m different states, with pj ∈ {0, 1, . . . ,m− 1}. In
Tic Tac Toe we have three different states – empty, ”X ”, ”O” and, empty – and
therefore choose m = 3. Due to the gravity component in Connect Four we distin-
guish two classes of empty board cells, so that – with the states Yellow, Red, empty
and reachable with the next move and as the last state, empty but not reachable
with the next move – we get m = 4.
Using an indexing function, every n-tuple can be mapped into mn different states:

ξ(Tv, st) =
nv−1∑
j=0

st[τvj] ·mj, (2.30)
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with ξ ∈ 0, . . . ,mn − 1 and st, the current state of the overall board and st[τvi], the
current state of a single board cell. The value computed by the indexing function ξ is
used to address an element in a look-up table (in the following LUT ), which basically
represents a parameter-vector ~wv,t of our linear value-function. The corresponding
feature vector at a time t is defined as:

gv,i(st) =

{
1, if i = ξ(Tv, st)

0, otherwise
(2.31)

The output of linear function with the parameter vector ~wv,t is calculated by:

fv
(
~wv,t, ~gv(st)

)
=

mnv−1∑
i=0

wi,t · gv,i(st) (2.32)

However, n-tuple systems typically consist of many different n-tuples. A set of k
n-tuples would result in a set of k parameter vectors and therefore k different linear
functions. To get one overall output V (st) = f

(
~wt, g(st)

)
for the n-tuple system,

we combine all parameter vectors into one single vector ~wt. This then results in the
linear function

V (st) = f
(
~wt, ~g(st)

)
= ~wt · ~g(st) =

∑
v

fv
(
~wv,t, ~gv(st)

)
. (2.33)

N-tuple systems for board games completely describe a linear function, including
the determination of the feature vector. For the user it is not necessary to find
appropriate features for the (linear) function, the n-tuple system already creates
implicitly a huge feature space and learns during the training to ignore irrelevant
features.

One enhancement, when using n-tuple systems, can be the utilization of board
symmetries, which are very common in many board games. In Tic Tac Toe for
instance, there are 8 equivalent positions for every board (based on rotation and
mirroring). In Connect Four, only mirroring the board at the central column leads
to one equivalent position. With this in mind, it is possible to learn more than one
position in every time step t. The only component that has to be redefined is the
feature vector. Assuming a set of equivalent positions E(st), we now define the v-th
feature vector as

gv,i(st) =

{
1, if i ∈ ξ

(
Tv, E(st)

)
0, otherwise

, (2.34)
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where ξ returns a set of indexes, one for every element of E, in total |E|.

2.5 Temporal Coherence in TD-Learning

In Temporal Difference Learning the choice of an appropriate learning rate is crucial
for the success of the training. However, Temporal Coherence in TD-Learning (in the
following TCL), developed by Beal and Smith [6, 7], is a technique that introduces
additional adaptable learning rates for every weight of the parameter vector ~w. The
main idea behind TCL is to decrease the learning rate for individual weights, if they
do not contribute to the learning process (or already reached their optimum values)
and just add random noise to the system and, on the other hand, to increase the
learning rate for relevant weights, that play an important role in the learning task.
Irrelevant weights accumulate the recommended weight changes (RWC ), but will
not move into any specific direction, since the weight changes cancel out.
As a weight converges to its optimal value, the learning rate for this weight will
tend towards zero, which makes the weight less sensitive to random noise. A further
property of TCL that Beal and Smith mention, is the possibility that the individual
weights can approach their final value at different times. Weights that need longer
than others to reach their final value, should still have a high learning rate, even if
other weights are already stable.

For adjusting the learning rates, TCL accumulates all the RWC and absolute
RWC in two counters, Ni and Ai. In every time step t, the RWC ri,t for each weight
is determined and the counters Ni and Ai adjusted in the following way:

Ni ← Ni + ri,t, (2.35)

Ai ← Ai + |ri,t|, (2.36)

ri = δtei,t. (2.37)

When performing an update of the weights, next to the global learning rate also
an individual learning rate for each weight is calculated by:

αi =

{
|Ni|
Ai
, if Ai 6= 0

1, otherwise
(2.38)

Then the weights can be updated according to the δ-rule with

wi ← wi + ααiδtei,t. (2.39)
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In algorithm 3 the complete procedure is listed as pseudo-code. Note, that ac-
cording to [6], first the weights are updated and after that the counters Ni and Ai.
In their work, Beal and Smith describe the possibility of accumulating the RWC for
every weight over a given amount of time steps, before the actual weight-update is
performed. We will describe this possibility using update episodes in more detail
later in our report.

Algorithm 3 General pseudo code of the proposed TCL-update algorithm. In [6],
the possibility of update-episodes is described, which means, weights are only up-
dated after a certain episode-length. Update-episodes are not considered in this
pseudo code.

Initialize in the beginning A := ~0, and N := ~0

Define global learning rate α

for i ∈ {1, . . . , N} do

αi =

{
|Ni|
Ai
, if Ai 6= 0

1, otherwise

ri := δtei,t . Recommended weight change

wi ← wi + ααiri . TD-Update for the weight

Ai ← Ai + |ri| . Update accumulating counter A

Ni ← Ni + ri . Update accumulating counter N

end for

2.6 Incremental Delta-Bar-Delta

Similar to TCL, the Incremental Delta-Bar-Delta (IDBD) algorithm proposed by
Sutton [30], attempts to learn individual learning rates for every weight wi of the
system. Again, the idea is to assign large learning rates to relevant weights and vice
versa. The learning rates are determined by applying the exponential function to a
memory parameter βi:

αi = eβi . (2.40)

In contrast to TCL, IDBD does not need a global learning rate, the individual
rates are sufficient. The exponential function ensures that the learning rates are
always larger than zero. Another desirable property is, that for a change in the
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memory parameter ∆βi, αi will always change by a fixed fraction of its current
value [30]:

αi,t+1 = eβi,t+∆βi,t = αi,t · e∆βi . (2.41)

The pseudo-code for IDBD can be found in algorithm 4. In algorithm 4 the memory

Algorithm 4 General Pseudo code of the IDBD-Algorithm for linear functions [30].
Note that, when using n-tuple systems as approximating value function, then we get
xi = gi(st) and xi ∈ 0, 1.

Initialize in the beginning h := ~0, and wi, βi as desired

With error-signal δt

for i ∈ {1, . . . , N} do

βi ← βi + θδtxihi

αi ← eβi

wi ← wi + αiδtxi

hi ← hi[1− αix2
i ]

+ + αiδtxi

end for

parameters βi are updated by

βi ← βi + θδtxihi, (2.42)

with θ describing the meta-learning rate and hi, a trace of recent weight changes.
The parameter hi will cause an increase of βi, if the current error-signal δ changes the
individual weights in the same direction as recent weight changes (positive correlation
between δtxi and hi). A negative correlation between δtxi and hi indicates that the
recent steps have been too large and the corresponding weight has to be adjusted
in the opposite direction. In this case βi has to be decreased. The parameter hi is
changed according to the following update-rule:

hi ← hi
[
1− αix2

i

]+
+ αiδtxi, (2.43)

where [x]+ returns x for x > 0, otherwise 0. Basically, hi accumulates the recom-
mended weight changes, although changes in the past are decayed by [1−αix2

i ]
+. The

IDBD algorithm described in [30] is only defined for linear functions. For nonlinear
functions, e.g. a linear net with a squashing function (σ = tanh) in the output, the
IDBD algorithm has to be adjusted.
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Chapter 3

Research Questions and
Experimental Setup

In this work we mainly investigate two different approaches of online-adaptable learn-
ing rates which are Incremental Delta Bar Delta (IDBD) and Temporal Coherence
Learning (TCL) and whether they have the potential to speed up learning for such
a complex task. Additionally we study the benefits of eligibility traces added to this
system with several million weights. Different versions of eligibility traces (standard,
resetting, and replacing traces) are compared. In this chapter we shortly describe
the general setup of the performed experiments and state several research questions.

3.1 General Research Questions

Generally, we expect the learning-rates tuning algorithms TCL and IDBD to im-
prove the learning-process. We believe, that both methods (TCL and IDBD) should
increase the asymptotic success rate of our agents and decrease the amount of train-
ing games needed to learn Connect 4. Eligibility traces also seem to be a promising
approach in order to increase the learning speed of the agents. Based on the overall
goals of this report, we formulate the following research questions and try to answer
them in the next chapters:

1. To our best knowledge, both TCL and IDBD have not been applied to such
large systems as the n-tuple systems used for our work. Is it possible to suc-
cessfully apply TCL and IDBD to a system with millions of weights?

2. How robust are online learning rate adaptation algorithms with respect to
their meta-parameters? TCL requires an initial step-size αinit for all weights.
According to [7] the parameter αinit in TCL ”has to be chosen, but this does not
demand a choice between fast learning and eventual stability, since it can be set
high initially, and the then provide automatic adjustment during the learning
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process.”
IDBD requires two parameters: The initial step-size αinit for all weights and
the meta step-size parameter θ.

3. Is TCL (IDBD) able to significantly increase the speed of learning?

4. Can TCL (IDBD) increase the strength (asymptotic success rate) of our agents?

5. Is it possible to successfully apply eligibility traces to a large scale problem
with millions of weights?

6. We expect eligibility traces to speed up the learning process and increase the
asymptotic success rate. Is it possible to significantly improve both aspects?

7. If one or more of the previous research questions cannot be answered positively,
is it possible to find the cause of the unsatisfactory results? Can suggestions
for future work be made?

3.2 Experimental Setup

There are three main components that are necessary for the learning process: The
TDL-Algorithm as reinforcement learning method, an n-tuple system to approximate
the real value function and (if required), an online tuning algorithm adapting the
learning rates of the system. In the following we specify how the learning experiments
are conducted.

The training of our TDL-n-tuple-agents is performed in an unsupervised fashion,
following the pseudo-algorithm already described in Algorithm 2: Each agent is ini-
tialized with random weights uniformly drawn from [−χ/2, χ/2] with χ = 0.001.The
agent plays a large number of games (10 millions) against itself as described in
Sec. 2.3.2 receiving no other information from the environment than win, loss, or
draw at the end of each game. Training is performed with TDL, optionally aug-
mented by IDBD- or TCL-ingredients. To explore the state space of the game, the
agent chooses with a small probability ε the next move at random. During training,
ε varies like a sigmoidal function (tanh) between εinit and εfinal with inflection point
at game number εIP . Every 10 000 or 100 000 games the agent strength is measured
by the procedure described in Sec. 3.3. We repeat the whole training run 20 times
(if not stated otherwise) in order to get statistically sound results.

For this report we consider the discount-factor to be γ = 1 throughout. With
λ = 0 we get the classical TD(0) algorithm without eligibility traces. With 0 < λ < 1
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eligibility traces are activated and we can seamlessly move between TD(0) and Monte
Carlo methods. Throughout the rest of the report we use the following notation for
the different eligibility trace variants: [et] for standard eligibility traces without
any further options, [res] for resetting traces, [rep] for replacing traces, and [rr] for
resetting and replacing traces.
As n-tuple system we mostly use the same set of n-tuples (70×8-tuples), all created by
random walks on the board. Additionally, we will investigate the effect of eligibility
traces on larger n-tuple systems (labeled as TCL-M).
In TDL, the global learning rate α decays exponentially from αinit to αfinal. TCL
instead keeps the global parameter α at a constant value, but each weight has its
individual learning rate αi. In TCL-EXP we have the additional global parameter β,
while for IDBD the relevant parameters are θ and βinit. The precise parameter values
to reproduce each of our results are given in Tab. A.1 . Since the IDBD algorithm in
its standard form is only derived for linear units, we omit in this case the nonlinear
sigmoid function σ = tanh for the TDL value function (Sec. 2.3.2). For all other
algorithms we use this sigmoid function.

3.3 Evaluation

Evaluating the strength of an agent is not a trivial task. The term strength has to be
defined first, which can be done in many ways. For instance, one possible definition
could be:

”The strength of an agent is defined as the ratio of correct classi-
fications (as win, draw, loss) for a set with k randomly generated
(legal) positions.”

However, the above definition has one problem, especially concerning approximat-
ing functions: By randomly creating positions, it is very likely, to obtain positions
that are considered as irrelevant by the agent; it may be, that the agent recognized
during his training, that a position is not desirable and tries to avoid it. By avoiding
a certain position, the whole sub-tree linked to this position will be ”forgotten”, so
that the value-function can increase its accuracy for other relevant positions. There-
fore, it is very likely, that an agent will receive a bad score, when simply evaluating
a set of random positions.
For this reason, we choose the following evaluation-scheme:

”The strength of an agent is measured by performing a tournament
with k matches – all starting from the empty board – between the
agent and a perfect playing Minimax -player. For every win of
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the agent against Minimax a score of 1.0 is given, a draw will be
honored with a score of 0.5 and, for a loss the score will be 0.0.
The overall strength (in the following success rate) is then defined
as the sum of all scores divided by k.”

However, this approach has two limitations which need some special treatment:

• Using a perfect-playing Minimax as opponent, makes it impossible to alter-
nately swap the starting player in the matches; if Minimax starts, its opponent
will loose the game in any case. For this reason, Minimax always moves second
in our evaluation. This solution, however, makes it impossible to measure the
strength of the agents when playing with the red stones.

• During the evaluation matches, both opponents will usually act fully determin-
istically, which would result in exactly the same sequence of moves for every
game. We introduce a certain degree of randomness, to overcome this problem:
In the opening phase of the game (the initial 12 moves), Minimax will be forced
to randomly select a successor state, if no move can be found that at least leads
to a draw. In order to prevent direct losses when performing random moves,
Minimax only considers those successors, that delay the expected defeat for at
least 12 additional moves.
After leaving the opening phase, Minimax will always seek for the most distant
loss. With this approach, it is very unlikely, that any of the k matches will be
the same (assuming k ≈ 50).

In order to monitor the training progress of an agent, it is necessary to evaluate the
strength of the agent after certain intervals. We choose an interval length of l =
100, 000 training games, in later experiments the number is reduced to l = 10, 000.
In every evaluation-step – if not stated otherwise – 50 matches between the agent and
Minimax are performed. Furthermore, we repeat every experiment 10 times (later
also 20 times), to make sure, that the results are reproducible. The graphs shown in
the next section, are fitted lines through the 10 (20) points for every evaluation step.
Details on Minimax can be found in [35] and [36]. It is important to note, that
Minimax is only used for the evaluation of the agents, it does not play any role in
the actual training process; the training is completely unsupervised.

We define two quality-measures that are based on the discussion of the strength
of an agent. The first measure we define is the asymptotic success rate:

”The asymptotic success rate is defined as the final value that an
agent strengths converges to.”
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We will – if not stated otherwise – determine the asymptotic success rate by averaging
the strengths of the last 20 evaluations (last 2 million training games). Another
important measure for the quality of an agent – next to the asymptotic success rate
– is the speed of learning. An agent that is able to cross a defined success rate in a
shorter time is more preferable than another agent. In our report we define loosely:

”The speed of learning for an agent is defined as the number of
training games needed to cross the 80% success rate.”

An optimistic interpretation of the above definition would be, to consider the first
crossing of the 80% success rate, whereas a rather pessimistic interpretation would
suggest to use the last crossing.
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Chapter 4

Connect Four: Results and
Analysis

4.1 Starting Point

In our previous work [36, 35, 37] we applied n-tuple systems – trained with TDL – to
the strategic game of Connect Four. After the learning process for a reduced com-
plexity (simply, by giving the rewards after 10 or 12 moves and finishing the current
training game) delivered good results we tried to learn the complete game of Con-
nect Four. The initial results were rather discouraging. An important observation
we made was that the values for certain sampled subparts of the board are typically
different, depending on which player’s turn it is. Therefore, we introduced two LUTs
per player, one LUT for Yellow and, another LUT for RED. This approach for the
first time led to satisfying results. The TDL-agent was able to learn the game (cross
the 80% success-rate) after around 4 Mio. games (as seen in Fig. 4.1, red curve).
Additional tuning of the exploration rate ε and the step-size parameter α could fi-
nally improve the learning speed by a factor of around 2 (blue curve in Fig. 4.1).
Nevertheless, the number of training games still remains rather high, around 2 Mio.
training games are needed to create an TDL-agent that is able to constantly beat a
perfect playing Minimax-agent.
In this case study, the main goal is to apply the so called Temporal Coherence Learn-
ing (a technique that introduces online adaptable, individual learning rates for every
weight of the n-tuple system) in order to improve the learning speed of the agent
and to be less dependent on good choices of the learning rate parameter.
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Figure 4.1: Starting-Point of the Case Study. In our previous work [36, 35, 37], we initially found
a TDL-agent (red curve, TDL-old) that was able to learn the game (reach a success-rate of 80%)
after around 3.7 Mio. training-games. After a careful tuning of step-size parameter and exploration
rate the 80-% success-rate is now crossed after around 1.6 Mio. games (blue curve). The here shown
curves are the average of 10 runs each. The agents were evaluated every 100.000 training games.

4.2 Temporal Coherence in TD-Learning

4.2.1 Initial Results using TCL

Since there were initially no suitable parameter settings known that could be applied
to TCL we simply choose the settings for both TDL variants ([TD1 ] and [TD2 ])
described below in Sec. Starting Point. The results are shown in Fig. 4.2. The
results seen there are rather disappointing, both TCL variants cannot cross the 80%
success rate and are clearly outperformed by TDL. Further tests showed, that the
global step size α was too small: For the effective step size parameter we always
have ααi < α, since αi < 1 for all i. For this reason, the global step size has to be
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Figure 4.2: Initial Tests using Temporal Coherence. Because no information on the parameter-
settings is available, we initialize both shown TCL-agents with the best two TDL-parameter settings
described in the previous section (4.1). However, the results are rather disappointing (blue and green
curve), both TCL-agents stay constantly beneath the 80% success-rate and are clearly outperformed
by TDL. Further tests showed, that global step size α was too small and the exponential decay was
interfering with the self-adaptive feature of TCL.

assigned with higher values. Furthermore, the exponential decay is interfering with
the self-adaptive feature of TCL. A better choice is simply using a constant or near
to constant learning rate. Note that for the initial results we updated the counters
Ai and Ni in a slightly different way. Instead of adding the recommended weight
change ri,t = δt∇wi

V (~wt, st) (denoted as the [r] update rule) to the counters, we used
the TD error signal δ. Also, the bias-weight is still updated according to the classical
TDL update rule, using only the global learning rate α (which was an unnoticed bug,
that we fixed later).
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Figure 4.3: First improvements using the TCL-update-scheme. The main reason that TCL could
not deliver the desired results before is, that the global step size parameter α was chosen too
small. Slightly higher values finally improve the results significantly. For TCL (1) we choose
αinit = αfinal = 0.02 and for TCL (2) a nearly constant step-size of (αinit = 0.03, αfinal = 0.02).
The remaining parameters (the black curve represents the exploration ratefor all three agents) are
chosen in the same way as for TDL. For the first time TCL is comparable to TDL.

4.2.2 First Improvements

First improvements – using the TCL update scheme – could be achieved, after
choosing a larger, nearly constant global learning rate. For TCL (1) we choose
αinit = αfinal = 0.02 and for TCL (2) a nearly constant step-size of (αinit =
0.03, αfinal = 0.02). The remaining parameters (the black curve represents the ex-
ploration rate for all three agents) are chosen in the same way as for TDL. For the
first time TCL is comparable to TDL. The results are shown in Fig. 4.3. We found,
that especially near constant global learning rates lead to good results. Therefore,
we choose αinit = αfinal for TCL.
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Figure 4.4: Trying a different exploration rate (green curve) for TCL leads to a faster training-
progress, compared with the previous results (blue curve). TDL(red) appears to learn slightly slower
in the beginning than Green, but speeds up and crosses Green after around 1.5 million training
games. The reason for this appears to be the behavior of both exploration rates (Green and Red),
which indicates, that smaller initial values are more desirable.
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Fig. 4.4 shows three training runs for different exploration rates. TDL and TCL
(green curve) use similar settings, however, the slope of the exploration rate is chosen
in a slightly different way for both experiments. TCL (green) has a higher training
speed in the beginning, when the exploration rate is lower than for TDL. As soon
as the exploration rates of both curves cross, the training curve for TDL speeds up.
This behavior of both curves indicates, that low exploration rates somehow seem to
be more desirable. For TCL again, the global learning rate is set to 0.02. However,
we could not find that TCL could speed up the training significantly. When the
exploration rate ε is chosen in the same way for TDL and TCL, the training curves
are very similar. In contrast to Beal & Smith [6, 7] we cannot find TCL to speed up
the training process. In the following section (Section 4.2.3) we will investigate the
robustness of TCL, thus, the effect of different learning rates on the training process.
We expect, that TCL should be able to handle a high α, by automatically decreasing
the individual learning rates αi.

4.2.3 Comparison of TCL and TDL for larger Step-size
Range

Beal & Smith stated, that TCL would automatically self-adjust the parameters [7]:

”The parameter α can be set high initially, and the αi then provide
automatic adjustment during the learning process.”

In this section we will investigate this statement by screening a large range of α values
and comparing the results for TDL and TCL. In Fig. 4.5 the asymptotic success rate
of TCL for different learning rates is displayed. For every point 10 runs with 10
million training games were performed. For both, TCL and TDL α is kept constant.
The asymptotic success rate is calculated by averaging the results for the last 2 Mio.
games of all runs (in total 200 points). The standard deviation for the 200 values is
indicated with the error-bars. Note that the X-axis is logarithmic. We analyzed two
different n-tuple systems. The top plot shows the results for our standard n-tuple
system with 70 × 8 n-tuples, for the bottom plot, we use a system with shorter n-
tuples (70× 7 n-tuples). In total, we found for both cases TCL not to have a larger
area of high success rates than TDL, it is only shifted to larger values. We can also
see, that for increasing α, the asymptotic success rate for TCL falls faster than for
TDL (however, this is due to a bug in the software, where the bias-weight is still
updated using the TDL update).
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Figure 4.5: Asymptotic Success-Rate of TDL and TCL against global learning rate α. For every
point 10 runs with 10 Mio. training games each are performed. For both, TCL and TDL α is kept
constant. The asymptotic success rate is calculated by averaging the results for the last 2 Mio.
games of all runs (in total 200 points). The standard deviation for the 200 values is indicated with
the error-bars. Note that the X-axis is logarithmic.
Top: 70 × 8-tuple. TCL is – differing from our expectations – not more successful in a broader
range, both curves appear to shifted.
Bottom: 70× 7-tuple. Also in this case, TCL does not show any advantage.
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4.2.4 Extended Parameter Tuning

Already the results presented in in Sec. 4.2.2 indicated, that lower exploration rates
appear to be more beneficial for the learning processes of the agent and as we found
in the previous section (Section 4.2.3), α cannot be chosen arbitrary. Therefore,
we decided to perform an extended parameter tuning, trying to find suitable values
mainly for the global learning rate α and the exploration rate ε. In total, we run
around 35 experiments with different parameter combinations. Especially tuning
the exploration rate could increase the learning of TCL significantly. From formerly
around 2 Mio. training games, now only 1 Mio. games are needed, to cross the 80%
success rate.

Contrary to our earlier assumptions, the learning speed can be improved, if ε is
chosen low (ε < 0.2) even in the initial phase of the training.

Nevertheless, final values of ε < 0.1 decreased the asymptotic success rate of the
considered agents. We suppose, that too small exploration in the final phase of the
learning process may lead to an overtraining, so that the agents ”forget” important
Connect Four states in order to reduce the approximation error for other (wrongly
weighted as more important) states.

The main improvement for TCL in Fig. 4.6 was achieved by tuning the exploration
rate. Therefore, it seems natural to apply this setting to TDL as well, as done in
Fig. 4.7. And indeed, the new setting for ε has the same effect on TDL as on TCL.
The learning speed for TDL is significantly improved and seems to outperform TCL
slightly (considering the crossing of the 80% and 90% success rate). We still cannot
note any advantage of TCL over TDL. The tuning of the exploration rate improved
the training progress for both, TCL and TDL equally.
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Figure 4.6: Results for an extensive tuning of TCL. Around 30 experiments with different
parameter-settings were performed in order to tune TCL. The main improvement was achieved
by tuning the exploration rate, shown in the plot by the thinner lines without points. It appears,
that also in the beginning of the training, a lower exploration rate leads to better results. For tuned
TCL the initial exploration rateis decreased to εinit = 0.17, from before εinit = 0.53 (red curve,
former TCL). The final value in both cases is εfinal = 0.1. The learning rate for tuned TCL (blue)
was slightly increased as well, from α = 0.03 for the former TCL-agent (red) to now α = 0.04 (blue,
tuned TCL).
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Figure 4.7: Parameter tuning for TDL. After we found the optimized parameters for TCL, which
were mainly achieved by tuning the exploration rate (as seen inFig. 4.6), we apply the new ε-
setting to TDL (thinner purple curve without points). The initial value is decreased to now around
εinit = 0.17, from before εinit = 0.53 (red curve). In all cases the final value is set to εfinal = 0.1.
The performance of TDL increases significantly, TDL even slightly outperforms TCL. We still
cannot note any advantage of TCL over TDL. The tuning of the exploration rate improved the
training progress for both, TCL and TDL equally.
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4.2.5 Implementation of the original TCL Algorithm

As already mentioned, in the previous sections, all training runs using TCL were
performed by using the [δ]-rule. Instead of adding the recommended weight changes
ri,t = δt∇wi

V (~wt, st) (denoted as the [r] update rule) to the counters (as proposed
by Beal & Smith in [7, 6]), we used the TD error signal δ. The relation between
TCL [delta] and TCL [r] can be expressed with ri,t = δt

(
1− V 2(st)

)
. In this section

we will investigate the original TCL scheme ([r]-update) and compare the results to
our previous results (created using the [delta]-rule).
Additionally, the results presented in this section (and in all following sections) use
the corrected version of the program, where the bias-weight now is also updated using
either TDL or TCL (before, just the TDL update was used, which is not correct). In
Fig. 4.8 the results for TCL – using the [r]- and [δ]-update rule – and TDL are shown
(all experiments have the same exploration). The new results for TCL [r] appear to
be slightly worse than for TCL [δ].

For the original update rule using the RWC to update the counters Ai and Ni we
again screened a larger range of α and measured the asymptotic success rate, as seen
in Fig. 4.9. TCL (old) uses the δ-update rule to adjust the counters Ai and Ni, TCL
[r] implements the update as originally proposed by Beal and Smith [6] and uses the
RWC for Ai and Ni. However, the slightly better results for TCL [r] in this figure
are due to the mentioned bug: Older program versions adjusted the bias-weight with
the classical TDL-update rule – regardless, whether TCL or TDL were selected –, so
that TCL (old) is more sensitive to larger α-values. Now, the range of higher success
rates could be extended slightly with increasing α values. But also with the new
implementation TCL [r], we still cannot observe any improvement to TDL.

4.2.6 Update Episodes in TCL

The original TCL implementation [7, 6] has the further option that the reward ri,t
may be accumulated over a sequence of steps before a real weight update takes place.
This balances a tradeoff between faster changing learning rates (short sequences)
and accumulation of statistic evidence (long sequences). We did not consider this
possibility until now. In Listing 5 the pseudo code for this option is given. Now,
instead of updating the weights and the counters in every time step, first an episode
of length L is completed before adjusting wi, Ai and, Ni. The recommended weights
changes ri,t and the absolute recommended weights changes |ri,t| for one episode have
to be accumulated in separate counters for this purpose.

The results for different episode lengths (defined by a certain number of moves)
can be seen in Fig. 4.10. We can observe, that already episode lengths (EL) slightly
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Figure 4.8: Comparison of TCL using the δ-update rule and using r-update rule. In the previous
sections only the δ-update rule was used for TCL. Now, for the first time, we test TCL with the
original approach, that uses the recommended weight change ri,t to adjust Ai and Ni. The relation
between TCL [δ] and TCL [r] can be expressed with ri,t = δt

(
1− V 2(st)

)
. The experiments show,

that TCL [δ] is slightly better. For comparison purposes, also TDL is displayed. For all three
experiments the exploration rate was chosen in the same way, as indicated by the black curve.
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Figure 4.9: Asymptotic success rate of TDL and TCL for large α-range. TCL (old) uses the δ-
update rule to adjust the counters Ai and Ni, TCL [r] implements the update as originally proposed
by Beal and Smith [6] and uses the RWC for Ai and Ni. However, the slightly better results for
TCL [r] in this figure are due to a fixed bug: Older program versions adjusted the bias-weight with
the classical TDL-update rule, so that TCL (old) is more sensitive to larger α-values. For every
point 10 runs with 10 Mio. training games each are performed. For both, TCL and TDL α is kept
constant. The asymptotic success rate is calculated by averaging the results for the last 2 Mio.
games of all runs (in total 200 points). The standard deviation for the 200 values is indicated with
the error bars. Note, that the X-axis is logarithmic.
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Figure 4.10: Update-Episodes in TCL. The original TCL algorithm by Beal and Smith includes the
possibility of defining update episodes [6]. When using update episodes the recommended weight
changes are accumulated for a given sequence of time steps. The weights wi are only updated
once after every episode. With this approach – depending on the episode length – random noise
will be canceled out and the weight updates (and counter updates for Ni, Ai) are statistically
more reliable. However, slower changing weights reduces the learning speed, as seen in this graph.
Update episodes can not increase the performance of the TCL-agent. Already an episode length of
EL = 3 significantly reduces the success of the agent.
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Algorithm 5 General pseudo code of the proposed TCL-update algorithm including
the possibility of update-episodes [6]. The weights w of the value function are not
updated until a certain episode is completed.

Initialize in the beginning A := ~0, and N := ~0

Define global learning rate c

Define length of the update-episodes L

Determine in every time-step ri,t := δtei,t . Recommended weight changes

After an update-episode is completed, do:

for i ∈ {1, . . . , N} do

αi =

{
|Ni|
Ai
, if Ai 6= 0

1, otherwise

wi ← wi + cαi

L∑
t=0

ri,t . TD-update for the weight

Ai ← Ai +
L∑
t=0

|ri,t| . Update accumulating counter A

Ni ← Ni +
L∑
t=0

ri,t . Update accumulating counter N

end for

larger than 1 result in a slower learning process and lower asymptotic success rates.
The main idea of this approach – to cancel out random noise and therefore get more
statistically reliable weight updates (and counter updates for Ni, Ai) – could not be
confirmed. The slower changing weights appear to reduce the learning speed, as seen
in the graph. For our learning task in Connect Four , we found that update episodes
cannot increase the performance of a TCL-agent.
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Figure 4.11: Modifying the operational order in TCL. The standard TCL-algorithm has the
following operational order: 1. Update weights wi based on previous counter values Ai and Ni. 2.
Adjust counters. Using the opposite order by swapping 1. and 2. appeared to be sensible as well.
However, the results for the swapped operational order are worse as seen in this graph. We therefore
keep the classical order. The black curve describes the exploration rate for both experiments.

4.2.7 Modifying the Operational Order in TCL

When using TCL, two different operational orders are thinkable: (1) First, update
the weights wi and then the counters Ai and Ni or (2) First update the counters
Ai, Ni and subsequently the weights wi. In the original algorithm (1) is proposed.
Nevertheless, we want to investigate the second possibility at this point as well. The
results for both cases are shown in Fig. 4.11. It appears, that operational order
(1) delivers better training results. In the following we therefore keep the classical
update order for our experiments.
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4.3 Incremental Delta-Bar-Delta

Incremental Delta-Bar-Delta (IDBD), as described in Section 2.6, is another ap-
proach to adjust the individual learning rates αi. Fig. 4.12 allows a comparison
between TCL and IDBD. Even though TCL has a slightly faster learning progress
in the beginning, IDBD in the end delivers better results: IDBD crosses the 80%
success rate after around 700 000 games, where TCL needs around 900 000 training
games. It has to be mentioned, however, that – the original IDBD algorithm is only
defined for linear functions – IDBD normally has to run TDL without the sigmoid
function, which might counteract any improvements through the individual learning
rates. However, as shown in Fig. 4.12, we tried the original IDBD algorithm for
the non-linear case as well (tanh in the output of the net) but did not find any
significant differences. It has to be noted however that the IDBD algorithm has to
be reformulated for the nonlinear case, so that simply using the (linear) IDBD in
conjunction with tanh in the output of the net is not the right procedure. Results
with a correctly reformulated nonlinear IDBD are found in [4]
Furthermore, we found that there is some dependence on the right choice of pa-
rameters βinit and θ. If θ deviates from 0.1 no or only carefully selected values for
βinit yield in good results. If θ = 0.1 is chosen, there is a broader range of values
βinit ∈ [−7.5,−5.5] in which IDBD can deliver good results. Outside this βinit range
the training breaks down. The results for different βinit values is shown in Fig. 4.13.
Values β > −4.6 could not be evaluated, the linear approximation function V (st)
tends against infinite values in those cases. The highest asymptotic success rate can
be found at β = −5.8. This would lead to an initial αi = e−5.8 ≈ 0.003 which
already appeared to be an appropriate value for the classical TDL-update scheme.
The meta-learning-rate is chosen to be θ = 0.1 for all experiments.
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Figure 4.12: Rough Description: Results for IDBD with β = −5.8 and θ = 0.1 which we compare
with TCL (first curve according to legend, using the δ-update rule). The second curve describes
the learning-progress for a linear value-function. We also tested the non-linear variant with the
activation-function tanh(·) in the output of the net. The exploration rate (black curve) is chosen to
be the same in all three experiments. Although no extensive tuning of the IDBD-parameters was
done, we can see that IDBD outperforms TCL. Further tuning could improve IDBD slightly.
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Figure 4.13: IDBD : Asymptotic success rate for β in the range of [−9,−4.6]. Values β > −4.6
could not be evaluated, the linear approximation function V (st) tends against infinite values in
those cases. The highest asymptotic success-rate can be found at β = −5.8. This would lead to
an initial αi = e−5.8 ≈ 0.003 which already appeared to be the appropriate value for the classical
TDL-update scheme. The meta learning rate is chosen to be θ = 0.1 for all experiments. For every
point 10 runs with 5 Mio. training games each are performed. For both, TCL and TDL α is kept
constant. The asymptotic success rate is calculated by averaging the results for the last 2 million
games of all runs (in total 200 points). The standard deviation for the 200 values is indicated with
the error bars.
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4.4 Temporal Coherence with Exponential Scheme

As mentioned in [30], the geometric step-size in IDBD has the desirable property,
that a fixed change in the memory parameter ∆βi, αi will adjust αi by a fixed fraction
of its current value. This encouraged us to try a few adjustments in TCL with similar
properties.
The classical TCL algorithm calculates αi in the following way:

αi =

{
g
( |Ni|
Ai

)
, if Ai 6= 0

1, otherwise
, (4.1)

where the transfer function g(x) is simply defined as the identity function (g(x) = x).
However, we are not necessary restricted to the identity function. Instead, functions
with other features could also be an interesting option. We tried a function with the
form

g(x) = eβ(x−1), (4.2)

so that

αi =

{
e
β(

|Ni|
Ai
−1)
, if Ai 6= 0

1, otherwise
(4.3)

In the following we will denote the above scheme as TCL-EXP. Another possible
function could be a piecewise linear function, for instance as shown in figure 4.14
together with the classical TCL transfer function and TCL-EXP. The piecewise linear
function, has in x = 1 the same slope as TCL-EXP and the value g(0) = e−β for
x = 0. Note, that all transfer functions g(x) operate in the range 0 < x < 1.

In total, TCL-EXP is the standard TCL algorithm with only one detail changed:
the exponential transfer function for the learning rate, see Eq. (4.2). This brings a
remarkable increase in speed of learning for the game Connect Four, as our results in
Fig. 5 show: TCL-EXP reaches the 80% success rate after about 500 000 games in-
stead of 615 000 games (IDBD) or 670 000 (Tuned TDL). At the same time it reaches
asymptotically a very good success rate. We varied the parameter β systematically
between 1 and 7 and found values in the range of β ∈ [2; 3] to be optimal.
To test the importance of geometric step sizes, we did another experiment: We re-
placed the TCL-EXP transfer function by a piecewise linear function (PL) as also
shown in Fig. 4.15, having the same endpoints and same slope at x = 1. The results
for PL in Fig. 4.15 are worse than TCL-EXP. Therefore, it is not the slope at x = 1
but the geometric step size which is important for success.
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Figure 4.14: Different transfer functions g(x) for TCL. The classical approach in TCL is repre-
sented by the green line. We propose a exponential transfer function (TCL-EXP, red curve), with
β = 2.7, that has – similar to IDBD – a geometric step size as defined in Eq. 4.2. The here shown
piecewise linear function has the same slope as TCL-EXP in x = 1 and the same value in x = 0.

4.4.1 Further Tuning of the Exploration Rate

After finding an exploration strategy with εinit = 0.2, εfinal = 0.1 and εip = 0.3 · 106,
a next convenient step would be, to simply try ε = 0.1 = const. A single experiment
with this setting did not appear promising, so that further investigations were not
performed until now. At this point, we present the results for 20 runs using this
constant exploration rate. And indeed, ε = 0.1 results in a slightly faster learning
process. Exemplary, in Fig. 4.16, the results for TCL-EXP and standard TDL are
shown. In both cases the learning speed is slightly increased.
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Figure 4.15: Comparison of the adjusted TCL-algorithm TCL-EXP with previous results. For
the first time an algorithm significantly outperforms TDL. TCL crosses the 80% success rate after
around 550 000 training games, whereas TDL needs around 800 000 games. TCL-EXP also learns
slightly faster than IDBD, which needs 700 000 games to reach the 80% level. When using a
piecewise linear function (as described in Fig. 4.14), the results are comparable to IDBD. The black
curve represents the exploration rate for all experiments.
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Figure 4.16: Further tuning of the exploration rate from {εinit = 0.17, εfinal = 0.1} to ε =
0.1 = const., exemplary for TDL and TCL-EXP. The new ε-value appears to speed up the training
slightly more for TDL than TCL-EXP.
After finding a tuned exploration rate in Sec. 4.2.4, the next convenient step was trying a constant
exploration rate with ε = 0.1 = const. However, a single experiment did not appear that much
promising, so we delayed further tests until here. And indeed, a constant exploration rate increases
the learning speed slightly. Exemplary, the results for TDL and TCL-EXP are shown. The graph
shows the average of 20 runs each.
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4.5 Q-Learning

As described in Section 2.3.4 the main difference of Q-Learning to TD-Learning is,
that Q-Learning attempts to learn an action-value function rather than a state-value
function. One desirable property of Q-Learning is, that the correct values for state-
action pairs can be learned, even if a non-optimal policy is followed. This implies,
that also explorative actions can be used to update the weights of the system. This
is in contrast to the classical TD-Learning approach, where the correct state-values
can be only be learned, if the optimal policy is followed. Following a non-optimal
policy in TD-Learning leads to a back-propagation of wrong rewards which again
results in a wrong estimation for the visited states.

In order to realize Q-Learning for our TD-Learning framework with n-tuple sys-
tems, we now create one lookup table (LUT) for every possible action. In Connect
Four there are only up to 7 possible actions, so that 7 LUTs are needed for every
n-tuple. The weights of the system are updated in the following way: For every
n-tuple the board is sampled and the LUT-indexes are determined. In contrast to
the standard TD-Learning approach, Q-Learning now selects for every n-tuple the
corresponding LUT based on the action and updates the weights only in this single
LUT. The six remaining LUTs for the n-tuple remain unchanged.

In Fig. 4.17 we show the results for the basic Q-Learning algorithm with different
constant exploration rates. The first observation that we can make is, that the speed
of learning is significantly lower than for the comparable TD-Learning approach
– for Q-Learning, around 2 million training games to reach the 80% success rate,
instead of 600 000 games for TD-Learning. Q-Learning is a factor of about 6-7
slower than the corresponding TD-Learning approach. One reason for this could be
that Q-Learning has to maintain 7 times more weights, which are probably activated
less frequently. This could lead to a slower convergence of the Q-Learning algorithm.
Another observation we can make in Fig. 4.17 is that the learning process gets worse
for increasing exploration rates. This observation also did not meet our first expec-
tations, since Q-Learning should be capable of learning accurate values, regardless
of which policy is followed. This may have to do with the evaluation-approach we
chose for our agents. Strong agents only must be able to find a sequence correct
moves against a perfect playing Minimax-agent, starting with an empty board. This
means that large parts of the whole game-tree are not relevant for the decision
process. So even if an agent has accurate values for a certain state, these values
are not relevant if the state is not considered in the move-sequence of both agents
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Figure 4.17: Results for basic Q-Learning with a constant exploration rate and without online
adaptable learning rate algorithms. The best learning performance was achieved with a constant
setting of ε = 0.1, even though ε = 0.05 leads to a slightly faster learning in the beginning.
The global step-size parameter is chosen as before, decaying exponentially from αinit = 0.004 to
αfinal = 0.002. The number of games to learn the game is significantly larger than for standard
TD-Learning (around 2 mio. training games to reach the 80% success rate, instead of 600 000
games for TD-Learning).
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involved in the evaluation-match. Standard TD-Learning is somewhat biased in a
way that it only attempts to learn a strong policy starting from an empty board;
positions that are not considered by TD-Learning, since they are most likely not
part of the desired policy will not be learned or forgotten over time. We believe
that Q-Learning with higher exploration rates will explore many sub-trees of the
game that are relevant for the evaluation process. In this sense, Q-Learning may
lead to better results than TD-Learning, if the evaluation process would start with
arbitrary boards and would not be limited to just the empty board.

Another problem when using high exploration rates in Q-Learning could be, that
– since we are learning a generalizing function that has a very small number of
weights in comparison to the number of game-states that are possible – many states
with different real values are mapped to similar feature vectors which again would
activate the same weights for many inputs. This would lead to many conflicting
signals that are used to update the weights. When high exploration rates are used,
the number of different states visited during the training remains high for the whole
training-process, so that the weights receive more conflicting signals. On the other
hand, small exploration rates would lead to near deterministic behavior and the
agent visits only a very limited subset of all states which makes it much easier for
the weights to converge.

4.6 Eligibility Traces

Machine-learning techniques – such as Reinforcement Learning (RL) – commonly
have to deal with a variety of problems when they are applied to complex board
games. One particular challenge of RL is the temporal credit assignment problem:
Since no teacher signal is available, RL methods are solely dependent on rewards,
which in board games are typically given at the end of a long sequence of actions.
To address this problem of delayed rewards, Temporal Difference Learning (TDL)
methods were developed. However, as we found in our work on the game Connect
Four, the convergence of the learning process may be rather slow if training samples
are not utilized efficiently in TDL. Even with the tuning-procedures and the other
techniques (namely TCL and IDBD) we investigated in the last sections, still several
hundreds of thousands of training games are needed to learn a complex game such
as Connect Four.
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In this chapter we study the benefits of eligibility traces added to this system. To
the best of our knowledge, eligibility traces have not been used before for such a large
system. Different versions of eligibility traces (standard, resetting, and replacing
traces) are compared. We show that eligibility traces speed up the learning by a
factor of two and also they increase the asymptotic playing strength.

4.6.1 Initial results

When implementing eligibility traces, it is not recommendable to work with the
complete trace vector. Due to the sparseness in the vector – in every n-tuple, only
a few weights are activated in each time step – it is more convenient to place the
individual activated traces in a self balanced (height-balanced) binary tree (TreeMap
in JAVA). This reduces the memory consumption of the training process and the
computation time as well. The initial results for TCL-EXP using eligibility traces
are shown in Fig. 4.18. As it is shown in the graph, eligibility traces significantly
speed the training up, after around 300 000 games the agent crosses the 80% success
rate for the first time (considering the smoothed curve through the averaged points).
Furthermore, the asymptotic success rate is slightly higher than for TCL-EXP and
TDL.

Generally, the TD(λ) algorithm requires a certain degree of exploration (e.g.,
in completely deterministic environments) for the learning process, thus, the forced
execution of random actions by the agent from time to time. When performing
random moves, the value V (st+1) of the resulting state st+1 is most likely not an
appropriate approximation of V (st). The backup of prediction V (st) is normally
skipped in this case. This also raises the question how to handle exploratory actions
regarding the eligibility traces. We will consider two possibilities: 1) Simply resetting
the trace vector and 2) ignoring random moves and leave the traces unchanged, which
both may diminish the anticipated effect of eligibility traces significantly, when using
higher exploration rates. For the initial results in Fig. 4.18, option 2 was used.
The results with eligibility traces, resetting on random moves, with λ = 0.6 can be
seen in Fig. 4.19. This resetting option (TCL-EXP [res]) lets the agent learn slightly
faster in the beginning, although the differences are not that significant. However,
the asymptotic success rate for TCL-EXP [et] is higher than for TCL-EXP [res].

4.6.2 Replacing Eligibility Traces

Replacing eligibility traces, as described in Sec. 2.3.3, are comparable to the clas-
sical traces, but with one main difference: Although both – classical and replacing
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Figure 4.18: Initial results with classical eligibility traces using λ = 0.5 as described in Sec. 2.3.3.
In this case, (TCL [et]) the traces are not reset on random moves. As seen in the graph, eligi-
bility traces significantly speed the training up, after around 300 000 games the agent crosses the
80% success rate for the first time (considering the smoothed curve through the averaged points).
Furthermore, the asymptotic success rate is slightly higher, than for TCL-EXP and TDL.

eligibility traces– assign credit to earlier states depending on how recently the states
were visited, classical traces accumulate the credit for repeated visits of a state. In
Connect Four , states cannot repeat during one episode. Nevertheless, since we use
n-tuple systems as generalizing approximation functions, different states can still
have the same features, so that individual weights are typically activated several
times.
Fig. 4.20 shows the results when using replacing traces, which are reset on random
moves (TCL-EXP [rr]). In comparison to ordinary traces (TCL-EXP [res]) – that
are reset on random moves – no significant differences can be observed.
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Figure 4.19: Results with eligibility traces, resetting on random moves, with λ = 0.6. Idea behind
this: When performing random moves, the value V (st+1) of the resulting state st+1 is most likely
not an appropriate approximation of V (st). Therefore, it can be sensible to reset the trace vector
on random moves. As seen in the graph, this resetting option (TCL-EXP [res]) lets the agent learn
slightly faster in the beginning, although the differences are not that significant. However, the
asymptotic success rate for TCL-EXP [et] is higher than for TCL-EXP [res].
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Figure 4.20: Replacing eligibility traces, resetting on random moves with λ = 0.8. In comparison
to ordinary traces, that are reset on random moves (TCL-EXP [res]), no significant differences
can be observed. In the beginning, ordinary traces resetting on random moves (TCL-EXP [res]),
replacing traces (TCL-EXP [rep]) and replacing traces resetting on random moves (TCL-EXP [rr])
have a similar behavior. TCL-EXP [rep] slows down after a while and crosses the 80% success rate
at the same point as TCL-EXP [et].
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4.6.3 Detailed Comparison

For a better comparison of the results in the previous subsections, we generated
a few box plots and run-time distributions, that summarize certain aspects of all
results in a single plot.
in addition to the previous results, we introduce another agent TCL-EXP-M, which
differs from TCL-EXP only in the number of n-tuples, which is now 150 n-tuples
instead of 70. Furthermore, TCL-EXP-M has a slightly lower global learning rate
(α = 0.02 instead of α = 0.05). The suffixes in the labels of the algorithms indicate
the options used for the eligibility traces:
[et] – Classical implementation of the eligibility traces.
[res] – Classical implementation of the eligibility traces, resetting the traces on
random moves.
[rep] – Replacing eligibility traces.
[rr] – Replacing eligibility traces, resetting the traces on random moves.

We created three box plots, the first one showing the asymptotic success rate
of the considered algorithms but the second and third ones are indicating the time
to learn, which we defined as the ”amount of games to cross the 80% success rate
for the last time” and ”amount of games to cross the 90% success rate for the first
time”.

Fig. 4.21 displays the asymptotic success rate for the different algorithms we
evaluated. TCL-EXP [et] and TCL-EXP-M [et] have the highest asymptotic success
rates. In general, the asymptotic success rates were slightly (TCL-EXP) or notably
(TDL) higher when using standard eligibility traces as compared to no traces. This
enhancement was lost when adding any of the reset or replace options.

In Fig. 4.22 we can see that TCL-EXP[rr] (reset & replace) is slightly but sig-
nificantly faster in reaching the target ”80% success rate” than the other eligibility
trace versions. However, after reaching the 80% success rate the training progress
of TCL-EXP slows down so that all eligibility trace versions reach the target ”90%
success rate” approx. after the same amount of games.

Run-time distributions (or time to target plots) indicate the probability (on the
ordinate) that an algorithm will reach a target in a given time (on the abscissa).
For our purposes, we defined the targets ”Crossing of the 80% success rate for the
last time” and ”Crossing of the 90% success rate for the first time”. The run-time
distributions shown in Fig. 4.23 basically show the same results as Fig. 4.22, but give
a slightly different view on the results.



4.6. ELIGIBILITY TRACES 62

●

●

●

●

●

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

TCL−EXP

TCL−EXP[et]

TCL−EXP[res]

TCL−EXP[rep]

TCL−EXP[rr]

TCL−EXP−M[et]

TCL−EXP−M[rr]

TDL−STD
TDL[et]

TDL[rr]

as
ym

pt
ot

ic
 s

uc
ce

ss
 r

at
e

Figure 4.21: Asymptotic success rates. For each algorithm we performed 20 runs with 2 million
training games in each run. The asymptotic success is the average success, measured during the
last 500 000 games at 50 equidistant time points. TDL-STD contains one outlier at 0.79, which is
not shown in this graph.
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Figure 4.22: Number of training games for different algorithms to reach 80% (90% ) success rate.
The box plots show the results of 20 runs. For each run we measure the success rate every 10 000
games and smooth this curve to dampen fluctuations. Time to learn is the number of games needed
until this smoothed success rate crosses the 80% (90%)-line for the last (first) time. TDL-STD has
one outlier at 2 million games, which is not shown in this graph. TCL-EXP-M is a bigger n-tuple
system consisting of 150 (instead of 70) 8-tuples.
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Figure 4.23: Run-time distribution for the learning speed (number of games needed to reach 80%
(90% ) success rate) for different algorithms. The plot shows the results for 20 runs each. For
each run we measured the success rate every 10 000 games and smoothed this curve to dampen
fluctuations. Target Probability is the probability that the agents success rate crosses the 80%
(90%)-line for the last (first) time (based on the 20 runs).
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4.7 Summary

Fig. 4.24 summarizes the main findings in this chapter. We started our work with the
best results found in [37] (Former TDL). A significant improvement of the learning
speed of the TDL-agent could be achieved by tuning the exploration rate ε, from
high initial value εinit = 0.6 to a relatively low value εfinal = 0.1. The expected
improvement of the TDL algorithm using the classical implementation of temporal
coherence in TD-Learning stayed out, the results for TCL [r] were even worse. IDBD
– another approach introducing individual learning rates for each weight – could
improve the learning speed of the agent slightly. However, IDBD is defined at this
stage only for linear value functions. Based on the idea of ’geometric step sizes’ in
IDBD, we developed TCL-EXP, which for the first time significantly increases the
speed of learning compared to TDL. Finally, the implementation of eligibility traces
for the n-tuple system could reduce the number of training games needed to learn
the game by a factor of around two. An n-tuple system with twice the number of
weights (150 × 8-tuple) can also increase the speed of learning (TCL-EXP-M [rr]).
In total, we could reduce the number of training games to cross the 80% success rate
from formerly around 1 800 000 to finally less than 200 000. This is a decrease by a
factor of 9.
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Figure 4.24: Summary of the main findings made in this chapter. Starting point was former
TDL (Sec. 4.1). Tuning the exploration rate could significantly improve the training speed (Tuned
TDL). The main task of this case study is to apply TCL to Connect Four . However, we found,
that the original TCL algorithm cannot deliver the expected results (TCL [r]). IDBD (defined at
this stage only for linear value functions) could improve the learning speed of the agent slightly.
Based on the idea of ’geometric step sizes’ in IDBD, we developed TCL-EXP, which for the first
time significantly increases the speed of learning compared to TDL. Finally, eligibility traces could
again clearly reduce the number of training games needed to learn Connect Four by a factor of
almost 2. TCL-EXP [et], which does not reset eligibility traces on random moves, can even reach
a slightly higher asymptotic success rate. An n-tuple system with 150× 8-tuple (TCL-EXP-M [rr])
is the fastest learning system we found until now (but with the number of weights doubled).
Note, that the curves shown in this plot only show the fitted lines through the averaged results of
20 experiments each.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In our Case Study we investigated a complex learning task for the game Connect
four. We used a temporal difference self-play algorithm in combination with an n-
tuple system as position value function. We could show that a systematic parameter
tuning of the TDL meta-parameters dramatically improves the performance of the
learning process. It was possible to speed up the training of the TDL agent by a
factor of almost 3; from formerly 1 565 000 training games to now 560 000 training
games in order to reach a 80% success-rate).
The focus of this report was on the analysis of the online-adaptable learning rate
algorithms TCL and IDBD, which were mainly targeted by the research questions
in Chapter 3. Based on the idea of ”‘geometric step sizes”’ in IDBD we adjusted the
classical TCL algorithm by using an exponential scheme, which we named TCL-EXP.
This algorithm clearly outperforms all other algorithms with respect to the learning
speed of the agent. Finally, we investigated the benefits of eligibility traces, when
added to our system.
We conclude this report by answering the research questions stated before:

1. Is it possible to successfully apply TCL and IDBD to a system with millions of
weights? This question can be answered positively. We could show that both
TCL and IDBD work in combination with our n-tuple system.

2. How robust are online learning rate adaptation algorithms with respect to their
meta-parameters? This question has to be answered with a longer explanation.
In contrast to the results presented in [7, 6] we could not confirm that TCL
is insensitive to its meta-parameter αinit. Beal & Smith stated, that αinit
”has to be chosen, but this does not demand a choice between fast learning
and eventual stability, since it can be set high initially, and the then provide
automatic adjustment during the learning process”. However, we found a clear
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breakdown of our system with values αinit > 0.1. Comparison of the sensitivity
curves showed furthermore, that TCL has no advantage to standard TDL. The
range of good training results were shifted for TCL and TDL but had about
the same length.
Also IDBD does not free the user from parameter-tuning. IDBD is sensitive to
its meta-parameter θ and to the initial step size αi = eβinit .

3. Are TCL (IDBD) able to significantly increase the speed of learning? The
original version of TCL could not improve the training process. In fact, the
learning speed for TCL was even worse in comparison to the manually tuned
TDL agent. Also update episodes, as suggested by Beal and Smith, do not
help TCL; the performance decreases with longer episodes.
IDBD (even though we only implemented the algorithm for a linear value func-
tion) can speed up the learning process slightly, but not significantly. An agent
using the IDBD algorithm needs approx. 615 000 games instead of 670 000
(Tuned TDL).
Finally, however, TCL-EXP, the modified variant of TCL, offers a significant
improvement: TCL-EXP does learn substantially faster than the best tuned
TDL agent (500 000 instead of 670 000 games to reach 80% success rate).

4. Can TCL (IDBD) increase the strength (asymptotic success rate) of our agents?
This research question has to be answered negatively as well. None of the algo-
rithms (TCL, IDBD and TCL-EXP) could reach a higher asymptotic success
rate than tuned TDL. This is surprising, since TCL and IDBD promise to –
next to improving the learning speed – reduce the MSE of a value function.

5. Is it possible to successfully apply eligibility traces to a large scale problem with
millions of weights? We could show that TDL with eligibility traces works well
for a large-scale problem with roughly 700 000 active weights and traces.

6. We expect eligibility traces to speed up the learning process and increase the
asymptotic success rate. Is it possible to significantly improve both aspects?
Our main result is that eligibility traces make the learning much faster: The
number of training games required to learn a certain target is smaller by a factor
of 2 compared with the variant without eligibility traces. Compared to our first
published result on Connect-4 [37], the time-to-learn has reduced by an even
larger factor 13: from the former 1 565 000 games in [37] to 115 000 games for
the fastest algorithm TCL-M[rr] in this work. This reduction is however due to
a combination of three factors: temporal coherence learning with exponential
scheme (TCL-EXP), a larger n-tuple system with 150 instead of 70 8-tuples
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and finally eligibility traces. Eligibility traces increase the asymptotic success
rate slightly (but significantly) to around 93% (from formerly around 90%).

5.2 Future Work

Although we could gain many insights , there is still considerable scope for further
investigations, especially in the field of online adaptable learning rates.
Sutton’s IDBD was used in this Case Study for linear value functions only. In
future work, the non-linear extensions of IDBD [14, 15, 33] could be applied to
the learning-process. Furthermore, there are many approaches for online adaptable
learning rates that –because of time limitations – we could not analyze in this work.
Especially Sutton’s K1 algorithm [31], Schraudolphs non-linear extension ELK1 [24],
Mahmood’s Autostep [20, 19] (a parameter-free extension of IDBD), Dabney and
Barto’s Alpha-Bounds algorithm [11] and Riedmiller’s RPROP [21] deserve further
attention. However, many of these mentioned algorithms are only described for linear
value functions, so that the extension to non-linear functions could be an interesting
research task. Most of the above algorithms also do not define, how eligibility traces
in TDL should be treated. Since eligibility traces are essential for a fast learning –
as we showed in this report – we believe that the combination of eligibility traces
with learning rate algorithms is an important step for further improvement of the
learning process.
The analysis of different activation functions and loss functions – as done in [15] –
may reveal some more interesting insights. Since many above algorithms and TDL
itself are dependent on certain meta-parameters a systematic tuning – for instance
using Sequential Parameter Optimization [5]– of these could slightly improve the
results.

Investigations in future could also concentrate on other topics, such as the n-tuple
generation. Until now simply randomly created n-tuples are used for our system. A
more systematic approach to create relevant n-tuples could improve the training of
the agents. It would have to be analyzed which measures are able to separate good
n-tuples from bad ones. For instance, irrelevant features should lead to weights with
absolute values close to zero (assuming that the random noise accumulates to zero in
long term). This may be a starting point to determine the relevance of an n-tuple.

A more technical improvement could be the implementation of the n-tuple system
using sparse representations. Until now all weights (and corresponding learning rates)
of an n-tuple system are maintained in arrays. During the training most weights will
never be addressed due to the non-realizable states in an n-tuple. A more memory
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efficient approach could use tree-structures instead, containing only those weights,
which are necessary. However, this might increase the computation time of the
learning process.

There is still some room to analyze Q-Learning results more deeply. We believe
that Q-Learning agent can appear stronger than TD-Learning agent if we start from
a random board position. Currently, all evaluations are done with an empty starting
board. There was not enough time to test and prove such a hypothesis. This can be
done as a future work.

In future we are also planning to learn completely different board games. Espe-
cially the simple game dots-and-boxes could be an interesting test-bed for many of
the techniques described in this report and other techniques we did not investigate
yet. Dots-and-boxes is a strategic board-game for two players with a very simple
rule-set. The board-size can be varied, which allows to scale the complexity of the
game in a simple way. Similar to Connect Four every game ends after a predefined
number of moves (no position can be repeated). In contrast to Connect Four , the
decision complexity is much larger: E.g., from the initial board all free lines can be
chosen (Connect Four: Maximum of 7 possible moves). Also the state-space com-
plexity dramatically increases with increasing board sizes. Similar to Connect Four
in Dots-and-Boxes zugzwang plays an important role during the game: A certain
position can have totally different values, depending on the player to move.
A Java-framework including several agents and a GUI for dots-and-boxes in Java is
already available, which could save a lot of development time.
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Appendix A

Figures and corresponding
Experiments

Table A.1: List of Settings for the figures. A detailed list of parameters for each setting (e.g.,
[TD1 ]) can be found in Appendix B

.

Figure Curve Label Setting

4.1 TDL (old) [TD1 ]
TDL (best so far) [TD2 ]

4.2 TDL [TD1 ]
TCL (std.) [TC1 ]
TCL (opt.) [TC2 ]

4.3 TDL [TD1 ]
TCL(1) [TC3 ]
TCL(2) [TC4 ]

4.4 TDL (opt. setting) [TD2 ]
TCL (opt. setting) [TC5 ]
TCL (std. setting) [TC1 ]

4.5 TCL [TC6 ], [TC7 ]
TDL [TD3 ]

4.6 Former TCL [TC5 ]
Tuned TCL [TC8 ]

4.7 Former TDL [TD2 ]
Tuned TDL [TD5 ]
TCL [TD8 ]

4.8 TCL [delta] [TC8 ]
TCL [r] [TC9 ]

(Continued on next page)
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Table A.1: (continued)

Figure Curve Label Setting

tuned TDL [TD5 ]
4.9 TCL (old) [TC6 ]

TDL [TD3 ]
TCL [r] [TC10 ]

4.10 TCL[r] (EL=1) [TC11 ]
TCL[r] (EL=3) [TC11 ]
TCL[r] (EL=10) [TC11 ]
TCL[r] (EL=100) [TC11 ]

4.11 TCL[r] (standard update-order) [TC9 ]
TCL[r] (swapped update-order) [TC12 ]

4.12 TCL [delta] [TC9 ]
IDBD (linear net) [IDBD1 ]
IDBD (non-linear net) [IDBD2 ]

4.13 no label [IDBD3 ]
4.15 Piecewise Linear [TC13 ]

TCL [delta] [TC8 ]
IDBD [IDBD1 ]
TDL [TD5 ]
TCL-EXP [TC14 ]

4.16 TDL (epsinit = 0.17) [TD5 ]
TDL (eps = 0.1 = const.) [TD6 ]
TCL-EXP (epsinit = 0.17) [TC14 ]
TCL-EXP (eps = 0.1 = const.) [TC15 ]

4.18 TCL-EXP [et] [TC16 ]
TCL-EXP [TC15 ]
TDL-STD [TD6 ]

4.19 TCL-EXP [et] [TC16 ]
TCL-EXP [res] [TC17 ]
TCL-EXP [TC15 ]

4.20 TCL-EXP [et] [TC16 ]
TCL-EXP [rep] [TC18 ]
TCL-EXP [res] [TC17 ]
TCL-EXP [rr] [TC19 ]

(Continued on next page)
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Table A.1: (continued)

Figure Curve Label Setting

TCL-EXP [TC15 ]
4.22 TCL-EXP [TC15 ]

TCL-EXP [et] [TC16 ]
TCL-EXP [res] [TC17 ]
TCL-EXP [rep] [TC18 ]
TCL-EXP [rr] [TC19 ]
TCL-EXP-M [rr] [TC21 ]
TDL-STD [TD6 ]
TDL [et] [TD7 ]
TDL [rr] [TD8 ]

4.23 TCL-EXP [TC15 ]
TCL-EXP [et] [TC16 ]
TCL-EXP [res] [TC17 ]
TCL-EXP [rep] [TC18 ]
TCL-EXP [rr] [TC19 ]
TCL-EXP-M [rr] [TC21 ]
TDL-STD [TD6 ]
TDL [et] [TD7 ]
TDL [rr] [TD8 ]
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Appendix B

Experiments

B.1 TDL-Experiments

Table B.1: Parameter settings for TDL experiments.

Setting αinit αfinal εinit εfinal εip/106 λ λmode Remark

TD1 0.01 0.001 0.95 0.1 2.0 0.0 – –

TD2 0.004 0.002 0.6 0.1 1.0 0.0 – –

TD3 – – 0.6 0.1 1.0 0.0 – –

TD4 – – 0.6 0.1 1.0 0.0 – 70× 7− tuple
TD5 0.004 0.002 0.2 0.1 0.3 0.0 – –

TD6 0.004 0.002 0.1 0.1 – 0.0 – –

TD7 0.004 0.002 0.1 0.1 – 0.5 et TDL [et]

TD8 0.004 0.002 0.1 0.1 – 0.5 rr TDL [rr]
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B.2 TCL-Experiments

Table B.2: Parameter settings for TCL experiments.

Setting Alg αinit αfinal εinit εfinal εip λ λm β Remark

TC1 [δ] 0.01 0.01 0.95 0.1 2.0 0.0 – – –
TC2 [δ] 0.004 0.002 0.6 0.1 1.0 0.0 – – –
TC3 [δ] 0.02 0.02 0.95 0.1 2.0 0.0 – – –
TC4 [δ] 0.03 0.02 0.95 0.1 2.0 0.0 – – –
TC5 [δ] 0.02 0.02 0.6 0.1 1.0 0.0 – – different slope for ε
TC6 [δ] – – 0.6 0.1 1.0 0.0 – – –
TC7 [δ] – – 0.6 0.1 1.0 0.0 – – 70× 7− tuple
TC8 [δ] 0.04 0.04 0.2 0.1 0.3 0.0 – – –
TC9 [r] 0.04 0.04 0.2 0.1 0.3 0.0 – – –
TC10 [r] – – 0.6 0.1 1.0 0.0 – – –
TC11 [r] 0.04 0.04 0.2 0.1 0.3 0.0 – – EL ∈ {1, 3, 10, 100}
TC12 [r] 0.04 0.04 0.2 0.1 0.3 0.0 – – inverted operational

order
TC13 [r] 0.05 0.05 0.2 0.1 0.3 0.0 – 2.7 piecewise linear
TC14 [r] 0.05 0.05 0.2 0.1 0.3 0.0 – 2.7 TCL-EXP
TC15 [r] 0.05 0.05 0.1 0.1 – 0.0 – 2.7 TCL-EXP
TC16 [r] 0.05 0.05 0.1 0.1 – 0.5 et 2.7 TCL-EXP [et]
TC17 [r] 0.05 0.05 0.1 0.1 – 0.6 res 2.7 TCL-EXP [res]
TC18 [r] 0.05 0.05 0.1 0.1 – 0.6 rep 2.7 TCL-EXP [rep]
TC19 [r] 0.05 0.05 0.1 0.1 – 0.6 rr 2.7 TCL-EXP [rr]
TC20 [r] 0.05 0.05 0.1 0.1 – 0.6 et 2.7 TCL-EXP-M [et]

(150× 8− tuple)
TC21 [r] 0.05 0.05 0.1 0.1 – 0.6 rr 2.7 TCL-EXP-M [rr]

(150× 8− tuple)
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B.3 IDBD-Experiments

Table B.3: Parameter settings for IDBD experiments.

Setting βinit θ εinit εfinal εip/106 Remark

IDBD1 -5.8 0.01 0.2 0.1 0.3 linear net

IDBD2 -5.8 0.01 0.2 0.1 0.3 non-linear net

IDBD3 – 0.01 0.2 0.1 0.3 linear net
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