SFA-TK: Algorithmus 'SVD_SFA'

Gegeben sei eine Menge von Datenvektoren $M_S = \{s^{(1)}, ..., s^{(M)}\} \subset R^m$. Der Erwartungswert-Operator E[.] beschreibe die Mittelung über alle i=1,...,M.

Bei der Gestenklassifikation sind die Datenvektoren z.B. 90-dim. Vektoren, jeder ist ein Exemplar einer bestimmten Gestenklasse c=1,...,K.

Typische Werte sind pp_range =11, xp_range=11+ ½*11*12, gaussdim =K-1.

Variable	SFA_STRUCTS{hdl}.	Bedeutung
s ⁽ⁱ⁾		Input-Vektor, Dim m
$\mathbf{s_0} = E[\mathbf{s}^{(i)}]$	avg0	Mittelwert
W ₀	WO	Whitening der Input-Daten, <u>Zeilen</u> von W ₀ sind Vielfache der EV zu Cov(s). W ₀ hat pp_range Zeilen.
W_0^{-1}	DW0	Dewhitening der Input-Daten
	D0	Vektor der EW von Cov(s)
D_0	diag(D0)	Diagonalmatrix der EW von Cov(s)
$\mathbf{x}^{(i)} = \mathbf{W_0}(\mathbf{s}^{(i)} - \mathbf{s_0})$		reduzierte Dim pp_range
$\mathbf{v}^{(i)} = \mathbf{h}(\mathbf{x}^{(i)})$		expandierter Vektor, Dim p=xp_range
$\mathbf{v_0} = E[\mathbf{v}^{(i)}]$	avg1	Mittelwert
$\mathbf{B} = Cov(\mathbf{v})$	xp_hdl.COV_MTX	Kovarianzmatrix der expandierten Daten
S	myS	Sphering der expandierten Daten, p x p, Zeilen von S sind Vielfache der EV zu $\mathbf{B} = \text{Cov}(\mathbf{v})$. Es gilt $\mathbf{SBS}^{T} = 1$.
D _B		Vektor BD der EW von Cov(v)
$\mathbf{z}^{(i)} = \mathbf{S} \; (\mathbf{v}^{(i)} - \mathbf{v_0})$		· ·
$\mathbf{C}' = Cov(\dot{\mathbf{v}})$	diff_hdl.COV_MTX	Kovarianzmatrix der "Ableitung" der expandierten Daten
$\mathbf{C} = \text{Cov}(\dot{\mathbf{z}})$	$\mathbf{C} = \mathbf{SC'S}^{T}$	Kovarianzmatrix "Ableitung gesphered"
W ₁		die <u>Spalten</u> von W ₁ = W1 sind Eigenvektoren zu Cov(ż)
$D_1 = D$	D1, D	Diagonalmatrix D1 der EW von Cov(Ż)
$[d_1d_2\ldotsd_p]$	DSF	Vektor der EW von Cov(ż), Dim p
$\mathbf{w}_{j} = (\mathbf{S}^{T} \ \mathbf{W}_{1})_{j}$	SF(j,:)	j=1,,G = gaussdim

Der Begriff "Ableitung" hat je nach Anwendungsart der SFA verschiedene Bedeutung:

• **method="TIMESERIES"**: Dann sind die **s**⁽ⁱ⁾ Datenvektoren zu aufeinanderfolgenden Zeitschritten t_i. Entsprechend sind die **v**⁽ⁱ⁾ transformierte Datenvektoren zu den gleichen Zeitschritten t_i. Mit $\dot{\mathbf{v}}^{(i)}$, i=2,...,M als Ableitung bezeichnen wir die Menge der Differenzvektoren, also

$$\dot{\mathbf{v}}^{(2)} = \mathbf{v}^{(2)} - \mathbf{v}^{(1)}, \dots, \dot{\mathbf{v}}^{(M)} = \mathbf{v}^{(M)} - \mathbf{v}^{(M-1)}$$

Die Kovarianzmatrix Cov($\dot{\mathbf{v}}$) wird aus allen $\dot{\mathbf{v}}^{(i)}$, i=2,...,M gebildet.

method="CLASSIF": Dann sind die s⁽ⁱ⁾ Datenvektoren, die zu bestimmten Klassen c=1,...,K gehören. Für jede Klasse c=1,...,K bilden wir mit allen möglichen "Pärchen" innerhalb einer Klasse 2-elementige Mini-Zeitreihen und berechnen für jede solche Mini-Zeitreihe einen Differenzvektor v: Sei

$$M_c \!\!=\!\! \{i \!\in\! \{1, \ldots, M\} \mid \textbf{ s}^{(i)} \text{ geh\"{o}rt zur Klasse c} \}$$

$$V_c = {\dot{\mathbf{v}} = \mathbf{v}^{(k)} - \mathbf{v}^{(k')} \mid k, k' \in M_c, k < k'}$$

Die Kovarianzmatrix Cov $(\dot{\mathbf{v}})$ wird aus allen $\dot{\mathbf{v}} \in V_1 \cup V_2 \cup ... \cup V_K$ gebildet.

SFA trainieren

Der <u>verbesserte</u> Algorithmus ,SVD_SFA', der **z** und **z** nicht explizit berechnen muss, läuft im Training in **sfaClassModel.m** (innere Fkt. **sfa_step.m**, **sfa_execute.m**) wie folgt ab:

- (a) Zu Input $\mathbf{s}^{(i)}$, i=1,...,M bestimme \mathbf{W}_0 und \mathbf{s}_0 . und damit $\mathbf{x}^{(i)} = \mathbf{W}_0(\mathbf{s}^{(i)} \mathbf{s}_0)$
- (b) Expandiere $\mathbf{v}^{(i)} = \mathbf{h}(\mathbf{x}^{(i)})$ und bestimme \mathbf{v}_0
- (c) Bilde **B**, **S** und parallel **C**' = $Cov(\dot{v})$. Wenn **B** singulär, dann sind einige Zeilen von **S** identisch Null.
- (d) Bestimme für $\mathbf{C} = \mathbf{SC'S}^T = Cov(\dot{\mathbf{z}})$ die Eigenvektoren (Spalten von \mathbf{W}_1).
- (e) Setze $\mathbf{w}_{i}=(\mathbf{S}^{\mathsf{T}} \mathbf{W}_{1})_{i}$ (j. Spalte). Entferne die Spalten von \mathbf{W}_{1} , die identisch Null sind.
- (f) Speichere { \mathbf{W}_0 , \mathbf{s}_0 , \mathbf{v}_0 , \mathbf{w}_i , j=1,...,G }

SFA anwenden

Damit ist das (unüberwachte) Training beendet und die langsamen Signale y_j können wie folgt mit **sfaClassPredict.m** (innere Fkt. **sfa_execute.m**) berechnet werden, wobei **s** entweder ein Datenvektor aus den Trainingsdaten oder ein Datenvektor aus neuen (Test)-Daten ist:

- (a) Lade { \mathbf{W}_0 , \mathbf{s}_0 , \mathbf{v}_0 , \mathbf{w}_i , j=1,...,G }
- (b) $x = W_0(s-s_0)$
- (c) Expandiere $\mathbf{v} = \mathbf{h}(\mathbf{x})$
- (d) $y_i = \mathbf{w}_i^T (\mathbf{v} \mathbf{v}_0), j = 1,...,G.$

Der neue Vektor $\mathbf{y} = (y_1, ..., y_G)^T$ sollte gut geeignet sein, um die Klasse des Datenvektors \mathbf{s} zu bestimmen. Zur Klassifikation kann entweder ein Gauss-Klassifikator oder ein Nearest-Neighbor-Klassifikator (für kleinere Mengen von Trainingsvektoren) benutzt werden.

Gauss-Klassifikator trainieren

Gegeben sei eine Menge von Klassifikationsvektoren $M_Y = \{y^{(1)}, ..., y^{(M)}\} \subset \mathbb{R}^G$. Von diesen gehören manche zur Klasse c=1, manche zu c=2,, manche zu c=K. Sei

$$M_c = \{i \in \{1,...,M\} \mid \mathbf{s}^{(i)} \text{ gehört zur Klasse c}\}$$

Die Häufigkeit, mit der Vektoren der Klasse c in der Trainingsmenge auftreten, sei ein Maß für die a-priori-Wahrscheinlichkeit dieser Klasse, d.h. $P(c) = |M_c|/|M_Y|$.

Variable	GAUSS_STRUCTS{hdl}.	Bedeutung
y ⁽ⁱ⁾		KlassVektor, Dim G = gaussdim
$\mathbf{y}_{0,c} = E[\mathbf{y}^{(i)} \mid i \in M_c]$	X0(c,:)	Mittelwert der Daten zu Klasse c
$\mathbf{a}_{c}^{(i)} = \mathbf{y}^{(i)} - \mathbf{y}_{0,c}$		mittelwertbereinigter KlassVektor
$\mathbf{G}_{c} = \text{Cov}(\mathbf{y}^{(i)} \mid i \in M_{c})$	COV(:,:,c)	Kovarianzmatrix der Daten zu Klasse
		С
G_{c}^{-1}	iCOV(:,:,c)	Inverse Kovarianzmatrix
P(c)	P_c(c)	a-priori-Wahrsch. P(c)= M _c /M für
		Klasse c
$f_c = (2\pi)^{-G/2} (\det \mathbf{G}_c)^{-1/2}$	f0(c)	Vorfaktor für Klasse c

Der Gauss-Klassifikator wird in gaussClassifier.m trainiert (method='train'):

- (a) Bilde $\mathbf{y}_{0,c}$, \mathbf{G}_c , \mathbf{G}_c^{-1} , P_c , f_c für c=1,...,K.
- (b) Wenn aligned=1: Setze in \mathbf{G}_{c} alle Off-Diagonalelemente auf 0 und berechne \mathbf{G}_{c}^{-1} erneut. Diese Version ist numerisch stabiler, kann sich aber nicht so gut an "schiefliegende" Datenverteilungen anpassen.
- (c) Speichere { $y_{0,c}$, G_c , G_c^{-1} , P(c), $f_c \mid c=1,...,K$ }

Gauss-Klassifikator anwenden

Der Gauss-Klassifikator wird in gaussClassifier.m auf einen (neuen) Datenvektor v angewendet (method='apply'):

- (a) Lade { $y_{0,c}$, G_c , G_c^{-1} , P(c), $f_c \mid c=1,...,K$ }
- (b) Bilde für jedes c=1,...,K: (1) $\mathbf{a}_{c}^{(i)} = \mathbf{y}^{(i)} \mathbf{y}_{0,c}$

(1)
$$\mathbf{a}_{c}^{(i)} = \mathbf{y}^{(i)} - \mathbf{y}_{0.c}$$

(2)
$$P(\mathbf{y} \mid c) = f_c \exp \left(-\frac{\mathbf{a}_c^{(i)}^T \mathbf{G}_c^{(i)} \mathbf{a}_c^{(i)}}{2} \right)$$

(3)
$$P(c | y) = \frac{P(y | c)P(c)}{\sum_{c'=1}^{K} P(y | c')P(c')}$$

(c) Liefere die Klasse c*=arg max_c P(c|y) zurück.

Nearest-Neighbor-Klassifikator trainieren

(Dieser Klassifikator ist nicht in MATLAB implementiert. Er stellt einen einfachen Klassifikator für kleine Trainingsmengen dar.)

Gegeben sei eine Menge von Klassifikationsvektoren $M_Y=\{y^{(1)},...,y^{(M)}\}\subset \mathbb{R}^G$. Von diesen gehören manche zur Klasse c=1, manche zu c=2,, manche zu c=K.

Das "Training" besteht in diesem Fall einfach aus der Speicherung der Klassifikationsvektoren und ihrer Klassenzugehörigkeiten, also einer Menge von Paaren $\{ (\mathbf{v}^{(i)}, \mathbf{c}^{(i)}) \mid i=1,...,M \}$

Nearest-Neighbor-Klassifikator anwenden

Ein (neuer) Datenvektor **y** wird wie folgt klassifiziert:

Bestimme den naheliegendsten gespeicherten Vektor $\mathbf{y}^{(i)}$ und liefere dessen Klasse zurück:

$$c^* = c^{(i^*)}$$
 mit $i^* = arg min_i ||y - y^{(i)}||^2$

ANHANG A: Kovarianzmatrix, Sphering-Matrix

Gegeben sei eine Menge von Datenvektoren $V=\{\mathbf{v}^{(1)},...,\mathbf{v}^{(M)}\}\subset\mathbf{R}^{m}$.

Der Erwartungswert-Operator E[.] beschreibe die Mittelung über alle i=1....,M.

Der Mittelwert der Datenvektoren sei $\mathbf{v}_0 = \mathbf{E}[\mathbf{v}^{(i)}]$.

Die Kovarianzmatrix ist definiert durch

$$\mathbf{B} = \text{Cov}(\mathbf{v}) = \text{E}[(\mathbf{v}^{(i)} - \mathbf{v}_0)(\mathbf{v}^{(i)} - \mathbf{v}_0)^{\mathsf{T}}] = \text{E}[\mathbf{v}^{(i)}\mathbf{v}^{(i)}^{\mathsf{T}}] - \mathbf{v}_0\mathbf{v}_0^{\mathsf{T}}$$

Die letzte Identität ergibt sich, wenn man den Mittelwert auf die einzelnen Terme durchzieht. Man beachte, dass bei der Definition der Kovarianz die Subtraktion des Mittelwertes "-v₀" nicht fehlen darf.

I.d.R. wird die Kovarianzmatrix nicht die Einheitsmatrix sein, sondern

- (a) Off-Diagonalelemente haben, was anzeigt, dass es Korrelationen zwischen den Datendimensionen (Variablen) vi und vk gibt,
- (b) die Diagonalelemente werden nicht alle gleich sein, was anzeigt, dass in einigen Variablen mehr Varianz steckt als in anderen.

Sphering: Man möchte nun manchmal "gespherte" Daten **z**⁽ⁱ⁾ (zur Namensgebung s. hier in notes data.doc) haben, die aus den Originaldaten durch eine lineare Transformation hervorgehen:

$$z^{(i)} = S(v^{(i)} - v_0)$$
 mit $E[z^{(i)}] = z_0 = 0$ und $Cov(z) = E[z^{(i)}z^{(i)}] = 1$

Hierbei bezeichnet **1** die (m x m)-Einheitsmatrix. Die Mittelwertfreiheit der $\mathbf{z}^{(i)}$ ergibt sich unabhängig von **S** sofort aus dem Term ($\mathbf{v}^{(i)}$ - \mathbf{v}_0). In Cov(\mathbf{z}) haben wir die Terme " $-\mathbf{z}_0$ " gleich weggelassen, weil ja ohnehin $\mathbf{z}_0 = 0$ gilt.

Wie muss **S** aussehen?

Behauptung: Wenn R die Eigenvektormatrix von B ist, dann gilt

$$\mathbf{S} = \mathbf{D}^{-1/2} \mathbf{R} = \begin{pmatrix} 1/\sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & 1/\sqrt{\lambda_m} \end{pmatrix} \begin{pmatrix} \cdots & \mathbf{r_1}^\mathsf{T} & \cdots \\ & \cdots & \\ & & \mathbf{r_m}^\mathsf{T} & \cdots \end{pmatrix} = \begin{pmatrix} \cdots & \mathbf{r_1}^\mathsf{T}/\sqrt{\lambda_1} & \cdots \\ & \cdots & \\ & \cdots & \mathbf{r_m}^\mathsf{T}/\sqrt{\lambda_m} & \cdots \end{pmatrix}$$

Hierbei ist \mathbf{r}_k^T , die k-te Zeile von \mathbf{R} , der als Zeilenvektor geschriebene Eigenvektor von \mathbf{B} zum Eigenwert λ_k , d.h. es gilt

$$\mathbf{Br}_k = \lambda_k \mathbf{r}_k$$
 für $k = 1,...,m$

 ${f D}$ ist die Diagonalmatrix der Eigenwerte und ${f D}^{-1/2}$ steht für die Diagonalmatrix mit $\lambda_k^{-1/2}$ im kten Diagonalelement. In MATLAB erhält man ${f D}$ und ${f R}$ aus der SVD-Zerlegung, s. zum Beispiel in ${f lcov_pca2.m}$

ACHTUNG: Wenn es Eigenwerte $\lambda_k=0$ gibt, dann muss man mit $\mathbf{D}^{-1/2}$ aufpassen. In diesem Fall ist die übliche SVD-Behandlung in **lcov_pca2.m**, dass in $\mathbf{D}^{-1/2}$ jedes 1/0 durch 0 ersetzt wird. Dadurch werden dann einige Zeilen von \mathbf{S} zu Nullzeilen.

Beweis der Behauptung $S = D^{-1/2}R$ ist <u>hier in notes_SFA.doc</u> nachzulesen.

ANHANG B: Ablaufplan MATLAB-Files für Klassifikation

- class demo2A 2B.m
 - o class_demo2A.m
 - dataLoad.m (test + training)
 - sfaClassModel.m
 - sfa2 create.m
 - sfa_step.m → sfa_step2.m
 - sfa_save.m
 - sfa_execute.m
 - gaussCreate.m
 - gaussClassifier.m ('train')
 - gaussSave.m
 - mk_confmat.m
 - save test & training data
 - o class_demo2B.m
 - load test & training data
 - sfaClassPredict.m
 - sfa_load.m
 - gaussLoad.m
 - sfa execute.m
 - gaussClassifier.m ('apply')
 - mk confmat.m