Self-adjusting parameter control for surrogate-assisted
constrained optimization under limited budgets

Samineh Bagheri®, Wolfgang Konen®* Michael Emmerich?, Thomas BéickP

@ Department of Computer Science,
TH Koéln (Cologne University of Applied Sciences), 51643 Gummersbach, Germany
bLeiden University, LIACS,
2338 CA Leiden, The Netherlands

Abstract

Constrained optimization of high-dimensional numerical problems plays an important role
in many scientific and industrial applications. Function evaluations in many industrial ap-
plications are severely limited and no analytical information about objective function and
constraint functions is available. For such expensive black-box optimization tasks, the con-
straint optimization algorithm COBRA (Constrained Optimization By Radial Basis Func-
tion Approximation) was proposed, making use of RBF (radial basis function) surrogate
modeling for both objective and constraint functions. COBRA has shown remarkable suc-
cess in solving reliably complex benchmark problems in less than 500 function evaluations.
Unfortunately, COBRA requires careful adjustment of parameters in order to do so.

In this work we present a new algorithm SACOBRA (Self-Adjusting COBRA), which
is based on COBRA and capable to achieve high-quality results with very few function
evaluations and no parameter tuning. It is shown with the help of performance profiles
on a set of benchmark problems (G-problems, MOPTAO08) that SACOBRA counsistently
outperforms COBRA algorlthms with dlfferent ﬁxed parameter settlngs —that-SACOBRA

ing. We analyze
the 1mportance of the eeve%&} new elementb in SACOBRA and find that each element of
SACOBRA plays a role to boost up the overall optimization performance. We discuss the
reasons behind and get in this way a better understanding of high-quality RBF surrogate
modeling.

Keywords:
optimization; constrained optimization; expensive black-box optimization; radial basis
function; self-adjustment

*Corresponding Author
Email addresses: {samineh.bagheri,wolfgang.konen}@th-koeln.de (Wolfgang Konen),
{m.t.m.emmerich,T.H.W.Baeck}@liacs.leidenuniv.nl (Thomas Back)

Preprint submitted to Applied Soft Computing September 18, 2016

1 INTRODUCTION 2

1. Introduction

Real-world optimization problems are often subject to constraints, restricting the feasible
region to a smaller subset of the search space. It is the goal of constraint optimizers to avoid
infeasible solutions and to stay in the feasible region, in order to converge to the optimum.
However, the search in constraint black-box optimization can be difficult, since we usually
have no a-priori knowledge about the feasible region and the fitness landscape. This problem
even turns out to be harder, when only a limited number of function evaluations is allowed
for the search. However, in industry good solutions are requested in very restricted time
frames. An example is the well-known benchmark MOPTAO08 [20].

In the past different strategies have been proposed to handle constraints. E.g., repair
methods try to guide infeasible solutions into the feasible area. Penalty functions give a
negative bias to the objective function value, when constraints are violated. Many constraint
handling methods are available in the scientific literature, but often demand for a large num-
ber of function evaluations (e. g., results in [41] 26]). Up to now, only little work has been
devoted to efficient constraint optimization (severely reduced number of function evalua-
tions). A possible solution in that regard is to use surrogate models for the objective and the
constraint functions. While the real function might be expensive to evaluate, evaluations on
the surrogate functions are usually cheap. As an example for this approach, the solver CO-
BRA was proposed by Regis [37] and outperforms many other algorithms on a large number
of benchmark functions.

In our previous work [2I), 22] we have studied a reimplementation of COBRA in R [30],
enhanced by a new repair mechanism, and reported its strengths and weaknesses. Although
good results were obtained, each new problem required tedious manual tuning of the many
parameters in COBRA. In this paper we follow a more unifying path and present SACOBRA
(Self-Adjusting COBRA), an extension of COBRA which starts with the same settings on all
problems and adjusts all necessary parameters internallyﬂ This is adaptive parameter control
according to the terminology introduced by Eiben et al. [I2]. We present extensive tests of
SACOBRA and other algorithms on a well-known and popular benchmark from the litera-
ture: The so-called G-problem or G-function benchmark was introduced by Michalewicz and
Schoenauer [28] and Floudas and Pardalos [I7]. It provides a set of constrained optimization
problems with a wide range of different conditions.

We define the following research questions for the constrained optimization experiments
in this work:

(Q1) Do numerical instabilities occur in RBF surrogates and is it possible to avoid them?

(Q2) Is it possible with SACOBRA to start with the same initial parameters on all G-
problems and to solve them by self-adjusting the parameters on-line?

(Q3) Is it possible with SACOBRA to solve all G-problems in less than, say, 1000 function
evaluations?

1 SACOBRA is available as open-source R-package from CRAN: jhttps://cran.r-project.org/web/
packages/SACOBRA.

https://cran.r-project.org/web/packages/SACOBRA
https://cran.r-project.org/web/packages/SACOBRA.
https://cran.r-project.org/web/packages/SACOBRA
https://cran.r-project.org/web/packages/SACOBRA.

1 INTRODUCTION 3

1.1. Related work

Following the surveys on constraint optimization given by Michalewicz and Schoenauer [28],
Eiben and Smith [I3], Coello Coello [9], Jiao et al. [19], and Kramer [24], several approaches
are available for constraint handling;:

(i) unconstrained optimization with a penalty added to the fitness value for infeasible
solutions

(ii) feasible solution preference methods and stochastic ranking
(iii) repair algorithms to resolve constraint violations during the search

(iv) multi-objective optimization, where the constraint functions are defined as additional
objectives

A frequently used approach to handle constraints is to incorporate static or dynamic penalty
terms (i) in order to stay in the feasible region [9] 24] [30]. Penalty functions can be very
helpful for solving constrained problems, but their main drawback is that they often require
additional parameters for balancing the fitness and penalty terms. Tessema and Yen [44]
propose an interesting adaptive penalty method which does not need any parameter tuning.

Feasible solution preference methods (ii) [I1} [29] always prefer feasible solutions to in-
feasible solutions. They may use too little information from infeasible solutions and risk
getting stuck in local optima. Deb [II] improves this method by introducing a diversity
mechanism. Stochastic ranking [41] [42] is a similar and very successful improvement: With a
certain probability an infeasible solution is ranked not behind, but — according to its fitness
value — among the feasible solutions. Stochastic ranking has shown good results on all 11
G-problems. However it requires usually a large number of function evaluations (300 000 and
more) and is thus not well suited for efficient optimization.

Repair algorithms (iii) try to transform infeasible solutions into feasible ones [7, 22}, 25] [46].
The work of Chootinan and Chen [7] shows very good results on 11 G-problems, but requires a
large number of function evaluations (5000 — 500 000) as well. Instead of repairing infeasible
solutions, the work of Arnold and Hansen [I] takes an alternative interesting approach of
reducing the probability to generate infeasible offsprings. Embedding this in the context of
CMA-ES (covariance matrix adaptation evolution strategies) achieves very good results, but
only for a small subset of all G-problems.

In recent years, multi-objective optimization techniques (iv) have attracted increasing
attention for solving constrained optimization problems. The general idea is to treat the
constraints as one or more objective functions to be optimized in conjunction with the fitness
function. Coello Coello and Montes [10] use Pareto dominance-based tournament selection
for a genetic algorithm (GA). Similarly, Venkatraman and Yen [45] propose a two-phase
GA, where the second phase is formulated as a bi-objective optimization problem which
uses non-dominated ranking. Jiao et al. [T9] use a novel selection strategy based on bi-
objective optimization and get improved reliability on a large number of benchmark functions.
Emmerich et al. [I5] use Kriging models for approximating constraints in a multi-objective
optimization scheme.

In the field of model-assisted optimization algorithms for constrained problems, sup-
port vector machines (SVMs) have been used by Poloczek and Kramer [32]. They make

1 INTRODUCTION 4

use of SVMs as a classifier for predicting the feasibility of solutions, but achieve only slight
improvements. Powell [34] proposes COBYLA, a direct search method which models the
objective and the constraints using linear approximation. An early paper on surrogate mod-
eling is the work of Kramer et al. [25] which enhances CMA-ES by linear surrogate models
for the constraints. It is also interesting for its repair algorithm for infeasible solutions and it
shows good results on some black-box problems with linear constraints. Recently, Regis [37]
developed COBRA, an efficient solver that makes use of RBF interpolation to model objec-
tive and constraint functions. COBRA outperforms most algorithms in terms of required
function evaluations on a large number of benchmark functions. Tenne and Armfield [43]
present an adaptive topology RBF network to tackle highly multimodal functions. But they
consider only unconstrained optimization.

Most optimization algorithms need their parameter to be set with respect to the specific
optimization problem in order to show good performance. Eiben et al. [12] introduced a
terminology for parameter settings for evolutionary algorithms: They distinguish parame-
ter tuning (before the run) and parameter control (online). Parameter control is further
subdivided into predefined control schemes (deterministic), control with feedback from the
optimization run (adaptive), or control where the parameters are part of the evolvable chro-
mosome (self-adaptive).

Several papers deal with adaptive or self-adaptive parameter control in uncon-
strained or constrained optimization: Qin and Suganthan [35] propose a self-adaptive differ-
ential evolution (DE) algorithm. Brest et al. [3] propose another self-adaptive DE algorithm.
But they do not handle constraints, whereas Zhang et al. [47] describe a constraint-handling
mechanism for DE. We will compare later our results with the DE-implementation DEoptimRE|
which is based on both works [3,[47]. Farmani and Wright [I6] propose a self-adaptive fitness
formulation and test it on all 11 G-problems. They show comparable results to stochastic
ranking [41], but require many function evaluations (above 300 000) as well. Coello Coello [§],
Eiben and van Hemert [I4] and Tessema and Yen [44] propose self-adaptive penalty ap-
proaches. A survey of self-adaptive penalty approaches is given in [12].

The area of efficient constrained optimization, that is optimization under severely
limited budget of less than 1000 function evaluations, is attracting more and more attention
in recent years: Regis proposed besides the already mentioned COBRA approach [37] a trust-
region evolutionary algorithm [39] which uses RBF surrogates as well and which exhibits
high-quality results on many but not all G-functions in less than 1000 function evaluations.
Jiao et al. [I9] propose a self-adaptive selection method to combine informative feasible and
infeasible solutions and they formulate it as a multi-objective problem. Their algorithm can
solve some of the G-functions (G08,G11,G12) really fast in less than 500 evaluations, some
others are solved with less than 10000 evaluations, but the remaining G-functions (GO01-
G03,G07,G10) require 20 000 to 120000 evaluations to be solved. Zahara and Kao [46] show
similar results (1000 — 20000 evaluations) on some G-functions, but they investigate only
G04, G08, and G12. To the best of our knowledge there is currently no approach which can
solve all 11 G-problems in less than 1000 evaluations. Tenne and Armfield [43] present an
interesting approach with approximating RBFs to optimize highly multimodal functions in
less than 200 evaluations, but their results are only for unconstrained functions and they are

2R-package DEoptimR, available from https://cran.r-project.org/web/packages/DEoptimR

https://cran.r-project.org/web/packages/DEoptimR
https://cran.r-project.org/web/packages/DEoptimR

2 METHODS 5

not competitive in terms of precision.

The rest of this paper is organized as follows: In Sec. 2] we present the constrained
optimization problem and our methods: RBF surrogate modeling, common pitfalls in sur-
rogate modeling, the algorithms COBRA and SACOBRA. In Sec. [3] we perform a thorough
experimental study on analytical test functions and on a real-world benchmark function
MOPTAO8 [20] from the automotive domain. We analyze with the help of data profiles
the impact of the various SACOBRA elements on the overall performance. The results are
discussed in Sec. [and we give conclusive remarks in Sec.

2. Methods

2.1. Constrained optimization
A constrained optimization problem can be defined by the minimization of an objective

function f subject to constraint function(s) g1, .., gm:
Minimize f(@ (1)
subject to

In this paper we always consider minimization problems. Maximization problems are trans-
formed to minimization without loss of generality. Problems with equality constraints have
them transformed to inequalities first (see Sec. and Sec. [4.2.3)).

2.2. Radial Basis Functions

The COBRA algorithm incorporates optimization on auxiliary functions, e.g. regression
models over the search space. Although numerous regression models are available, we employ
interpolating RBF models [5] B3], since they are competitive with other models in terms of

quality, and also time efficient for high dimensional data—eutperformeothermodelsinterms

of-efficieney-and-guality. In this paper we use the same notation as Regis [38]. RBF models
require as input a set of design points (a training set): n points u(l), U 4™ e RY are

evaluated on the real function f(@™M),..., f(@™). We use an interpolating radial basis
function as approximation:

s (& Z)\wl\x—ﬁ(”ﬂ)ﬂo(7 eR? (2)

=1
Here, || - || is the Euclidean norm, A\; € R for ¢ = 1,...,n, p(¥) = ¢y + €T is a linear
polynomial in d variables with d + 1 coefficients ¢’ = (co,8)T = (co,c1,...,¢cq)T € RIFL

and ¢ is of cubic form ¢(r) = r3. An alternative to cubic RBFs are Gaussian RBFs ¢(r) =
e~7°/(20*) which introduce an additional width parameter o.

The RBF model fit requires a distance matrix ® € R™™: &;; = o(||@® — @7||),i,j =
1,...,n. The RBF model requires the solution of the following linear system of equations:

" o) 7] [0ve ®
P 0(g11)xa+n) | [Od+1

2 METHODS 6

SCALE ARTEFACTS
] 1000 10000
N~
o
N
ONS
N
N
RMSE=3.7e-02 RMSE=8.2e+00
o o o o o o o o
s 8 8 &8 So 8 & g s
= & & 8 5 8 g

x

true function — RBF model

Figure 1: The influence of scaling. From left to right the plots show the RBF model fit for scale S =
1,1000,10000 (upper facet bar). RMSE: root mean square error.

for the unknowns X,&. Here, P € R™ (@D is a matrix with (1,4™) in its ith row,
O(at1)x(a+1) € RUEAFDX(EHD) is a zero matrix, 0q41 is a vector of zeros, F' = (f(a™M),...,
f(@™NT and X = (A1, An)T € R™. The matrix in Eq. is invertible if it has full rank.
For this reason it is necessary to provide independent points in the initial design. This is
usually the case, if d+ 1 linearly independent points are provided. The matrix inversion can
be done efficiently by using singular value decomposition (SVD) or similar algorithms.

The linear polynomial p(Z) in Eq. serves the purpose to alleviate the fit of simple
linear functions f() which otherwise have to be approximated by superimposing many RBFs
in a complicated way. Polynomials of higher order may be used as well. We consider here
the option of additional direct squares, where p(Z) in Eq. is replaced by

Dsq(Z) = p(Z) + elx% +...+ edx?l (4)

with additional coefficients & = (ey, ..., eq)”. The matrix in Eq. is extended in a straight-
forward manner from an (n+d+1) x (n+d+1)-matrix to an (n+2d+1) x (n+2d+1)-matrix.

2.8. Common pitfalls in surrogate-assisted optimization

RBF models are very fast to train, even for high dimensional search spaces—in—high
dimensions. They often provide good approximation accuracy even when only few training
points are given. This makes them ideally suited as surrogate models for high-dimensional
optimization problems with a large number of constraints.

There are however some pitfalls which should be avoided to achieve good modeling results
for any surrogate-assisted black-box optimization.

2 METHODS 7

RANGE ARTEFACTS
PLOG: FALSE PLOG: TRUE
8000-
6000-
24000~
N RMSE = 1228 RMSE = 50
2000-
0- o ° o °
-1 0 1 2 3 -1 0 1 2 3

true function — RBF model

Figure 2: The influence of large output ranges. Left: Fitting the original function with a cubic RBF model.

Right: Fitting the plog-transformed function with an RBF-model and transforming the fit back to original

space with plog—1.

2.3.1. Rescaling the input space

If a model is fitted with too large values in input space, a striking failure may occur.
Consider the following simple example:

fla) =35 +1 (5)
S

where x € [0,25]. If S is large, the z-values (which enter the RBF-model) will be large,
although the output produced by Eq. is exactly the same. Since the function f(z) to be
modeled is exactly linear and the RBF-model contains a linear tail as well, one would expect
at first sight a perfect fit (small RMSE) for each surrogate model. But — as Fig. [1| shows —
this is not the case for large S: The fit (based on the same set of five points) is perfect for
S =1, weaker for S = 1000, and extremely bad in extrapolation for S = 10000.

The reason for this behavior is as follows: Large values for x lead to computationally
singular (ill-conditioned) coefficient matrices, because the cubic coefficients tend to be many
orders of magnitude larger than the coefficients for the linear part. Either the linear equation
solver will stop with an error or it produces a result which may have large RMSE, as it is
demonstrated in the right plot of Fig. [Il The solver sets the linear tail of the RBF model to
zero in order to avoid numerical instabilities. The RBF model thus attempts to approximate
the linear function with a superposition of cubic RBFs. This is bound to fail if the RBF
model has to extrapolate beyond the green sample points.

This effect exactly occurs in problem G10, where the objective function is a simple linear
function x1 + z2 4+ z3 and the range for the input dimensions is large and different, e.g.
[100, 10000] for x; and [10,1000] for 3.

The solution to this pitfall is simple: Rescale a given problem in all its input dimensions
to a small and identical range, e.g. either to [0,1] or to [-1,1] for all z;.

2 METHODS 8

2.8.2. Logarithmic transform for large output ranges
Another pitfall are large output ranges in objective or constraint functions. As an example
consider the function

fla)=e (6)

which has small values < 10 in the interval [-1,1] around its minimum, but quickly grows to
large values above 8000 at x = 3. If we fit the original function with an RBF model using
the green sample points shown in Fig. 2| we see in the left plot an oscillating behavior in the
RBF function. This results in a large RMSE (approximation error).

The reason is that the RBF model tries to avoid large slopes. Instead the fitted model is
similar to a spline function. Therefore it is a useful remedy to apply a logarithmic transform
which puts the output into a smaller range and results in smaller slopes. Regis and Shoemaker
[40] define the function

+In(l+y) if y>0

—In(1 —y) if y<0 @)

plog(y) = {

which has — in contrast to the plain logarithm — no singularities and is strictly monotonous
for all y € R. The RBF model can perfectly fit the plog-transformed function. Afterward we
transform the fit with plog~' back to the original space and the back-transform takes care
of the large slopes. As a result we get a much smaller approximation error RMSE in the
original space, as the right-hand side of Fig. [2] shows.

We will apply the plog-transform only to functions with steep slopes in our surrogate-
assisted optimization SACOBRA. For functions with flat or constant slope (e.g. linear
functions) our experiments have shown that — due to the nonlinear nature of plog — the RBF
approximation for plog(f) is less accurate.

2.J. COBRA

The COBRA algorithm has been developed by Regis [37] with the aim to solve constrained
optimization tasks with severely limited budgets. The main idea of COBRA is to do most of
the costly optimization on surrogate models (RBF models, both for the objective function f
and the constraint functions g;). We reimplemented this algorithm in R [36] with a few small
modifications. We give a short review of this algorithm in the following.

COBRA starts by generating an initial population P with n;,;; points (i.e. a random
initial desigrﬂ see Fig. |3)) to build the first set of surrogate models . The minimum number
of points is n;,;+ = d + 1, but usually a larger choice n;,;; = 3d gives better results.

Until the budget is exhausted, the following steps are iterated on the current population
P = {&,...,%,}: The constrained optimization problem is executed by optimizing on the
surrogate functions: That is, the true functions f,¢g,...,gm are approximated with RBF
surrogate models sén),sgn), .. .,sgff), given the n points in the current population P. In
each iteration the COBRA algorithm solves with any standard constrained optimizerﬁ the

3Usually a latin hypercube sampling (LHS).

4Regis [37] uses MATLAB’s FMINCON, an interior-point optimizer, which is not available in the R envi-
ronment. In our COBRA implementation we use mostly Powell’s COBYLA, but other constrained optimizer
like ISRES are implemented in our R-package https://cran.r-project.org/web/packages/SACOBRA| as well.

https://cran.r-project.org/web/packages/SACOBRA
https://cran.r-project.org/web/packages/SACOBRA

2 METHODS 9

Generate & eval-
uate initial design

Run repair Add solution to
heuristic the population

Solution
repaired or
feasible?

Evaluate solution Run optimization
on real functions on surrogates

Update the
best solution

Fit RBF surro-

gates of objective [€
and constraints
Figure 3: COBRA flowchart
constrained surrogate subproblem
Minimize s (Z) (8)
subject to 7 e [a,b] c RY,
sM@ +em <o, i=12....m

Compared to the original problem in Eq. this subproblem uses surrogates and it contains
two new elements €™ and p,, which are explained in the next subsections. Before going into
these details we finish the description of the main loop: The optimizer returns a new solution
Zpy1. If Ty is not feasible, a repair algorithm RI2 described in our previous work [22] tries
to replace it with a feasible solution in the vicinityﬂ In any case, the new solution &, is

evaluated on the true functions f,g1,...,¢9m, . It is compared to the best feasible solution
found so far and replaces it if better. The new solution ;1 is added to the population
P ={%,...,Zp4+1} and the next iteration starts with incremented n.

2.4.1. Distance requirement cycle

COBRA [37] applies a distance requirement factor which determines how close the next
solution Z,4; € R? is allowed to be to all previous ones. The idea is to avoid frequent
updates in the neighborhood of already visited points. The distance requirement can be

5RI2 is only rarely invoked on the G-problem benchmark but more often in the MOPTAOS case.

2 METHODS 10

Table 1: Adaptive control elements of the SACOBRA algorithm that were in previous work on the COBRA
algorithm either manually adjusted for each problem or not present at all. In contrast to this, SACOBRA
always starts with the same settings and adjusts the elements either automatically (once at the start) to the
problem at hand or adaptively (specific to the problem and changable during iterations).

Element [Regis14] [Kochl14,15] [this work]
137] 211 2]
Input rescaling always never always
Constraint normalization —manually manually automatic (Eq. (10))
DRC adjustment manually manually automatic (acc. to }/71\%)
Random start probability —never never adaptive (acc. to feasibility rate)

Objective transform plog manually manually adaptive (Q-value, Eq.)

passed by the user as external parameter vector = = <§(1),§(2), e 75(”)> with ¢ ¢ R0,
In each iteration n, COBRA selects cyclically the next element p, = £* of = and adds
the constraints ||Z — ;|| > pn, Jj = 1,...,n to the set of constraints. This measures the
distance between the proposed infill solution and all n previous infill points. The so-called
distance requirement cycle (DRC) E is a clever idea, since small elements in = lead to more
exploitation of the search space, while larger elements lead to more exploration. If the last
element of = is reached, the selection starts with the first element again. The size of = and
its individual components can be chosen arbitrarily.

2.4.2. Uncertainty of constraint predictions

COBRA [37] aims at finding feasible solutions by extensive search on the surrogate func-
tions. However, as the RBF models are probably not exact, especially in the initial phase
of the search, a factor (™) is used to handle wrong predictions of the constraint surrogates.
Starting with (™ = 0.005 -1, where [is the length of the smallest side-diameter of the search
space, a point & is said to be feasible in iteration n if

S@) 4 <0V i=1,..m ©)

holds. That is, we tighten the constraints by adding the factor (™ which is adapted during
the search. The e(™-adaptation is done by counting the feasible and infeasible infill points
Cteas and Cipfeqs over the last iterations. When the number of these counters reaches the
threshold for feasible or infeasible solutions, T'tcqs OF Tip feas, respectively, we divide or double
€™ by 2 (up to a given maximum €,,,,). When €™ is decreased, solutions are allowed to
move closer to the real constraint boundaries (the imaginary boundary is relaxed), since the
last T'feqs infill points were feasible. Otherwise, when no feasible infill point is found for
Tinfeas iterations, ¢ is increased in order to keep the points further away from the real
constraint boundary.

2.5. SACOBRA

COBRA achieves good results on most of the G-problems and on MOPTAO08 as studies
from Regis [37] and our previous work [21], 22] have shown. However, it was necessary in both
papers to carefully adjust the parameters of the algorithm to each problem and sometimes

2 METHODS 11

Algorithm 1 SACOBRA. Input: Objective function f, set of constraint function(s) g =

(gl,...

-

,gm) : [@,b] C RY — R (see Eq. (), initial starting point i, € [d@,b], maximum

evaluation budget N,,q.. Output: The best solution Zpes: found by the algorithm.

1: function SACOBRA(f, g, Zinits Nmaz)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

23:
24:
25:
26:

Rescale the input space to [—1,1
Generate a random initial population: P < {Z1, &2, -+ ,Z3.4}
(}71\%, 5?{1) < ANALYSEINITIALPOPULATION(P, f, g)

g ADJUSTCONSTRAINTFUNCTIONS(éfzi, g)

=+ ADJUSTDRC(F/‘]\{)

Q@ + ANALYSEPLOGEFFECT(f, P, Zinit)

fbest — finit

while (budget not exhausted, |P| < Npq.) do

]d

n « |P|
if (@ > 1) then
f() < plog(f()) > see function plog in Eq. (7)

end if
Build surrogate models 5(”):(55"), 35”), e ,ngf)) for (f, 91, ,0m)

Select p, € E and EE") according to COBRA base algorithm
Zstart < RANDOMSTART(Zpest, Nmax)

Tpew < OPTIMCOBRA (Z41q,¢,5 ™) > see Eq.

Evaluate Z,¢., on the real functions f, g

if (]P| mod 10 == 0) then > every 10th iteration
Q@ <+ ANALYSEPLOGEFFECT(f, P, Zpew)

end if

see Koch et al. [22] for de-

Tnew ¢ REPAIRRI2(Znew) > tails on RI2 (repair algo)

(P, Zpest) < UPDATEBEST(P, Zpew, Thest)

end while
return Tp.s:
end function

27: function UPDATEBEST(P, Zpew, Toest)

28:
29:
30:
31:
32:

P+ PU{Znew}
if (Zpew is feasible AND Zpew < Tpest) then

return (P, Zpew)

end if
return (P, Zpest)

33: end function

2 METHODS 12

Algorithm 2 SACOBRA adjustment functions
1: function ANALYSEINITIALPOPULATION(P, f,g)
2: FR«+ max f(P)— m}_j;n f(P) > range of objective function

3: GR; + max gi(P)— m};n gi(P) Yi=1,....m

4: end function

5: function ADJUSTCONSTRAINTFUNCTION(él\%i,g)
av 61\21 .
gi()egi()-% Vi=1,...,m > see Eq. (10)
return g
8: end function

9: function ADJUSTDRC(FE)

10: if FR > FR; then > Threshold FR; = 1000
11: =+ E; «+ (0.001,0.0)

12: else

13: Z < Z; < (0.3,0.05,0.001,0.0005, 0.0)

14: end if

15: end function

16: function ANALYSEPLOGEFFECT(f, P, Zpew) > Zpew ¢ P
17: St < surrogate model for f() using all points in P
18: S, < surrogate model for plog(f()) using all points in P > see Eq. (7))

" e EU{ |SF(Znew) — [(Znew)] } . E, the set of approximation

Iplog=?! (Sp(Znew)) — f(Znew)] error ratios, is initially empty
20: return @ = log;, (median(F))
21: end function

Algorithm 3 RANDOMSTART (RS). Input: Zpes: the ever-best feasible solution. Parame-
ters: restart probabilities p; = 0.125, ps = 0.4. Output: New starting point Tsiqps-

1: function RANDOMSTART(Zpest)

2: if (|Pfeas|/|P] < 0.05) then > if less than 5% of the population are feasible
3: P < P2

4: else

5: D

6: end if

7. €< arandom value € [0, 1]

8: if (e <p) then

9: Zstart < a random point in search space
10: else

11: fstart — fbest

12: end if

13: return (Zsiart)

14: end function

2 METHODS

13

. Rescale in- (" Generate & eval- | Adjust constraint
put space | uate initial design] function(s)
[ir | [Add solution to |
Run r.ep'alr solu 101.1 o} Adjust DRC |
L heuristic] the population

Solution
repaired or
feasible?

(. . . 0
Run optimization
on surrogates

s 7
Evaluate new point
| on real functions |

Select start
point (RS)

{ Update the }

best solution

Fit RBF surro-
gates of objective
and constraints

Online adjustment
of fitness function

1

Figure 4: SACOBRA flowchart

even to modify the problem by applying a plog-transform (Eq.) to the objective function
or linear transformations to the constraints or by rescaling the input space. In real black-
box optimization all these adjustments would probably require knowledge of the problem or
several executions of the optimization code otherwise.

It is the main contribution of the current paper to present with SACOBRA an enhanced
COBRA algorithm which has no needs for manual adjustment to the problem at hand. In-
stead, SACOBRA extracts during its execution information about the specific problem (either
after initialization or online during iterations) and takes internally appropriate measures to
adjust its parameters or to transform functions. Table [I]lists the elements which were man-
ually adjusted in [21], 22 37] and which are now in SACOBRA under adaptive or automatic
control. These elements will be described in more detail in the following subsections.

Fig. 4] shows the flowchart of SACOBRA where the five new elements compared to CO-
BRA are highlighted as gray boxes. The complete SACOBRA algorithm is presented in
detail in Algorithm [I]-[8] We describe in the following the five new elements in the order of
their appearance:

2.5.1. Rescaling the mput space
The search space [d, b] in Eq. (1)) is rescaled to [~1,+1]%. That is, the function f(¥) is
replaced with function f(k(Z)) Where k(Z) rescales from & € [—1,+1]% to [@,b]. The same

rescaling occurs for functions g; (7). ~Fhe-input—veetor#-is-element-wisereseatedto{—H—+1-
This rescaling is done before the initialization phase. Jhelps—to-have-abetterexploration

2 METHODS 14

v — It avoids numerical
instabilities caused by high values of & and ill-conditioning as shown in Sec.

2.5.2. Adjusting constraint function(s) (aCF)

Function ADJUSTCONSTRAINTFUNCTION in Algorithm [2]aims to normalize the constraint
function in such a way that they have equal importance for the optimizing algorithm. First,
each constraint is divided by GR;. The range GR; for the ith constraint is estimated from the
initial population in Algorithm[2] This transforms the range of each constraint approximately
to an interval of length 1 around the zero point, of course without shifting the zero point, since
this defines the boundary between feasible and infeasible region. Secondly, every constraint

is multlphed by the average constraint range ﬁ@F—iﬁ—d@flﬁ—bfﬂ@fFﬁ&hﬁiﬁhﬁ—P&frgﬁ—ﬁf

— 1 & —
avg (GR;) = — ; GR (10)
in order to keep the balance between objective and constraint functions. To understand
this second point, consider the following example: Given an objective function with FR =
1000 and two constraints with the ranges [—1000,1000] and [—800,800]. After the first
normalization step both constraints are in the range [—0.5,0.5]. The optimizer is in danger
to pay little attention to the constraints since their values are much smaller than the objective

value. Multiplying by avg (é?ﬁ) brings both constraints to the range [—900,900] and thus

reconstitutes approximately the relative balance between constraints and objective.

2.5.53. Adjusting DRC parameter (aDRC)

DRC adjustment (aDRC) is done after the initialization phase. Our experimental analysis
showed that large DRC values can be harmful for problems with a very steep objective
function, because a large move in the input space yields a very large change in the output
space. This may spoil the RBF model in a sense similar to Sec. and lead in consequence
to large approximation errors. Therefore, we developed an automatic DRC adjustment which
selects the appropriate DRC set according to the information extracted after the initialization
phase. Function ADJUSTDRC in Algorithm [selects the ’small’ DRC Z; if the estimated
objective function range F'R is larger than a threshold, otherwise it selects the ’large’ DRC

=.

2.5.4. Random start algorithm (RS)

Normally COBRA starts its internal optimization from the current best point. With RS
(Algorithm, the optimization starts with a certain constant probability p; from a random
point in the search space. If the rate of feasibile individuals in the population P drops below
5% then we replace p; with a larger probability ps. RS is especially beneficial when the
search gets stuck in local optima or when it gets stuck in a region where no feasible point
can be found.

2 METHODS 15

2.5.5. Online adjustment of fitness function (aFF)

Our analysis in Sec. has shown that a fitness function f with steep slopes poses
a problem for RBF approximation. For some problems, modeling plog(f) instead of f and
transforming the RBF result back with plog~! boosts up the optimization performance sig-
nificantly. On the other hand, our tests have shown that the plog-transform is harmful for
other problems. Therefore, a careful decision whether to use plog or not should be made.

The idea of our online adjustment algorithm (Algorithm [2| function ANALYZEPLOGEF-
FECT) is the following: Given the population P, we build RBFs for f and plog(f), take a
new point ., not yet added to P, and calculate the ratio of approximation errors on @e,
(line 19 of Algorithm [2). We do this in every kth iteration (usually k = 10) and collect these
ratios in a set E. If

Q = log;, (median(E)) (11)

is above 0, then the RBF for plog(f) is better in the majority of the cases. Otherwise, the
RBF on f is betterﬁ _

Step 11 of Algorithm |1| decides on the basis of this criterion) which function f is used
as RBF surrogate in the optimization step. Note that the decision for f taken in earlier
iterations can be revoked in later iterations, if the majority of the elements in F shows that
now the other choice is more promising.

This completes the description of our SACOBRA algorithm. SACOBRA is available as
open-source R-package from CRAN E]

2.6. Performance Measures

In many papers on optimization the strength of an optimization technique is measured
by comparing the final solution achieved by different algorithms [4I]. This approach only
provides the information about the quality of the results and neglects the speed of convergence
which is a very important measure for expensive optimization problems. Comparing the
convergence curve over time (number of function evaluations) is also one of the common
benchmarking approaches [37]. Although a convergence curve provides good information
about the speed of convergence and the final quality of the optimization result, it can be used
to compare performance of several algorithms only on one problem. It is often interesting to
compare the overall capability of a technique on solving a group of problems. The data and
performance profiles developed by Moré and Wild [31] are a good approach to analyze the
performance of any optimization algorithm on a whole test suite and are now used frequently
in the optimization literature [4] [39].

2.6.1. Performance Profiles
Performance profiles are defined with the help of the performance ratio

tp,s
s P (12)
vrglens{tp’sl}

Tp,s =

60ur experimental analysis on the G-problem test suite will show (Sec. that a threshold 1 is slightly
more robust than 0. We use this threshold 1 in step 11 of Algorithm [1} but the difference to threshold 0 is
only marginal.

“https://cran.r-project.org/web/packages/SACOBRA

https://cran.r-project.org/web/packages/SACOBRA
https://cran.r-project.org/web/packages/SACOBRA

3 EXPERIMENTAL EVALUATION 16

where PP is a set of problems, S is a set of solvers and ¢, ; is the number of iterations solver
s € S requires to solve problem p € P. A problem is said to be solved when a feasible
objective value f(z) is found which is not more than 7 larger than the best objective fr,
determined by any solver in S:

fle)=fo=sr (13)
We use 7 = 0.05 for all our experiments below. Smaller values are more desirable for the
performance ratio 7, ;. When using the best solver s to solve problem p then r, , = 1. If
a solver s cannot solve problem p the performance ratio is set to infinity. The performance
profile ps is now defined as a function of the steerable performance factor a:

1
ps(a):m\{pep:rp,sga}\. (14)

2.6.2. Data Profiles

Data profiles are appropriate for evaluating optimization algorithms on expensive prob-
lems. They are defined as

1 t
(o) = lp € P 225 <o) (15)
with P, S and ¢, ; defined as above and d,, as the dimension of problem p.

We prefer data profiles over performance profiles, because the performance factor a has
a more intuitive meaning for data profiles: If we allow for each problem with dimension d,
a budget of B, = a(d, + 1) function evaluations, then the value ds(a) can be interpreted as
the fraction of problems which solver s can solve within this budget B,,.

3. Experimental Evaluation

3.1. Ezperimental Setup

We evaluate SACOBRA by using a well-studied test suite of G-problems described in [17]
[28]. The diversity of the G-problem characteristics makes them a very challenging benchmark
for optimization techniques. In Table [2| we show and explain features of these problems. The
features p*, FFR and GR (defined in Table [2]) are measured by Monte Carlo sampling with
105 points in the search space of each G-problem.

Equality constraints are transformed to inequality constraints by replacing each equality
operator with an inequality operator of the appropriate direction [37]. The appropriate
direction is that direction which makes this side of the hypersurface infeasible which contains
the unconstrained optimum. (The hypersurface is the set of all points for which the constraint
value is zero.) For suitable objective functions this forces the constrained optimum to be
exactly on the hypersurface — the same as it would be for the equality constraint. —Fhis

8This approach (which differs from the approach taken in the CEC2006 competition [27]) will not work
for every objective function. It will fail for objective functions with minima on both sides of the constraint
hypersurface. See Sec. for further discussion on this. But the approach works for the G-problems
considered here.

3 EXPERIMENTAL EVALUATION 17

Table 2: Characteristics of the G-functions: d: dimension, type: type of fitness function, p*: feasibility rate
(%) after changing equality constraints to inequality constraints, F'R: range of the fitness values, GR: ratio
of largest to smallest constraint range, LI: number of linear inequalities, NI: number of nonlinear inequalities,
NE: number of nonlinear equalities, a: number of constraints active at the optimum.

Fet. d type p* FR GR LI NI NE «a
G01 13 quadratic 0.0003% 298.14 1.969 9 0 0 6
G02 10 nonlinear 99.997% 0.57 2.632 1 1 0 1
G03 20 nonlinear 0.0000% 92684985979.23 1.000 0 0 1 1
G04 5 quadratic 26.9217% 9832.45 2.161 0 6 0 2
G05 4 nonlinear 0.0919% 8863.69 1788.74 2 0 3 3
G06 2 nonlinear 0.0072% 1246828.23 1.010 0 2 0 2
GO7 10 quadratic 0.0000% 5928.19 12.671 3 5 0 6
G0O8 2 nonlinear 0.8751% 1821.61 2.393 0 2 0 O
G09 7 nonlinear 0.5207% 10013016.18 25.05 0 4 0 2
G10 8 linear 0.0008% 27610.89 3842702 3 3 0 6
Gl1 2 linear 66.7240% 4.99 1.000 0 0 1 1

The MOPTAO8 benchmark by Jones [20] is a substitute for a high-dimensional real-world
problem encountered in the automotive industry: It is a problem with d = 124 dimensions
and with 68 constraints. The problem should be solved within 1860 = 15 - d function evalua-
tions. This corresponds to one month of computation time on a high-performance computer
for the real automotive problem since the real problem requires time-consuming crash-test
simulations.

The COBRA optimization framework allows the user to choose between several initial-
ization approaches: Latin hypercube sampling (LHS), B1aSED and OpTiMIZED [21]. While
LHS initialization is always possible (and is in fact used for all runs of the G-problem bench-
mark with n;,;; = 3d), the other algorithms are only possible if a feasible starting point
is provided. In Regis’ COBRA [37] the initialization is always done randomly by means of
Latin hypercube sampling for functions without feasible starting point.

In the case of MOPTAOS a feasible point is known. We use the OPTIMIZED initialization
approach, where an initial optimization run is started from this feasible point with the Hooke
& Jeeves pattern search algorithm [18]. This initial run provides a set of n;,;; = 500 points
in the vicinity of the feasible point. This set serves as initial design for MOPTAOS.

Table |3 shows the parameter settings used for COBRA and SACOBRA in the experi-
ments reported here. All G-problems were optimized with exactly the same initial parameter
settings. In contrast to that, the COBRA results in Regis [37] and our previous work [21], 22]
were obtained by manually activating plog for some G-problems and by manually adjusting
constraint factors and other parameters.

3.2. Convergence Curves

Figures [f] - [7] show the SACOBRA convergence plots for all G-problems. It is clearly
visible that all problems except G02 are solved in the majority of runs, if we define solved
as a target error below 7 = 0.05 in comparison to the true optimum. In some cases (G03,
G05, G09, G10) the worst error does not meet the target, but in the other cases it does. In

3 EXPERIMENTAL EVALUATION 18

GO1 problem (d=13, m=9) GO03 problem (d=20, m=1)

XQQ-
,»Q;
i X
TS ¥
X e
Nl -
/
,»Q;
40 45 50 55 60 65 70 75 80 85 90 95100 60 105 150 195 240 285 330 375 420 465
function evaluations function evaluations
GO04 problem (d=5, m=6) GO5 problem (d=4, m=5)
o
Q
Ka
o o
= =
T T _
g g &
,»Q/
o TRE SRR [jessoocckeoooas
efQ
N
1 1 1 1 1 1 1 1 1 1
10 30 50 70 90 110 130 150 170 190

1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
function evaluations function evaluations

Figure 5: SACOBRA optimization process for GO1 — G05. The gray curve shows the median of the error
for 30 independent trials. The error is calculated with respect to the true minimum f(z*). The gray shade
around the median is showing the worst and the best error. The error bars mark the 25% and 75% quartile.
The red square is the result reported by Regis [37] after 100 iterations. If no red square is shown, this function

was not covered in [37].

3 EXPERIMENTAL EVALUATION 19

GO06 problem (d=2, m=2) GO07 problem (d=10, m=8)
Nal
Q}X
N e L _l_____ .
XQ»-
SN <
o
Q
K4 T
10 20 30 40 50 60 70 80 90 100 30 45 60 75 90 105120135150165180195

function evaluations function evaluations

GO08 problem (d=2, m=2) GO09 problem (d=7, m=4)

() —=f(x*)
() —F(x¥)

10 60 110 160 210 260 310 360 410 460 20 70 120 170 220 270 320 370 420 470

function evaluations function evaluations

G10 problem (d=8, m=6) G11 problem (d=2, m=1)
o
Q
N2
% £
T PN
= 3
= = NS A A S A
;S S S
'\'Q/
20 70 120 170 220 270 320 370 420 470 10 20 30 40 50 60 70 80 90 100

function evaluations function evaluations

Figure 6: Same as Fig. [f] for G06 — G11.

3 EXPERIMENTAL EVALUATION 20

Table 3: The default parameter setting used for COBRA. [is the length of the smallest side of the search
space (after rescaling, if rescaling is done). The settings for Tfeqs, Tin feas Proportional to Vd (d: dimension
of problem) are taken from [37].

value
parameter
COBRA SACOBRA
€init 0.005 -1 0.005 -1
€maz 0.01-1 0.01-1

Tfeas LQ\/&J L2 \/&J
Tinfeas LQ\/&J LQ\/&J

= {0.3,0.05,0.001,0.0005,0.0} adaptive
plog(.) never adaptive
aCF never always

RS never adaptive

most cases, as indicated by the red squares, there is a clear improvement to Regis’ COBRA
results [37].

3.8. Performance Profiles

Our main result is shown in Fig. It shows the data profiles for different SACOBRA
variants in comparison with the data profile for COBRA. COBRA was run with a fixed
parameter set for all G—problemsﬂ We note in passing that we tested many fixed parameter
settings for COBRA from which we report here the one with the overall best results. Other
fixed parameter settings were perhaps better on some of the runs but inevitably worse on
other runs. In the end a similar or slightly worse data profile for COBRA would emerge.
We cannot be absolutely sure that there might be another parameter setting with better

COBRA-would-emerge: SACOBRA increases significantly the success rate on the G-problem
benchmark suite.

In addition, we analyze in Fig. [§] the effect of the five elements of SACOBRA: The \-data
profiles present the SACOBRA results when one specific of the five SACOBRA elements is
switched off. We see that the strongest effects occur when rescaling is switched off (early
iterations) or when aFF is switched off (later iterations).

Fig. [0] shows that each of these elements has its relevance for some of the G-problems:
The full SACOBRA method is compared with other SACOBRA- or COBRA-variants Mx
on 30 runs. SACOBRA is significantly better than each Mx at least for some G-problems
(each column has a dark cell). And each G-problem benefits from one or more SACOBRA
extensions (each row has a dark cell). The only exception from this rule is G11, but for a
simple reason: G11 is an easy problem which is solved by all SACOBRA variants in each
run, so none is significantly better than the others.

9In our previous work [21}22] we reported good results with COBRA, but this was with varying parameters
and with tedious parameter tuning on each specific G-problem.

3 EXPERIMENTAL EVALUATION 21

G02-10d problem (d=10, m=2) G02-20d problem (d=20, m=2)
Q/'\- Q/'\-
__________________ Qfo'
™ ﬂ »
k) k)
T T &7
E g ©
Q'N Qb‘-
7 7
: T U 1 U 1 1 T 1 T T 1 Q- 1 U 1 T 1 1 1 T 1
30 45 60 75 90 105120135150165180195 60 75 90 105 120 135 150 165 180 195
function evaluations function evaluations

Figure 7: Same as Fig. [5] for G02 in 10 and 20 dimensions.

3.4. Fitness Function Adjustment

By comparing the convergence curves of G-functions we realized that applying the loga-
rithmic transform is strictly harmful for three of the G-functions, significantly beneficial for
two other problems, and with negligible effect on the other problems. Therefore, a careful
selection should be done. Although we demonstrated in Sec. 2.3.2] that steep functions can
be better modeled after the logarithmic transformation, it is not trivial to define a correct
threshold to classify steep functions. Also, there is no direct relation between steepness of
the function and the effect of logarithmic transformation on optimization. We defined in
Sec. and Algorithm [2] function ANALYZEPLOGEFFECT, a measure called () in order
to quantify online whether RBF models with and without plog transformation are better or
worse.

Here we test by experiments whether the Q-value does a good job. Fig. [I0] shows the Q-
value for all G-problems. The G-problems are are ranked on the horizontal axis according to
the impact of logarithmic transformation of the fitness function on the optimization outcome.
This means that applying the plog-transformation has the worst effect for modeling the fitness
of GO1 and the best effect for GO3. We measure the impact on optimization in the following
way: For each G-problem we perform 30 runs with plog inactive and with plog active. We
calculate the median of the final optimization error in both cases and take the ratio

median(E,;)

median(E l()iltog)

R= . (16)

Note that R is usually not available in normal optimization mode. If R is { close to zero
/ close to 1 / much larger than 1 } then the effect of plog on optimization performance is
{ harmful / neutral / beneficial }. It is a striking feature of Fig. [10] that the Q-ranks are very

3 EXPERIMENTAL EVALUATION 22

G-problems,t =0.05

0.9 SACOBRA
A- A
A- < -
os KA Al y SACOBRA\aDRC
/- Y ekt I
ey - & - SACOBRA\aCF
cu £ -t
= o7 (A
o : l/a:f . SACOBRA\rescale
S s
S 06 :1/* ~m - SACOBRA\RS
©) g
© -~ SACOBRA\aFF
0.5-
COBRA-R(rescale)
0.4 J: COBRA-R(no rescale)

0 10 20 30 40 50
performance factor a

Figure 8: Analyzing the impact of different elements of SACOBRA on the G-problems. Data profile of
SACOBRA, SACOBRA\rescale (SACOBRA without rescaling the input space), and other ,,\“-algorithms
are with a similar meaning. COBRA-R is our COBRA implementation from [21], i.e. SACOBRA with
all adjustment extensions switched off. These algorithms are performed on 330 different problems (11 test
problems from G-function suite which are initialized with 30 different initial design points).

similar to the R—ranksm This means that the beneficial or harmful effect of plog is strongly
correlated with the RBF approximation error.

Our experiments have shown that for all problems with @ € [—1, 1] the optimization per-
formance is only weakly influenced by the logarithmic transformation of the fitness function.
Therefore, in Step 19 of function ADJUSTFITNESSFUNCTION in Algorithm [2] any threshold
in [—1,1] will work. We choose the threshold 1, because it has the largest margin to the
colored bars in Fig.

The G-problems for which plog is beneficial are GO3 and G09: These are according to
Table [2| the two problems with the largest fitness function range F R, thus strengthening our
hypothesis from Sec. 2:3:2} For such functions a plog-transform should be used to get good
RBF-models. The G-problems for which plog is harmful are G01, G07, and G10: Looking at
the analytical form of the objective function in those problemﬁ we can see that these are

10The only notable difference, namely the switch in the order of G07 and G10, can be seen as an imperfection
of measure R. Although G10 has rank 3 in R, it has weaker worst-case behavior than G07 because two G10
runs never produce a feasible solution if plog is active.

' The analytical form is available in the appendices of [41] or [42].

3 EXPERIMENTAL EVALUATION 23

GO1-
GO02-
GO3-

G04-

p-value
05<p=1

GO5-

GO06- 0.05<p=0.5

.p =< 0.05

GO7-

GO08-

G09-

G11-

M1 M2 M3 M4 M5 M6 M7

Figure 9: Wilcoxon rank sum test, paired, one sided, significance level 5%. Shown is the p-value for the
hypothesis that for a specific G-problem the full SACOBRA method at the final iteration is better than
another solver Mx. Significant improvements (p < 5%) are marked as cells with dark blue color. Optimization
methods: M1: SACOBRA\rescale (SACOBRA without rescaling the input space), M2: SACOBRA\RS
(SACOBRA without random start), M3: SACOBRA\aDRC, M4: SACOBRA\aFF, M5: SACOBRA\aCF,
M6: COBRA (E = =), M7: COBRA (2 = &)).

the only three functions being of quadratic type (Table [2) and having no mixed quadratic
terms. Those functions can be fitted perfectly by the polynomial tail (Eq. @)) in SACOBRA,
if plog is inactive. With plog they become nonlinear and a more complicated approximation
by the radial basis functions is needed. This results in a larger approximation error.

3.5. Comparison with other optimizers
Table [shows the comparison with different state-of-the-art optimizers on the G-problem

suite. While ISRES (Improved Stochastic Ranking [42]) and DE (Differential Evolution [3])
are the best optimizers in terms of solution quality, they are cited in the relevant papers

with a high number of function evaluations—they—reguire—thehighest—number—offunetion
eva}u&aeﬂs-aswveﬁlzl SACOBRA has on most G-problems (except G02) the same solution

12 Strictly speaking we do not know what the results of ISRES or other optimizers after 500 iterations
would be, since such ,early* results are not given in the papers. It is however well-known that those algorithm
usually need a larger number of iterations to get high-quality results. For two algorithms, DE and COBYLA,
we make a comparison with limited budgets in Fig. E below and find this hypothesis confirmed.

3 EXPERIMENTAL EVALUATION

24

Table 4: Different optimizers: median (m) of best feasible results and (fe) average number of function
evaluations. Results from 30 independent runs with different random number seeds. Numbers in boldface
(blue): distance to the optimum < 0.001. Numbers in italic (red): reportedly better than the true optimum.
COBYLA sometimes returns slightly infeasible solutions (number of infeasible runs in brackets).

Fet. Ovtimum SACOBRA COBRA ISRES RGA 10% COBYLA DE CMAES
o [this work] [37) [42] [41] [7] [B4] (infeas) [3) 47 i
Qo1 15,0/ -15.0 NA -15.0 -15.0 -13.83 -15.0 NA
lfe 100 NA 350000 95512 12743 59129 NA

G02 -0.8036/™ -0.3466 NA -0.7931 -0.7857 -0.197 (5) -0.8036 NA
’ fe 400 NA 349600 331972 97391 226994 NA

Go3 1.0 m -1.0 -0.09 -1.001 -0.9999 -1.0 (3) -0.9999 NA
e 300 100 349200 399804 31069 211966 NA

GOA _30665.539 m|-30665.539 -30665.15 -30665.539 -30665.539 -30665.539 -30665.539 NA
i e 200 100 192000 26981 418 33963 NA

GO5 5126.497 m| 5126.498 5126.51 5126.497 5126.498 5126.498 (7) 5126.498 NA
RO S 200 100 195600 39459 194 13375 NA
GO6 -6961.81 m| -6961.81 -6834.48 -6961.81 -6961.81 -6961.81 (3) -6961.81 -6961.81
) T fe 100 100 168800 13577 134 2857 1060

o7 94.306 m 24.306 25.32 24.306 24.471 24.306 (6) 24.306 24.306
| fe 200 100 350000 428314 13072 94313 11283

) ro M -0.0958 -0.1 -0.0958 -0.0958 -0.0282 -0.0958 NA

GO -0.0958 fe 200 100 160000 6217 553 990 NA
Q09 680.630 m 680.761 3953.97 680.630 680.638 680.630 (2) 680.630 680.630
| fe 300 100 271200 388453 8973 34836 4106

G10 7049.248 m 7049.253 18031.74 7049.248 7049.566 7064.8 (22) 7049.248 7049.248
| fe 300 100 348800 572629 270840 74875 18781

c11 0.75 m 0.75 NA 0.75 0.75 0.75 0.75 NA
“lfe 100 NA 137200 7215 11788 2190 NA

average fe‘ 218 100 261127 210012 40652 68681 8807

3 EXPERIMENTAL EVALUATION 25

harmful neutral beneficial
6,
4-
2,
(@4) PR RN
_2,
_4,
_6,

GOl GO7 G10 GO4 GO5 GOS8 GO6 G11 GO9 GO3

Figure 10: Q-value (Eq.) at the end of optimization for all G-problems. The G-problems are ordered
along the x-axis according to the R-value defined in Eq. which measures the impact of plog on the
optimization performance. Any threshold for @ in [—1, 1] will clearly separate the harmful from the beneficial
problems. This figure shows that the online available @ is a good predictor of the impact of plog on the
overall optimization performance.

quality, only G09 and G10 are very slightly worse. At the same time SACOBRA requires
only a small fraction of function evaluations (fe): roughly 1/1000 as compared to ISRES and
RGA and 1/300 as compared to DE (row average fe in Table [4]).

GO02 is marked in red cell color in Table Ml because it is not solved to the same level of
accuracy by most of the optimizers. ISRES and RGA (Repair GA [7]) get close, but only
after more than 300000 fe. DE performs even better on G02, but requires more than 200 000
fe as well. SACOBRA and COBRA cannot solve G02.

The results in column SACOBRA, DE and COBYLA are from our own calculation in
R. The results in column COBRA, ISRES, RGA and CMA-ES were taken from the papers
cited. In two cases (red italic numbers in Table [4]) the reported solution is better than the
true optimum, possibly due to a slight infeasibility. This is explicitly stated in the case of
ISRES [41] p. 288], because the equality constraint h(z) = 0 of GO3 is transformed into an
approximate inequality |h(x)| < e with e = 0.0001.

COBRA [37] comes close to SACOBRA in terms of efficiency (function evaluations), but
it has to be noted that [37] does not present results for all G-problems (G01 and G11 are
missing and GO02 results are for 10 dimensions, but the commonly studied version of G02 has
20 dimensions). Furthermore, for many G-problems (G03, G06, G07, G09, G10) a manual
transformations of the original fitness function or the constraint functions was done in [37]
prior to optimization. SACOBRA starts without such transformations and proposes instead
self-adjusting mechanisms to find suitable transformations (after the initialization phase or
on-line).

COBYLA often produces slightly infeasible solutions, these are the numbers in brackets.
If such infeasible runs occur, the median was only taken over the remaining feasible runs,

3 EXPERIMENTAL EVALUATION 26

G-problems,t =0.05 G-problems,t =0.05

0.8 0.9

0.7 0.8

06 e SACOBRA 0.7 SACOBRA
% e A“i e T % 0.67 |- EPPREE S X o oo Xl
S 05 [m-m -<- COBRA-R O g - <= COBRA-R
S g4 |1 s 057
s e —5- COBYLA < 04 i — = COBYLA
®© 03 |~ <
k= "y S 03 ;

021 lu DE DE

4/ 0.24 |
01y 0.11 |
001 ¥ 0.01*
0 10 20 30 40 50 0 200 400 600 800 1000
performance factor a performance factor a

Figure 11: Comparing the performance of the algorithms SACOBRA, COBRA (with rescale), Differential
Evolution (DE), and COBYLA on optimizing all G-problems G01-G11 (30 runs with different initial random

populations).

Table 5: Number of infeasible runs among 330 runs returned by each method on the G-problem benchmark.
A run is infeasible if the final best solution is infeasible.

method infeasible runs functions
SACOBRA 0 -
SACOBRA\ rescale 4 G05
SACOBRA\ RS 13 G03, G05, G07,G09,G10
SACOBRA\ aDRC 0 -
SACOBRA\ aFF 1 G10
SACOBRA\ aCF 0 -

COBRA (no rescale) 37 G03,G05,G07,G09,G10
COBRA (rescale) 23 G05,G07,G09,G10
COBYLA 48 G02,G03,805,G06,G07,G09,G10
DE 0 -

which is in principle too optimistic in favor of COBYLA.

CMA-ES [I] has only results for the subset of 4 unimodal objective functions within the
set of 11 G-problems. On this subset it shows the best results of all non-COBRA optimizers
in terms of function evaluations, although COBRA and SACOBRA are even better. It has
to be noted that the algorithm of [I] has the freedom to take a different number of objective
and constraint function evaluations. Table [4|shows the bigger of those values (the number of
constraint function evaluations). The number of objective function evaluations is smaller by
a factor of 3-5. In addition, the results in [I] were obtained under stricter ,solved“thresholds
7/ € [1077,107*) while SACOBRA used 7 = 0.05 (see Sec. [2.6.1)).

Fig. shows the comparison of SACOBRA and COBRA with other well-known con-

3 EXPERIMENTAL EVALUATION 27

MOPTAO08,1=0.4

1.0+
0.9-
0.8 P~ ¢
0.7+ : SACOBRA
0.6+ O
' -<>- SACOBRA\RS
0.5' :’
0.4- o> COBRA-R
0.3 N
0.2- 1S
0.1- L L,

5 10 15 20
performance factor a

data profile

Figure 12: Data profile for MOPTAO08: Same as Fig. @but with 10 runs on MOPTAO08 with different initial
designs. The curves for SACOBRA without rescale, aDRC, aFF, or aCF are identical to full SACOBRA,
since in the case of MOPTAOS8 the objective function and the constraints are already normalized.

straint optimization solvers available in R, namely DEIE and COBYLAE The right plot in
Fig.[11|shows that DE achieves very good results after many function evaluations (« > 800),
in accordance with Table[d] But the left plot in Fig. [[I]shows that DE is not really compet-
itive if very tight bounds on the budget are set. This result proves only that DE has inferior
results to SACOBRA on the G-problem suite for low budgets, but we believe that similar
results would also emerge for ISRES, the other high-quality optimizer.

Table [5] shows that SACOBRA greatly reduces the number of infeasible runs as compared
to COBRA. Most of the SACOBRA variants have less than 2% infeasible runs whereas
COBRA has 7-11%. The full SACOBRA method has no infeasible runs at all.

3.6. MOPTA08

Fig.[I2]shows that we get good results with SACOBRA on the high-dimensional MOPTA(08
problem (d = 124) as well. A problem is said to be solved in the data profile of Fig. [L2]if it
is not more than 7 = 0.4 away from the best value obtained in all runs by all algorithms.

Table [6] shows the results after 1000 iterations for Regis’ recent trust-region based ap-
proach TRB [39] and our algorithms. We can improve the already good mean best feasible
results of 227.3 and 226.4 obtained with COBRA [22] and TRB [39], resp., to 223.3 with
SACOBRA. The reason that SACOBRA\RS is slightly better than COBRA [22] is that
SACOBRA uses an improved DRC.

13R-package DEoptimR, available from https://cran.r-project.org/web/packages/DEoptimR.
14R-package nloptr, available from https://cran.r-project.org/web/packages/nloptr

https://cran.r-project.org/web/packages/DEoptimR
https://cran.r-project.org/web/packages/DEoptimR
https://cran.r-project.org/web/packages/nloptr
https://cran.r-project.org/web/packages/nloptr

4 DISCUSSION 28

Table 6: Comparing different algorithms on optimizing MOPTAO08 after 1000 function evaluations.

Algorithm best median mean worst
COBRA [22] 226.3 227.0 2273 2295
TRB [39] 225.5 226.2 2264 2274
SACOBRA\RS 222.4 223.1 223.6 224.8
SACOBRA 223.0 223.3 223.3 223.8

4. Discussion

4.1. SACOBRA and surrogate modeling

SACOBRA is an algorithm capable of self-adjusting its parameters to a wide-ranging set
of problems in constraint optimization. We analyzed the different elements of SACOBRA
and their importance for efficient optimization on the G-problem benchmark. It turned
out that the two most important elements are rescaling (especially in the early phase of
optimization) and automatic fitness function adjustment (aFF, especially in the later phase
of optimization). Exclusion of either one of these two elements led to the largest performance
drop in Fig. [§| compared to the full SACOBRA algorithm.

We may step back for a moment and ask why these two elements are important. Both of
them are directly related to accurate RBF modeling, as our analysis in Sec. [2.3] has shown. If
we do not rescale, then the RBF model for a problem like G10 will have large approximation
errors due to numeric instabilities. If we do not perform the plog-transformation in problems
like GO3 with a very large fitness range F'R (Table[2)) and thus very steep regions, then such
problems cannot be solved. This can be attributed to large RBF approximation errors as
well.

We diagnosed that the quality of the surrogate models is in relationship with the correct
choice of the DRC parameter, which controls the step size in each iteration. It is more
desirable to choose a set of smaller step sizes for functions with steep slopes. An automatic
adjustment step in SACOBRA can identify steep functions after a few function evaluations
and decide whether to use a large DRC or a small one.

For the G-problem suite the constraint functions vary in number, type and range. Our
experiments showed that handling all constraints can be challenging, especially when the con-
straint functions have widely different ranges. For that reason, we considered an automatic
adjustment approach to normalize all the constraints by using the information gained about
the constraints after the evaluation of the initial population. The SACOBRA algorithm also
benefits from using a random start mechanism to avoid getting stuck in a local optimum of
the fitness surrogate.

4.2. Limitations of SACOBRA

4.2.1. Highly multimodal functions

Surrogate models like RBF are a great technique for efficient optimization and probably
the only way to solve constrained optimization problems in less than, say, 1000 iterations.
But a current limitation for surrogate modeling are highly multimodal functions. GO02 is

4 DISCUSSION 29

such a function, it has a large number of local minima. Those functions have usually large
first and higher order derivatives. If a surrogate model interpolates isolated points of such a
function, it tends to overshoot in other parts of the function. To the best of our knowledge,
highly multimodal problems cannot be solved so far by surrogate models, at least not for
higher dimensions with high accuracy. This is also true for SACOBRA. Usually the RBF
model has a good approximation only in the region of one of the local minima and a bad
approximation in the rest of the search space. Further research on highly multimodal function
approximation is required to solve this problem.

4.2.2. Non-smooth or noisy functions

The G-problem test suite — although challenging due to the very diverse characteristics
of the problems — is idealizing or too simplicistic with respect to one feature: The functions
in the problems are all relatively smooth and noise-free. Real-world problems are often
a) non-smooth (locally garbled) or b) noisy or c) the sample points can only be set with
a certain uncertainty. Any of these three factors will contribute to a common difficulty for
RBF surrogate models: If functions in such problems are sampled only very sparsely with
few sample points, it becomes very hard to build reliable models.

It is a subject for ongoing research to quantify whether the ideas of SACOBRA developed
here carry on for the case of non-smooth functions as well. It is well known that RBF models
are ideal candidates for (smooth) local polynomial models. If the functions are non-smooth
or noisy, it is likely that RBF models due to their interpolating behavior degrade rapidly
(due to overfitting). We believe that the same would apply to Kriging surrogate models
or other interpolating models Fﬂ An interesting approach for further research would be to
replace the interpolating surrogate models by approximating (non-interpolating) surrogate
models to avoid overfitting. In the area of computer graphics there have been good results
for approximating RBF models build from noisy data of a 3D-scanner [6]. A challenge
for optimization under restricted budgets will be to find the right degree of approximation
(smoothing factor) from only relatively few samples.

4.2.8. Equality constraints

The current approach in COBRA (and in SACOBRA as well) can only handle inequality
constraints. The reason is that equality constraints do not work together with the uncertainty
mechanism of Sec. A reformulation of an equality constraint h(z) = 0 as inequality
|h(z)] < 0.0001 as in [27] [41I] is not well-suited for COBRA and for RBF modelingm We
used in this work the same approach as Regis [37] and replaced each equality operator with
an inequality operator of the appropriate direction (see Sec. . It has to be noted however,
that such an approach contradicts a true black-box handling of constraints and that it is —
although being viable for the problems G01-G11 — not viable for more complicated objective
functions having minima on both sides of an equality constraint hypersurface. It is not

15 In Kriging metamodels, which follow a kernel-based approach similar to RBF, but are motivated by
statistical assumptions, recently some noise handling mechanisms have been addressed, such as the nugget
effect [23].

16 The reason is that RBF modeling is not very accurate for modeling functions with sharp ridges, as in
the case of |h(x)| < 0.0001.

5 CONCLUSION 30

viable as well for cases where the set that satisfies a certain equality constraint is a less than
(n — 1)-dimensional manifold.

In addition it has to be said that the equality-to-inequality transformation of Sec.
severly changes the nature of the optimization problem since it fundamentally changes the
feasible volume. With respect to this point we can only say that we have solved a modified
G-problem benchmark which may not represent the full complexity of the original G-problem
benchmark. We note in passing that while this paper was under review we developed an ex-
tended SACOBRA algorithm with a new equality handling mechanism [2]. This algorithm
works with an adaptive margin |h(z)| < p and does not require a manual selection of the ap-
propriate side of the constraint hypersurface. This algorithm is able to solve the G-problems
with equality constraints and thus shows that it is possible to overcome the deficiencies men-

tioned above. For further details the reader is referred to [2] Fn-afortheoming—paper{2l-ve
Thadd bi bl I

4.3. Comparison of solution qualities

A final cautionary remark is necessary here: The term ,solved“is defined quite differently
in different works and this makes it sometimes difficult to compare results from different
papers. While we have for example chosen the threshold 7 = 0.05, the CEC2006 competition
had a stricter threshold 7 = 0.0001. A fair comparison would either test at same 7-levels (we
could do this here only for DE and COBYLA, see Fig. or use other measures avoiding
the solved criterion, e.g. mean or median error at different iterations.

5. Conclusion

We summarize our discussion by stating that a good understanding of the capabilities
and limitations of RBF surrogate models — which is not often undertaken in the surrogate
literature we are aware of — is an important prerequisite for efficient and effective constrained
optimization.

The analysis of the errors and problems occurring initially for some G-problems in the
COBRA algorithm have given us a better understanding of RBF models and led to the
development of the enhancing elements in SACOBRA. By studying a widely varying set of
problems we observed certain challenges when modeling very steep or relatively flat functions
with RBF. This can lead to large approximation errors. SACOBRA tackles this problem by
making use of a conditional plog-transform for the objective function. We proposed a new
online mechanism to let SACOBRA decide automatically when to use plog and when not.

Numerical issues to train RBF models can also occur in the case of a very large input
space. A simple solution to this problem is to rescale the input space. Although many other
optimizers recommend to rescale the input, this work has shown the reason behind it and
the importance of it by evidence. Therefore, we can answer our first research question (Q1)
positively: Numerical instabilities can occur in RBF modeling, but it is possible to avoid
them with the proper function transformations and search space adjustments.

SACOBRA benefits from all its extension elements introduced in Sec. 2.5l Each element
boosts up the optimization performance on a subset of all problems without harming the
optimization process on the other ones. As a result, the overall optimization performance on
the whole set of problems is improved by 50% as compared to COBRA (with a fixed parameter

5 CONCLUSION 31

set). About 90% of the tested problems can be solved efﬁ01ent1y by SACOBRA (Flg . Fhe

epﬁfmz&tﬁefklt is the main contrlbutlon of thlb paper to propose with SACOBRA the ﬁl“bt
surrogate-assisted constrained optimizer which solves efficiently the G-problem benchmark
and requires no parameter tuning or manual function transformations. Therefore, we can
conclude a result to (Q3): SACOBRA requires less than 500 function evaluations to
solve 10 out of 11 G-problems (exception: G02) with similar accuracy as other state-of-the-art
algorithms. Those other algorithms often need more function evaluations by a factor between
300 and 1000. The solved-condition was defined slightly different here than in the CEC2006
competition (see Sec. . Under this condition it could be shown that SACOBRA can be
used to solve a wide range of constrained optimization problems with nonlinear constraints
(Q2).

Our future research will be devoted to overcome the current limitations of SACOBRA
mentioned in Sec. Since the equality constraint limitation is now mainly solved [2],
the challenging remaining limitations are: (a) highly multimodal functions like G02 and (b)
non—smooth or n01sy functlons or functions with a certaln level of uncertalnty—lﬂhese—&fe—{a—}

Acknowledgements

This work has been supported by the Bundesministerium
fir Wirtschaft (BMWi) under the ZIM grant MONREP
(AiF FKZ KF3145102, Zentrales Innovationsprogramm Mit-
telstand).

[1] D. V. Arnold and N. Hansen. A (141)-CMA-ES for constrained optimisation. In Pro-
ceedings of the 14th conference on Genetic and evolutionary computation (GECCO),
pages 297-304. ACM, 2012.

[2] S. Bagheri, W. Konen, and T. Béck. Equality constraint handling for surrogate-assisted
constrained optimization. In K. C. Tan, editor, Proc. World Congress on Computational
Intelligence (WCCI), Vancouver, pages 1924-1931. IEEE, 2016.

[3] J. Brest, S. Greiner, B. Boskovi¢, M. Mernik, and V. Zumer. Self-adapting control pa-
rameters in differential evolution: a comparative study on numerical benchmark prob-
lems. Evolutionary Computation, IEEE Transactions on, 10(6):646-657, 2006.

[4] D. Brockhoff, T.-D. Tran, and N. Hansen. Benchmarking numerical multiobjective
optimizers revisited. In Proceedings of the 17th conference on Genetic and Evolutionary
Computation (GECCO), Madrid, Spain, 2015. ACM.

[5] M. D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge
University Press, 2003.

5 CONCLUSION 32

(6]

J. C. Carr, R. K. Beatson, et al. Reconstruction and representation of 3D objects
with radial basis functions. In Proc. of the 28th conference on Computer Graphics and
Interactive Techniques, pages 67-76. ACM, 2001.

P. Chootinan and A. Chen. Constraint handling in genetic algorithms using a gradient-
based repair method. Computers €& Operations Research, 33(8):2263-2281, 2006.

C. A. Coello Coello. Use of a self-adaptive penalty approach for engineering optimization
problems. Computers in Industry, 41(2):113-127, 2000.

C. A. Coello Coello. Constraint-handling techniques used with evolutionary algo-
rithms. In Proceedings of the 14th conference on Genetic and FEvolutionary Computation
(GECCO), pages 849-872. ACM, 2012.

C. A. Coello Coello and E. M. Montes. Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection. Advanced Engineering In-
formatics, 16(3):193-203, 2002.

K. Deb. An efficient constraint handling method for genetic algorithms. Computer
methods in applied mechanics and engineering, 186(2):311-338, 2000.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. Ewvolutionary Computation, IEEE Transactions on, 3(2):124-141, 1999.

A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. Springer, 2003.

A. E. Eiben and J. I. van Hemert. SAW-ing EAs: adapting the fitness function for
solving constrained problems, 1999.

M. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single- and multiobjective evo-
lutionary optimization assisted by gaussian random field metamodels. FEvolutionary
Computation, IEEE Transactions on, 10(4):421-439, 2006.

R. Farmani and J. Wright. Self-adaptive fitness formulation for constrained optimization.
Evolutionary Computation, IEEE Transactions on, 7(5):445-455, 2003.

C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained Global
Optimization Algorithms. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

R. Hooke and T. Jeeves. Direct search solution of numerical and statistical problems.
Journal of the ACM (JACM), 8(2):212-229, 1961.

L. Jiao, L. Li, R. Shang, F. Liu, and R. Stolkin. A novel selection evolutionary strategy
for constrained optimization. Information Sciences, 239:122 — 141, 2013.

D. R. Jones. Large-scale multi-disciplinary mass optimization in the auto industry.
In Conference on Modeling And Optimization: Theory And Applications (MOPTA),
Ontario, Canada, pages 1-58, 2008.

5 CONCLUSION 33

[21]

(28]

[29]

P. Koch, S. Bagheri, W. Konen, C. Foussette, P. Krause, and T. Béack. Constrained op-
timization with a limited number of function evaluations. In F. Hoffmann and E. Hiiller-
meier, editors, Proc. 24. Workshop Computational Intelligence, pages 119-134. Univer-
sitatsverlag Karlsruhe, 2014.

P. Koch, S. Bagheri, W. Konen, C. Foussette, P. Krause, and T. Béck. A new repair
method for constrained optimization. In Proceedings of the 17th conference on Genetic
and Evolutionary Computation (GECCO), pages 273-280. ACM, 2015.

P. Koch, T. Wagner, M. T. M. Emmerich, T. Béack, and W. Konen. Efficient multi-
criteria optimization on noisy machine learning problems. Applied Soft Computing,
29:357-370, 2015.

O. Kramer. A review of constraint-handling techniques for evolution strategies. Applied
Computational Intelligence and Soft Computing, 2010:1-11, 2010.

O. Kramer, A. Barthelmes, and G. Rudolph. Surrogate constraint functions for CMA
evolution strategies. In KI 2009: Advances in Artificial Intelligence, volume 5803 of
Lecture Notes in Computer Science, pages 169—176. Springer, 2009.

O. Kramer and H.-P. Schwefel. On three new approaches to handle constraints within
evolution strategies. Natural Computing, 5(4):363-385, 2006.

J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, C. C. Coello,
and K. Deb. Problem definitions and evaluation criteria for the CEC 2006 special session
on constrained real-parameter optimization. Journal of Applied Mechanics, 41:8, 2006.

Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter
optimization problems. Ewvolutionary Computation, 4(1):1-32, 1996.

E. M. Montes and C. A. Coello Coello. A simple multimembered evolution strategy to
solve constrained optimization problems. IEEE Transactions on Evolutionary Compu-
tation, 9(1):1-17, 2005.

E. M. Montes and C. A. Coello Coello. Constraint handling in nature-inspired numerical
optimization: past, present and future. Swarm and Evolutionary Computation, 1(4):173—
194, 2011.

J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. STAM
J. Optimization, 20(1):172-191, 2009.

J. Poloczek and O. Kramer. Local SVM constraint surrogate models for self-adaptive
evolution strategies. In KI 2013: Advances in Artificial Intelligence, pages 164-175.
Springer, 2013.

M. J. D. Powell. The theory of radial basis function approximation in 1990. Advances
In Numerical Analysis, 2:105-210, 1992.

M. J. D. Powell. A direct search optimization method that models the objective and
constraint functions by linear interpolation. In Advances In Optimization And Numerical
Analysis, pages 51-67. Springer, 1994.

5 CONCLUSION 34

[35]

[36]

37]

[38]

[39]

[43]

(44]

[45]

[46]

[47]

A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm for nu-
merical optimization. In IEEE Congress on Evolutionary Computation (CEC), 2005,
volume 2, pages 1785-1791. IEEE, 2005.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013.

R. G. Regis. Constrained optimization by radial basis function interpolation for high-
dimensional expensive black-box problems with infeasible initial points. FEngineering
Optimization, 46(2):218-243, 2014.

R. G. Regis. Particle swarm with radial basis function surrogates for expensive black-box
optimization. Journal of Computational Science, 5(1):12-23, 2014.

R. G. Regis. Trust regions in surrogate-assisted evolutionary programming for con-
strained expensive black-box optimization. In R. Datta and K. Deb, editors, Fvolution-
ary Constrained Optimization, pages 51-94. Springer, 2015.

R. G. Regis and C. A. Shoemaker. A quasi-multistart framework for global optimization
of expensive functions using response surface models. Journal of Global Optimization,

1:1, 2012.

T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary optimiza-
tion. IEEE Transactions on Evolutionary Computation, 4(3):284-294, 2000.

T. P. Runarsson and X. Yao. Search biases in constrained evolutionary optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views, 35(2):233-243, 2005.

Y. Tenne and S. W. Armfield. A memetic algorithm assisted by an adaptive topol-
ogy RBF network and variable local models for expensive optimization problems. In
W. Kosinski, editor, Advances in FEvolutionary Algorithms, page 468. INTECH Open
Access Publisher, 2008.

B. Tessema and G. G. Yen. An adaptive penalty formulation for constrained evolutionary
optimization. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 39(3):565-578, 2009.

S. Venkatraman and G. G. Yen. A generic framework for constrained optimization using
genetic algorithms. FEvolutionary Computation, IEEE Transactions on, 9(4):424-435,
Aug 2005.

E. Zahara and Y.-T. Kao. Hybrid Nelder—-Mead simplex search and particle swarm opti-
mization for constrained engineering design problems. Expert Systems with Applications,
36(2):3880-3886, 2009.

H. Zhang and G. Rangaiah. An efficient constraint handling method with integrated
differential evolution for numerical and engineering optimization. Computers & Chemical
Engineering, 37:74 — 88, 2012.

5 CONCLUSION 35

Vitae

Samineh Bagheri received her B.Sc. degree in electrical engineering
specialized in electronics from Shahid Beheshti University, Tehran, Iran in
2011. She received her M.Sc. in Industrial Automation & IT from Cologne
University of Applied Sciences, where she is currently research assistant
and PhD student in cooperation with Leiden University. Her research
interests are machine learning, evolutionary computation and constrained
and multiobjective optimization tasks.

Wolfgang Konen is Professor for Computer Science and Mathemat-
ics at Cologne University of Applied Sciences, Germany. He received
his PhD in theoretical physics from University of Mainz, Germany, in
1990. He worked in the area of neuroinformatics and computer vision at
Ruhr-University Bochum, and in several companies. He is founding mem-
ber of the Research Centers CIOP (http://www.gociop.de) and Clplus
(http://ciplus-research.de). He co-authored more than 100 papers
and his main research interests include: efficient optimization, computa-
tional intelligence, machine learning, data mining, and computer vision.

Dr. Michael Emmerich is Associate Professor at LIACS, Leiden Uni-
versity, and leader of the Multicriteria Optimization and Decision Anal-
ysis research group. He received his doctorate in 2005 from Dortmund
University (H.-P. Schwefel, promoter) and worked as a researcher at ICD
e.V. (Germany), IST Lisbon, University of the Algarve (Portugal), AC-
CESS Material Science e.V. (Germany), and the FOM/AMOLF insti-
tute (Netherlands). He is known for pioneering work on model-assisted
and indicator-based multiobjective optimization, and has co-authored
more than 100 papers in machine learning, multicriteria optimization and
surrogate-assisted optimization and its applications in chemoinformatics
and engineering optimization.

Thomas Béck is Full Professor at the Leiden Institute of Advanced Com-
puter Science (LIACS), Leiden University, and head of the Natural Com-
puting group. He received his PhD in computer science from Dortmund
University, Germany, in 1994. He has been Associate Professor at LIACS
since 1996 and is in his current position since 2002. Thomas has more than
250 publications and his main research interests include theory and appli-
cations of evolutionary algorithms and natural computing paradigms, data
analytics, machine learning, and applications of such methods to industrial
and scientific problems.

http://www.gociop.de
http://ciplus-research.de

