
The TDMR 2.2 Package:

Tuned Data Mining in R

Wolfgang Konen, Patrick Koch,
Cologne University of Applied Sciences

Initial version: February, 2012
Last update: March, 2020

Contents

1 Using TDMR 3

1.1 Overview . 3

1.2 Installing TDMR . 3

2 TDMR Workflow 4

2.1 Level 1: DM without Tuning . 4

2.2 Level 2: Tuned Data Mining in R . 5

2.3 Level 3:
”
The Big Loop“ . 5

3 TDMR Experiment Concept 6

4 TDMR Data Reading and Data Split in Train / Validation / Test Data 8

4.1 Data Reading . 8

4.2 Training, Validation, and Test Set . 8

4.2.1 Principles . 8

4.2.2 Test Set Splitting . 9

4.2.3 main TASK and its training/validation/test logic 10

4.3 Examples . 11

5 TDMR Important Variables 14

5.1 Variable opts . 14

5.2 TDMR RGain Concept . 14

5.2.1 Classification . 14

5.2.2 Regression . 16

1

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 2

5.3 Classes tdmClass and tdmRegre . 17

5.4 Environment envT . 19

6 TDMR parallel computing concept 19

6.1 How to use parallel computing . 19

6.2 Environment envT for parallel mode . 19

7 Variable-length vectors in TDMR classification 20

7.1 sampsize . 20

7.2 cutoff . 21

7.3 classwt . 22

8 Example Usage 23

9 Frequently Asked Questions (FAQ) 23

10 TDMR for Developers 24

10.1 TDMR Tuner Concept . 24

10.1.1 How to use different tuners . 24

10.1.2 How to integrate new tuners . 24

10.2 How to integrate new machine learning algorithms 24

10.3 Details on TDMR parallel computing concept 25

10.4 TDMR Design Mappping Concept . 25

10.4.1 How to add a new tuning variable . 26

10.5 TDMR seed Concept . 26

10.6 TDMR Graphic Device Concept . 28

11 Summary 31

A Appendix A: tdmMapDesign.csv 32

B Appendix B: List opts 33

C Appendix C: List tdm 37

D Appendix D: List ctrlSC 39

E Appendix E: Data frames envT$res and envT$bst 41

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 3

1 Using TDMR

1.1 Overview

The TDMR framework is written in R with the aim to facilitate the training, tuning and
evaluation of data mining (DM) models. It puts special emphasis on tuning these data mining
models as well as simultaneously tuning certain preprocessing options. TDMR is especially
designed to work with SPOT (Bartz-Beielstein, 2010) as the preferred tuner, but it offers also
the possibility to use other tuners, e.g., CMA-ES (Hansen, 2006), LHD (McKay et al., 1979)
or direct-search optimizers [BFGS, Powell] for comparison.

This document (TDMR-docu.pdf, Konen and Koch (2012a))

� gives a short overview over the TDMR framework,

� explains some of the underlying concepts and

� gives more details for the developer.

This document should be read in conjunction with the companion document TDMR-
tutorial.pdf (Konen and Koch, 2012b), which shows example usages of TDMR in the form
of lessons.

Both documents are available online as CIOP Reports (PDF, Konen and Koch (2012a,b))
from http://www.gm.fh-koeln.de/ciopwebpub.1

Both documents concentrate more on the software usage aspects of the TDMR package.
For a more scientific discussion of the underlying ideas and the results obtained, the reader
is referred to Konen et al. (2010, 2011); Konen (2011); Koch et al. (2012); Koch and Konen
(2012); Stork et al. (2013); Koch and Konen (2013); Koch et al. (2015).

1.2 Installing TDMR

Once you have R (http://www.r-project.org/), > 2.14, up and running, simply install TDMR
with

install.packages("TDMR");

Then, library TDMR is loaded with

library(TDMR);

Loading required package: SPOT

Loading required package: twiddler

Loading required package: tcltk

1The precise links are http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.pdf and
http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/Kone12b.pdf. The same files are available as well
via the index page of the TDMR package (User guides and package vignettes).

http://www.gm.fh-koeln.de/ciopwebpub
http://www.r-project.org/
http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/Kone12b.pdf

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 4

Table 1: Elements of result

result list with results from Level 1:
In case of classification, object of class TDMclassifier, containing:
opts # with some settings perhaps adjusted in tdmClassify
lastRes # last run, last fold: object of class tdmClass, see Tab. 4
C train # classification error on training set (vector of length NRUN)
G train # gain on training set (vector of length NRUN)
R train # relative gain (% of max. gain) on training set (vector of length

NRUN)
* test # — similar, with validation set instead of training set
* test2 # — similar, with test2 set instead of training set
y # what to be minized by SPOT, usually mean(-R test)
sd.y # standard deviation of y over the opts$NRUN runs
In case of regression, object of class TDMregressor, containing:
opts # with some settings perhaps adjusted in tdmRegress
lastRes # last run, last fold: object of class tdmRegr, see Table 4
R train # RMAE on training set (vector of length NRUN)
S train # RMSE on training set (vector of length NRUN)
T train # Theil’s U for RMAE on training set (vector of length NRUN)
* test # — similar, with validation set instead of training set
y # the quantity to be minized by the tuner, usually mean(R test)
sd.y # standard deviation of y over the opts$NRUN runs

2 TDMR Workflow

2.1 Level 1: DM without Tuning

Two kinds of DM tasks, classification or regression, can be handled. For each DM task TASK,
create one task-specific function main TASK(opts=NULL), as short as possible. If called without
any parameter, main TASK() should set default parameters for opts via tdmOptsDefaultsSet().
main TASK() reads in the task data, does the preprocessing if necessary and then calls with the
preprocessed data dset the task-independent functions tdmClassifyLoop or tdmRegressLoop,
which in turn call the task-independent functions tdmClassify or tdmRegress.

A template may be copied from inst/demo02sonar/main sonar.r2. The template is in-
voked with

result <- main_sonar();

See Lesson 1 in TDMR-tutorial.pdf (Konen and Koch, 2012b) for a complete example.

See Table 1 for an overview of elements in list result.

2Here and in the following inst/ refers to the directory where the package TDMR is installed. Use
find.package("TDMR") to locate this directory.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 5

2.2 Level 2: Tuned Data Mining in R

A TDMR task consists of a DM task (Level 1) plus a tuner configuration (decision which
parameters to tune within which ROI, which meta parameters to set for the tuner,)

If you want to do such a tuning on task SONAR, you should follow the steps described in
TDMR-tutorial.pdf (see Konen and Koch (2012b), Sec. 3.2 Lesson 2) and create in addition
to main_sonar.r and opts from Lesson 1 a SPOT configuration object ctrlSC and a TDMR
configuration object tdm. This can be all done within demo02sonar.r:

demo(demo02sonar,ask=F);

This script will define a main_TASK in tdm$mainFunc, reads the data, sets the parameter for
tuning and for TDMR and starts the tuning process, which repeatedly executes tdm$mainFunc.
The only requirement on tdm$mainFunc is that it returns in

result$y

a suitable quantity to be minimized by SPOT.

See Lesson 2 in TDMR-tutorial.pdf (Konen and Koch, 2012b) for the complete example.

2.3 Level 3:
”
The Big Loop“

”
The Big Loop“ (several TDM runs with unbiased evaluations) is a script to start several

Level-2-TDMR tasks (usually on the same DM task), optionally with

� several configuration objects ctrlSC and

� several tuners (see Table 6 for a list of tuners) and

� several experiments with different seeds.

The modes of unbiased evaluations allow to compare the best solutions obtained by the tuners.
Different modes are availabe, e.g. to use unseen test data (tdm$umode = "TST") or to start
a new, independent CV (tdm$umode = "CV") or to start a new, independent re-sampling
(tdm$umode = "RSUB").

To start the Big Loop, only one script file has to be created in the user directory. A
template may be copied from demo/demo03sonar.r. It is invoked with

demo(demo03sonar,ask=F);

See TDMR-tutorial.pdf (see Konen and Koch (2012b), Sec. 3.3 Lesson 3) for the full
details.

This will specify in the functions controlSC the list of TDMR configuration and in
tdm$tuneMethod a list of tuners. For each TDMR task and each tuner

(a) the tuning process is started and

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 6

(b) one or more unbiased evaluations are started. This is to see whether the result quality
is reproducible on independently trained models and / or on independent test data.

The result is a data frame envT$theFinals with one row for each TDMR run (triple CONF,
tuner, experiment). Several columns measure the success of the best tuning solution in different
unbiased evaluations, see Table 2.

More detailed results are returned in the environment envT. See Sec. 5.4 and Table 5 for
more details on envT.

See Lesson 3 in TDMR-tutorial.pdf (Konen and Koch, 2012b) for the complete example.

3 TDMR Experiment Concept

TDMR Level 3 (
”
The Big Loop“) allows

(a) to conduct experiments, where different TDMR configurations, different tuners are tried
on the same task;

(b) to repeat certain experiments of kind (a) multiple times with different seeds (tdm$nExperim
> 1).

Each TDMR experiment consist of three parts:

Model building: � During model building (training) and tuning the user starts with a
data set, which is partitioned into training and validation set.

� The relative gain achieved on the validation set acts as performance measure for
the tuning process.

� In the case of opts$TST.kind=="cv" or in the case opts$NRUN > 1 multiple models
are build, each with its own training and validation set. In this case multiple relative
gains are averaged to get the performance measure for the tuning process.

Tuning: � The above model building process is started several times with different model
parameters and preprocessing parameters (design points). The tuning process uses
the performance measure returned to guide the search for better parameters.

� As a result of the tuning process, a best parameter set is established. It has a certain
performance measure attached to it, but this measure might be too optimistic (e.g.
due to validation data being used as training data in a prior tuning step or due to
extensive search for good solutions in a noisy environment)

Unbiased Evaluation (Test): � Once a best parameter set is established, an unbiased
performance evaluation is recommended. This evaluation is done by calling unbiasedRun()
with the object dataObj containing a split into test and training-validation data.
See Sec. 4.2 on ”Training, Validation, and Test Set”.

� If tdm$nrun > 1, multiple calls to unbiasedRun() are executed. The performance
measure returned is the average over all runs.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 7

Table 2: Elements of data frame envT$theFinals

theFinals$ Description Condition

– columns obtained from the tuning process –

CONF the base name of the configuration
TUNER the value of tdm$tuneMethod
–PARAMS– all the tuned parameters appearing in the ROI

section of controlSC
tdm$withParams==TRUE

NEVAL tuning budget, i.e. # of model evaluations during
tuning (rows in data frame res)

RGain.bst best solution (RGain) obtained from tuning
RGain.avg average RGain during tuning (mean of res$Y)
Time.TRN time needed for tuning (see tdm$timeMode in Ap-

pendix C)

– columns obtained from the unbiased runs –

NRUN # of runs with different test & train samples in
unbiasedRun or # of unbiased CV-runs. Usu-
ally NRUN = tdm$nrun, see function map.opts in
tdmMapDesign.r.

RGain.TRN mean training RGain (averaged over all unbi-
ased runs). This is OOB training RGain in case
opts$MOD.method==*.RF and the normal train-
ing RGain for all other model training methods

sdR.TRN std. dev. of RGain.TRN
RGain.RSUB mean test RGain (test set = random subsample) if tdm$umode=="RSUB"
sdR.RSUB std. dev. of RGain.RSUB if tdm$umode=="RSUB"
RGain.TST mean test RGain (test set = separate data, user-

provided)
if tdm$umode=="TST"

sdR.TST std. dev. of RGain.TST if tdm$umode=="TST"
RGain.SP T mean test RGain (test set = split-test prior to

tuning)
if tdm$umode=="SP_T"

sdR.SP T std. dev. of RGain.RSUB if tdm$umode=="SP_T"
RGain.CV mean test RGain (test set = CV, cross validation

with tdm$nfold CV-folds
if tdm$umode=="CV"

sdR.CV std. dev. of RGain.CV if tdm$umode=="CV"
Time.TST time needed for unbiased runs (see tdm$timeMode

in Appendix C)
Note that from the RGain columns with ”if tdm$umode” only one will be selected, since
tdm$umode has exactly one value. The same for the sdR columns.
For more information on RGain see Sec. 5.2. Mean and standard deviation of RGain are
obtained by averaging over all unbiased runs.
In the case of regression experiments, each RGain has to be replaced by RMAE in the table
above, see Sec. 5.2 (TDMR RGain Concept) for further explanation.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 8

4 TDMR Data Reading and Data Split in Train / Vali-
dation / Test Data

4.1 Data Reading

TDMR reads the task data according to function opts$READ.TrnFn, usually from opts$filename

(but this depends on opts$READ.TrnFn). Optionally, if opts$READ.TstFn!=NULL, test data
are also read according to this function. Both function have the signature function(opts)

and they have to return a data frame. Data are read prior to tuning when the object dataObj
is constructed

opts <- tdmEnvTGetOpts(envT);

dataObj <- tdmReadAndSplit(opts,tdm,nExp);

where tdmReadAndSplit lets the function tdmReadDataset do the read work (using the options
opts$READ.TrnFn, opts$READ.TstFn, opts$READ.TXT, and opts$READ.NROW).

This object dataObj is passed into tdmBigLoop or tdmTuneIt3. Inside tdmBigLoop or
tdmTuneIt, dataObj is passed on to tdmDispatchTuner and unbiasedRun, where the training-
validation data and the test data are extracted with

dset <- dsetTrnVa(dataObj);

tset <- dsetTest(dataObj);

and passed on to main_TASK(..., dset=dset,tset=tset).

4.2 Training, Validation, and Test Set

4.2.1 Principles

In data mining we know three kind of data or data sets:

1. Training set: the data for learning or model training.

2. Validation set: the data used to obtain a performance measure of the trained model.
The performance on the validation data is used to guide the tuning process.

3. Test set: When training and tuning is finished, we build a final model. To estimate
the quality of the model for new data, we test its performance on test data. Usually,
the test data were not seen by the model or the tuner. The user should NOT use the
performance on the test data in any way to tune the model further.

3This is at least recommended behaviour. For downward compatibility, there exists the possibility to
enter tdmBigLoop or tdmTuneIt with dataObj=NULL (not recommended). Then two further branches come
into effect: a) if opts$READ.INI=TRUE: read the data at the beginning of bigLoopStep in tdmBigLoop.r; b) if
opts$READ.INI=FALSE: set dset=NULL,tset=NULL and the data reading is done in main TASK, for each tuning
step anew.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 9

Usually, the split into test set on the one side and training/validation set on the other side
is done once prior to the tuning process. During tuning, many tuning steps are possible,
each containing at least one model training and each step may have a new separation of the
training/validation set into a training part and a validation part.

4.2.2 Test Set Splitting

How can we split the data into test set on one side and training/validation set (which we will
abbreviate with TrnVaSet in the following) on the other side?

TDMR offers within the call

dataObj <- tdmReadAndSplit(opts,tdm,nExp);

four options [the value in brackets denotes the choice for tdm$umode]:

1. TDMR sets a random fraction of the data aside for testing ["SP T", split-test].

This is done once before the tuning starts. The test set (the data which are set aside for
testing) is used only in unbiased evaluation. The whole procedure can be repeated (if
tdm$nExperim > 1) and another random test set is set aside.

This is the recommended option, it has a completely independent test set and allows to
assess the variability due to varying test set selection.

To use this option, set tdm$umode="SP_T" and tdm$TST.testFrac to the desired ran-
dom fraction to be set aside (default is 10%). The splitting is coded in the column
dset$tdmSplit with 0 for all records belonging to TrnVaSet and 1 for test data. Set
tdm$SPLIT.SEED=<number> if you want reproducible splits (but varying for each exper-
iment which has a different <number>).

2. TDMR makes CV with different test set folds ["SP CV"]. TODO.

3. User-defined test set splitting ["TST"]. The user provides two reading functions
opts$READ.TrnFn and opts$READ.TstFn. 4 TDMR reads both, adds then a new column
opts$TST.COL to the data frames with 0 for the train/validataion data and 1 for the
test data. Finally, both data frames are bound together into one data frame dset. 5

4. Test set is part of TrnVaSet ["RSUB" or "CV"] . (NOTE: This option is strongly
discouraged, since the test set is already visible during training and tuning, which in-
evitably leads to overfitting and / or oversearching. But sometimes you may have only
very few data and cannot afford to set test data aside.)

The whole data is used for training/validation and later also as the reservoir from which
the test set sample is drawn.

4Often these functions will make use of the data file names opts$filename and opts$filetest, resp.
5There might be the special case that the user does not have training and test data in two different files, but

instead she has a data frame or file containing both training and test records in different rows, distinguished
by the value in a special column USER.COL. If this is the case, provide suitable functions opts$READ.TrnFn

and opts$READ.TstFn which extract the appropriate subsets from the data frame. You might wish to subtract
column USER.COL from the data frames returned.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 10

To use this option, set tdm$umode="RSUB" or tdm$umode="CV". In case "RSUB" set
tdm$TST.testFrac to the desired random fraction to be drawn from the whole data
(default is 20%). In case "CV" set tdm$nfold to the desired number of CV folds (default
is 5).

With each of these choices for tdm$umode, the following happens during unbiased evalua-
tion: A ”fresh” model is build using (all or a fraction of) the data in TrnVaSet for training.
Then this model is evaluated on the test data and the performance (relative gain or RMAE)
on these test data is an unbiased estimator of the model’s performance on new data.

4.2.3 main TASK and its training/validation/test logic

The signature of function main_TASK is

main_TASK(opts=NULL, dset=NULL, tset=NULL)

It is usually called in three cases

Case 1 by the user (solo ML task or user-defined tuning procedure)

Case 2 from TDMR during tuning

Case 3 from TDMR during unbiased evaluation

In Case 2 the syntax is main_TASK(opts,dset), where dset = dsetTrnVa(dataObj) and
tset = NULL.

In Case 3 the syntax is main_TASK(opts,dset,tset), where dset = dsetTrnVa(dataObj)

and in addition tset = dsetTest(dataObj).

How does main_TASK split into training and validation data (during tuning) or into training
and test data (during unbiased evaluation)?

If tset==NULL, then tdmClassifyLoop takes care of splitting dset into training and val-
idation data: Three options are supported here, which are distinguished by the value of
opts$TST.kind:

1. "rand" = Random Subsampling: Sample a fraction opts$TST.valiFrac from dset

(the train-validation-data) and set it aside for validation. Use the rest for training,
if opts$TST.trnFrac is NULL. If opts$TST.trnFrac is defined (and if it is ≤ 1 −
opts$TST.valiFrac, otherwise error), then use only a random fraction opts$TST.trnFrac

of the non-validation data from dset for training.

2. "cv" = Cross Validation: Split dset into opts$TST.nfold folds and use them for
cross validation.

3. "col" = User-Defined Column: All records with a 0 in column opts$TST.COL are
used for training, the rest for validation.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 11

tset == NULL?

yes no

split dset acc. to
opts$TST.kind

"rand": random
subsampling

"cv": cross
validation

"col": user-
defined column

train on dset,
test on tset

opts$TST.kind

= "rand"

Figure 1: Modes of data splitting in main TASK. Blue boxes: modes of splitting into training
and validation set. Maroon boxes: splitting into training and test set.

The split into training and validation data is done in tdmClassifyLoop, i.e. for each call
of main_TASK. This allows to construct different splits train/vali for each tuning step or each
repeated run.

Note that the fractions opts$TST.valiFrac and opts$TST.trnFrac are relative to the
number of rows in dset. dset may be the TrnVaSet defined above or the complete dataset.

opts$TST.kind =="col" in combination with tdm$umode="TST" above is normally NOT
recommended (the same data are specified for test set and validation set). But it is o.k. in the
special case of opts$MOD.method =="RF" or =="MC.RF" (Random Forest): Then the validation
data are in fact never used, since RF uses its own validation measure with the OOB-error on
the training data.

If tset != NULL, only opts$TST.kind=="rand" is allowed. Training data are taken from
dset, by choosing a random subsample (fraction opts$TST.trnFrac).6

4.3 Examples

opts$READ.TrnFn=readDmc2010Trn

opts$READ.TstFn=readDmc2010Tst

opts$filename="dmc2010_train.txt"

opts$filetest="dmc2010_test.txt"

opts$TST.kind="col"

6If opts$TST.trnFrac==NULL, set it to 1 − opts$TST.valiFrac. Set opts$TST.trnFrac=1 (and
opts$TST.valiFrac=0), if you want to use all data from dset for training.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 12

opts$TST.COL="TST"

opts$MOD.method="RF"

tdm$umode="TST"

Read the data prior to tuning, with train-set from dmc2010 train.txt, test set from
dmc2010 test.txt. This is coded with 0 and 1 in column TST of the data frame dset . With
opts$TST.kind="col" we specify that all TST==0 data are used for training. The model RF
(Random Forest) needs no validation data, since the performance measure is ”OOB on the
training set”.

opts$filename="sonar.txt"

opts$TST.testFrac=0.15

opts$TST.kind="cv"

opts$TST.nfold=5

tdm$umode="SP_T"

Read the data prior to tuning from sonar.txt, split them by random subsampling: 15% into
test set and 85% into train+validation set. This is coded with 0 and 1 in column ”tdmSplit”
of data frame dset. During tuning, the train+validation set is further split by cross validation
with 5 folds (new split in each tuning step). The unbiased run uses all 85% train+validation
data for training and reports the performance on the 15% test set data.

Details: opts$TST.kind="rand" triggers random resampling for the division of dset into
training and test set. In the case of classification this resampling is done by stratified sampling:
each level of the response variable appears in the training set in proportion to its relative
frequency in dset, but at least with one record. This last condition is important to ensure
proper functioning also in the case of ”rare” levels (most DM models will crash if a certain
level does never appear in the training set). In the case of regression the sample is drawn
randomly (without stratification).

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 13

Table 3: Overview of important variables in TDMR

opts list with DM settings (used by main TASK and its subfunctions). Parameter
groups:
opts$READ.* # reading the data
opts$TST.* # training / validation / test set and resampling
opts$PRE.* # preprocessing
opts$SRF.* # sorted random forest (or similar other variable rankings)
opts$MOD.* # genera model issues
opts$CLS.* # classification issues
opts$RF.* # Random Forest
opts$SVM.* # Support Vector Machine
opts$GD.* # graphic device issues
See Appendix B or ?tdmOptsDefaultsSet for a complete list of all elements in
opts.

dset preprocessed data set (used by main TASK and its subfunctions)

result list with results from Level 1, see Table 1
finals see Table 2
lastRes list with results from tdmClassify/tdmRegress, see Table 4
envT environment, see Table 5
tdm list with all options for controlling TDMR, see Appendix C or

?tdmDefaultsFill for a complete list of all elements in tdm

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 14

5 TDMR Important Variables

5.1 Variable opts

opts is a long list with many parameters which control the behaviour of main_TASK, i.e. the
behaviour of Level 1. To give this long list a better structure, the parameters are grouped
with key words after "opts$" and before "." (see Table 3 above).

There are some other parameters in opts which do not fall in any of the above groups, e.g.

� opts$NRUN

� opts$VERBOSE

and others.

You should create opts with tdmOptsDefaultsSet() and specify in your application
(i.e. main_TASK or controlDM) only those elements of opts which differ from these de-
faults. Or you enter main_TASK with a partially filled opts and leave the rest to function
tdmFillOptsDefaults (in tdmOptsDefaults.r), which is called from main_TASK after the
user’s opts-settings (because some settings might depend on these settings of the user).

The accessor function Opts(envT$result) returns the element envT$result$lastRes$opts.

� For ”type safety”, every object opts should be created as

opts = tdmOptsDefaultsSet()

and not with opts = list().

� If the list opts is extended by element X in the future, you need only to add a default
specification of opts$X in function tdmOptsDefaultsSet, and all functions called from
main TASK will inherit this default behaviour.

� tdmOptsDefaultsSet calls finally the internal function tdmOptsDefaultsFill(opts) ,
and this fills in further defaults derived from actual settings of opts (e.g. opts$LOGFILE
is an element which is derived from opts$filename as <opts$filename>.log).

5.2 TDMR RGain Concept

5.2.1 Classification

The total gain is defined as the sum of the pointwise product gainmat*confmat. Here
confmat is the confusion matrix (actual vs. predicted cases) and gainmat is the gain associated
with each possible outcome.7

The R_-elements (i.e. result$R train and result$R test, referred to as ”RGain” in
different places of this document) can contain different performance measures, depending on
the value of opts$rgain.type:

7If there are for example different costs for different types of misclassification, the gain matrix can be defined
with zeros on the diagonal and a negative gain ”−cost” for each non-diagonal element (negative cost matrix).

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 15

Table 4: Elements of lastRes. The items last* are specific for the *last* model (the one built
for the last response variable in the last run and the last fold)

lastRes list with results from tdmClassify/tdmRegress:
In the case of classification, an object of class tdmClass with:
opts # with some settings perhaps adjusted
d train # training set + predicted class column(s)
d test # test set + predicted class column(s)
d dis # disregard set + predicted class column(s)
allEVAL # data frame with evaluation measures, one row for each response

variable, the columns are explained in Sec. 5.3
lastCm* # confusion matrix for * = train or test
lastModel # the trained model (for last response variable)
lastPred # name of prediction column
lastProbs # a list with three probability matrices (row: records, col: classes)

v train, v test, v dis if the model provides probabilities.
In the case of regression, an object of class tdmRegre with:
opts # with some settings perhaps adjusted
d train # training set + predicted regression column(s)
d test # test set + predicted regression column(s)
allRMAE # data frame with rows = response.variables and columns accord-

ing to Sec. 5.2.2 (RMAE = relative mean absolute error):
$rmae.train: RMAE on training set
$theil.train: Theil’s U [RMAE] on training set
$rmae.test: RMAE on test set
$theil.test: Theil’s U [RMAE] on test set

allRMSE # data frame with rows = response.variables and columns accord-
ing to Sec. 5.2.2 (RMSE = root mean square error):
$rmse.train: RMSE on training set
$theil.train: Theil’s U [RMSE] on training set
$rmse.test: RMSE on test set
$theil.test: Theil’s U [RMSE] on test set

lastModel # the trained model (for last response variable)

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 16

� "rgain" or NULL [def.]: the relative gain in percent, i.e. the total gain actually achieved
divided by the maximal achievable gain on the given data set,

� "meanCA" : mean class accuracy: For each class the accuracy (1 − error rate) on the
data set is calculated and the mean over all classes is returned,

� "minCA" : same as "meanCA", but with min instead of mean. For a two-class problem
this is equivalent to maximizing the min(Specificity,Sensitivity).

For binary classification there are additional options for opts$rgain.type, three of
them based on package ROCR (Sing et al., 2005):

� "arROC": area under ROC curve (a number in [0,1]),

� "arLIFT": area between lift curve and horizontal line 1.0,

� "arPRE": area under precision-recall curve (a number in [0,1]).

� "bYouden": balanced Youden index (a number in [0,1]),

The balanced Youden index Byouden is based on specificity and sensitivity, two measures
based on the 2× 2 confusion matrix:

Byouden = min(Sensitivity,Specificity) (1)

with

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

In each classification case, TDMR seeks to minimize −result$R train , i.e. to maximize
result$R train.

5.2.2 Regression

For regression: The R_-elements (i.e. result$R train and result$R test, referred to as
”RGain” in different places of this document) can contain different things, depending on the
value of opts$rgain.type (with yi = true response and pi = predicted response) :

� "rmae" or NULL [def.]: the relative mean absolute error RMAE, i.e.

RMAE =
1
N

∑N
i=1 |yi − pi|

1
N

∑N
i=1 |yi|

,

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 17

� "rmse", root mean square error:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − pi)2

,

� "made", mean absolute deviation:

MADE =
1

N

N∑
i=1

|yi − pi|

In each regression case, TDMR seeks to minimize result$R train.

In addition, the measure Theil’s U is returned in lastRes$allRMSE$theil.*, which is in
the case of RMSE:

Theil’s U =
RMSE√

1
N

∑N
i=1 (yi − p

(naive)
i)2

,

where p
(naive)
i is the prediction of a naive prediction model. This naive model is by default

the mean of the response variable on the training data set (but other naive models could be
used as well). The meaning of Theil’s U is: If it is greater than 1, then the model is of no use,
because it is beaten by the naive model. If it is smaller than 1, the model has some predictive
power.

In the case of RMAE, Theil’s U is defined similarly:

Theil’s U =
RMAE

1
N

∑N
i=1 |yi − p

(naive)
i |

,

5.3 Classes tdmClass and tdmRegre

Function tdmClassify returns as result an object of class tdmClass and function tdmRegress

returns an object of class tdmRegre. Both objects are lists. Within list result (Tab. 1), the
element lastRes is an object of either tdmClass or tdmRegre (Tab. 4) .

Objects of class tdmClass (Tab. 4) contain a data frame allEVAL. The 9 evaluation mea-
sures in allEVAL are

cerr.* misclassification error,
gain.* total gain and
rgain.* relative gain, i.e. total gain divided by max. achievable gain in *

where * = [trn | tst | tst2] stands for [training set | test set | test set with special
treatment] and the special treatment is either opts$test2.string = "no postproc" or
"default cutoff".

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 18

Table 5: Elements of environment envT. The 3rd column shows which function adds the
specified element to envT.

variable remark function

bst data frame (see Appendix E) tdmStartOther
or spotTuner,
lhdTuner

bstGrid list with all bst data frames, bstGrid[[k]] retrieves
the kth data frame

tdmBigLoop or
populateEnvT

getBst
(conf,tuner,n)

function returning from bstGrid the bst data frame
for configuration file conf, tuning method tuner and
experiment n

tdmBigLoop

res data frame (see Appendix E) tdmStart* or tdm-
BigLoop

resGrid list with all res data frames, resGrid[[k]] retrieves the
kth data frame

tdmBigLoop or
populateEnvT

getRes
(conf,tuner,n)

function returning from resGrid the res data frame
for configuration file conf, tuning method tuner and
experiment n

tdmBigLoop

result list with results of tdm$mainFunc as called in the
last unbiased evaluation, see Table 1

unbiasedRun

runList a list of configuration names tdmBigLoop
spotConfig see package SPOT tdmBigLoop
tdm see Appendix C tdmBigLoop
theFinals data frame with one row for each res file, see Table 2 tdmBigLoop or

populateEnvT
tunerVal the value of tdmDispatchTuner (which can be a long

list in case of SPOT)
tdmDispatchTuner

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 19

5.4 Environment envT

The environment envT is used for several purposes in TDMR

� to report results from a call to tdmBigLoop (Level 3) back to the user,

� to communicate information between different parts of TDMR,

� to pass necessary information to and back from the parallel slaves, see Sec. 6.2 Environ-
ment envT for parallel mode.

Environment envT is constructed in tdmEnvTMakeNew, with some elements filled in later by
other functions. Table 5 shows the elements of envT.

envT is used to pass information back and forth between different functions of TDMR,
where envT$sCList[[k]]$opts and envT$tdm pass info into tdmStart*, while envT$res and
envT$bst are used to pass info back from tdmStart* to the main level. Note that the vari-
able opts with various settings for the DM process is returned in several variables of envT:

envT$result$opts,
envT$result$lastRes$opts,
envT$tunerVal$opts,
envT$spotConfig$opts,
envT$sCList[[k]]$opts.

6 TDMR parallel computing concept

6.1 How to use parallel computing

TDMR supports parallel computing through the packages snow and package parallel. Par-
allelization of TDMR’s level-3-tasks is very easy, you simply have to set tdm$parallelCPUs

to a suitable value > 1. This will invoke the parSapply-mechanism of parallel.

Note that a certain parSapply will try to spawn always tdm$parallelCPUs processes, but
if the last process(es) are less than this number, parSapply will wait for the slowest to complete
before the next parSapply takes over. So it is a good idea to bundle as many processes as
possible into one parSapply, if you want an even load distribution over time. But on the other
hand, it has also advantages to send several tdmBigLoop’s because every such call will have
its own envT, which is saved on its own .RData file at the end of function tdmBigLoop and so
the intermediate results are preserved, even if the parallel cluster should crash.

6.2 Environment envT for parallel mode

The environment envT is used to pass necessary information to and back from the parallel
slaves. It replaces in nearly all cases the need for file reading or file writing. (File writing is
however still possible for the sequential case or for parallel slaves supporting file access. File
writing might be beneficial to trace the progress of parallel or sequential tuning processes while
they are running and to log the resulting informations.)

See Sec. 5.4 and Table 5 for more information on envT.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 20

7 Variable-length vectors in TDMR classification

When running TDMR for classification, some possible tuning parameters need special treat-
ment. These are (in the case of RF or similar learning algorithms):

� sampsize

� cutoff

� classwt

We explain the details in the following.

7.1 sampsize

The parameter sampsize in a call to randomForest can be either

a) a scalar, then it is the total sample size

b) a vector of length n.class =
”
number of levels in response.variable“, then it is the size

of each strata (number of samples with that class level), so the sum of this vector is the
overall sample size.

TDMR allows to tune the sampsize variables in either case a) or b), in case b) up to a
limit of n.class=5. A ROI data frame can contain lines with SAMPSIZE1, SAMPSIZE2,
SAMPSIZE3, SAMPSIZE5, SAMPSIZE5 which are mapped to opts$RF.samp[i], i=1,...,5.

If only SAMPSIZE1 is present in ROI data frame, then opts$RF.samp is a scalar, which
is case a) above. Otherwise, we have case b).

In more detail:

For classification:

� SAMPSIZEi in ROI will be mapped to opts$RF.samp[i]. If the user wants to tune just
a scalar sampize, she defines only SAMPSIZE1 in ROI.

� After mapping, opts$RF.samp has to be a scalar or a vector of length n.class. That
is, controlDM is responsible for setting all opts$RF.samp[i] that do not appear in ROI
(because they shall not be tuned).

� Prior to training the model on data to.model, a call tdmModAdjustSampsizeC will check
all this and will throw errors, if not fulfilled. In addition,

tdmModAdjustSampsizeC(opts$RF.samp,...)

will compare opts$RF.samp[i] with the number of records for each class level in the
training set to.model and clip it, if necessary. The result is a vector opts$RF.sampsize,
which is guaranteed to work in train.rf for a call randomForest(...,sampsize,...).

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 21

� If importance check is enabled (SRF), then a similar call

tdmModAdjustSampsizeC(opts$SRF.samp,...)

will be done before importance check. Currently, opts$SRF.samp will be only a scalar
(if not set otherwise in controlDM). It is not (yet) in the set of tunable parameters.

For regression:

� very much the same, only tdmModAdjustSampsizeC is replaced by tdmModAdjustSamp-
sizeR;

� this takes care of the fact, that for regression, sampsize can only be a scalar (or NULL).

7.2 cutoff

The parameter cutoff in a call to randomForest (for classification only) can be either

a) not present, then cutoff[i] = 1/n.class is the default, where n.class =
”
number of

levels in response.variable“

b) a vector of length n.class, whose sum has to be exactly 1.

TDMR allows to tune the cutoff variables in b) up to a limit of n=n.class=5. A ROI
data frame can contain lines with CUTOFF1, CUTOFF2, CUTOFF3, CUTOFF4, CUTOFF5
which are mapped to opts$CLS.cutoff[i], i=1,...,5.

It is a bit tricky to ensure for ci = CUTOFFi the constraint
∑n

i=1 ci = 1.

This is because a tuning of any CUTOFFi tells the tuner to select a random value from
[lower,upper] as specified in ROI, independent of the other CUTOFFk. Therefore a design
point will almost always violate the sum constraint. Even if we map the violating design
points to legal ones, the problem remains that many different design points are mapped to the
same configuration.

How to cure? - The short story is: It is not wise to tune all ci, i = 1, ., n. Instead: Set one
ci = −1 in controlDM. Specify positive values for the n.class−1 other ci either in controlDM

or in the ROI section of controlSC. This reduces the tuning complexity because at most
n.class−1 cutoffs need to be tuned. Example:

opts$CLS.cutoff = c(0.1, -1, 0.5)

Then TDMR (with function tdmModAdjustCutoff) will take care to set the negative cutoff
to

”
1−

∑
(other cutoffs)“, i.e. c2 = 1− 0.6 = 0.4 in the example above.

In more detail:

� opts$CLS.cutoff is the cutoff for model training. opts$SRF.cutoff is the cutoff for
the randomForest used during importance check.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 22

� controlDM may or may not specify values for opts$CLS.cutoff and opts$SRF.cutoff.
E.g.

opts$CLS.cutoff=c(0.1, 0.1, -1)

signaling that opts$CLS.cutoff[3] gets the remainder to 1. If it does not specify
anything, the default

opts$CLS.cutoff=NULL

opts$SRF.cutoff=opts$CLS.cutoff

is taken (function tdmOptsDefaultsSet). If any cutoff is NULL, there will be no cutoff
argument in the call to randomForest.

� Now the design point according to the ROI section of controlSC is mapped, e.g. with

CUTOFF1 = 0.243

CUTOFF2 = 0.115

we get opts$CLS.cutoff=c(0.243, 0.115, -1).

Note: Any settings in the ROI section of controlSC will overwrite prior settings in
controlDM. This means that the setting opts$CLS.opt[1]=0.1 in controlDM is over-
written by the appearance of CUTOFF1 in the ROI section of controlSC

� The setting opts$CLS.cutoff=c(0.243, 0.115, -1) is passed on to TDMR and TDMR
(with function tdmModAdjustCutoff) takes care to map the cutoff vector to valid cutoff
vector (all ci > 0 and

∑
ci = 1). It takes care of some special cases:

– If the cutoff vector has length n.class−1, it adds a −1 at the end.

– If exactly one cutoff is negative, it is set to
”
1 −

∑
(other cutoffs)“. If more than

one cutoff is negative, it throws an error.

– If
∑

(other cutoffs) ≥ 1, it scales all those elements to sum 0.9. Why 0.9? – Because
then the left-over cutoff can get a positive value 0.1. A warning

”
sum ≥ 1“is issued.

There is no problem if this warning occurs only for some design points, it can
happen sometimes for certain ROI regions. But if it happens very often, the user
may change the ROI, so that the left-over cutoff is not always 0.1.

– It is a good idea to tune the smaller cutoffs and have the largest cutoff as left-over,
in this case warnings will occur less often or never.

7.3 classwt

The parameter classwt in a call to randomForest (for classification only) can be either

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 23

a) not present, then all class levels get the same weight,

b) a vector of length n.class, where n.class =
”
number of levels in response.variable“.

TDMR allows to tune the classwt variables in case b) up to a limit of n=n.class=5. A
ROI data frame can contain lines with CLASSWT1, CLASSWT2, CLASSWT3, CLASSWT5,
CLASSWT5 which are mapped to opts$CLS.CLASSWT[i], i=1,...,5.

Similar to cutoff, CLASSWTi tells the tuner to select a random value from [lower,upper]
as specified in ROI, independent of the other CLASSWTk. Similar to cutoff, only the relative
weight to the other CLASSWTi is important. Therefore, it is not wise to tune all CLASSWTi ,
i = 1,.,n. Instead: Set one CLASSWTi incontrolDM. Specify positive values for the n.class−1
other CLASSWTi either in ROI section of controlSC or in controlDM. This reduces the tuning
complexity because at most n.class−1 variables in classwt need to be tuned.

8 Example Usage

The usage of the TDMR workflow is fairly easy. We show several example lessons in the
accompanying document TDMR-tutorial.pdf (Konen and Koch, 2012b).

9 Frequently Asked Questions (FAQ)

See the FAQ section in the accompanying document TDMR-tutorial.pdf (Konen and Koch,
2012b).

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 24

10 TDMR for Developers

This section contains more details about some aspects of TDMR. It can be skipped on first
reading.

10.1 TDMR Tuner Concept

10.1.1 How to use different tuners

If you want to tune a TDMR-task with two tuners SPOT and CMA-ES: Simply specify

tdm$tuneMethod = c("spot","cmaes")

in demo03sonar.r. The tuning results are in envT$bst and envT$res and in envT$bstGrid

and envT$resGrid (see Appendix E and Table 5) .

10.1.2 How to integrate new tuners

Originally TDMR was only written for SPOT as tuning method.

In November’2010, we started to add other tuners to aid the comparision with SPOT on the
same footing. As the first other tuner, we introduced CMA-ES (Hansen, 2006). Since compari-
son with SPOT is the main issue, CMA-ES was wrapped in such a way in tdmDispatchTuner.r

that the behaviour and output is very similar to SPOT.

This has the following implications which should also be obeyed when adding other tuners
to TDMR:

� Each tuning method has a unique name (e.g. "spot", "cma_j"): this name is an
allowed entry for tdm$tuneMethod and finals$TUNER and it is the name of a subdir in
TDM.SPOT.d/TASK/.

� Each tuner writes result files (.bst, .res) in a fashion similar to SPOT. These result
files are copied to the above mentioned subdir at the end of tuning. This facilitates later
comparision of results from different tuners.

� Each tuner reads the tuner configuration from controlSC and infers from spotConfig

the tuner settings (e.g. budget for function calls, max repeats, ...) and tries to make its
tuning behaviour as similar to these settings as possible.

For the current CMA-ES tuner the relevant source code for integration in TDMR is in functions
tdmDispatchTuner and cmaesTuner (both in tdmDispatchTuner.r) and in tdmStartCMA.r.
These functions may be used as templates for the integration of other tuners in the future.

10.2 How to integrate new machine learning algorithms

Assume you want to add a new algorithm named ALGO, similar to the existing algorithms RF
or SVM.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 25

� Add a new function train.ALGO in tdmClassify.r and/or tdmRegress.r.

� Add a new function apply.ALGO in tdmClassify.r and/or tdmRegress.r.

� Add a new choice "ALGO" to opts$MOD.method.

� Add the tunable parameters of ALGO as opts$ALGO.* to the list opts, see tdmOptsDefaults.r.

� Add for each parameter opts$ALGO.* a suitable mapping in tdmMapDesign.csv.

10.3 Details on TDMR parallel computing concept

We parallelize the tdmDispatchTuner-calls which are currently inside the 3-fold loop

(sCList,tdm\$tuneMethod,tdm\$nExperim).

Therefore, these loops are written as sapply commands, which can be transformed to parSapply.
Additional remarks:

� We have in tdmBigLoop only one parallelization mode (parallel over experiments, tuners
and configurations). We decided that it is sufficient to have one strategy for paralleliza-
tion, for all values of tdm$parallelCPUs. We decided that it is dangerous to have nested
parSapply-calls.

� When does parSapply return? – The manual says that parSapply first hands out nCPU
jobs to the CPUs, then waits for all (!) jobs to return and then hands out another
nCPU jobs until all jobs are finished. parSapply returns when the last job is finished.
Therefore it is not clear what happens with nested parSapply-calls and we make our
design in such a way that no such nested calls appear.

10.4 TDMR Design Mappping Concept

Each variable appearing in the ROI section of controlSC (and thus in .des file) has to be
mapped on its corresponding value in list opts. This is done in the file tdmMapDesign.csv

(see Appendix A):

roiValue optsValue isInt

MTRY opts$RF.mtry 1
...

If a variable is defined with isInt=1, it is rounded in opts$... to the next integer, even if
it is non-integer in the design file. The base file tdmMapDesign.csv is read from <packageDir>

= .find.package("TDMR").8 If in the <dir of main task> = dirname(tdm$mainFile) an
additional file userMapDesign.csv exists, it is additionally read and added to the relevant

8resp. from tdm$tdmPath/inst/ for the developer version.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 26

data frame. The file userMapDesign.csv makes the mapping modifiable and extendable by
the user without the necessity to modify the corresponding source file tdmMapDesign.r.

These files are read in when starting tdmCompleteEval via function tdmMapDesLoad and
the corresponding data frames are added to envT$map and envT$mapUser, resp. This is for
later use by function tdmMapDesApply; this function can called from the parallel slaves, which
might have no access to a file system.

10.4.1 How to add a new tuning variable

There are several options:

� (user) add a new line to userMapDesign.csv or

� (developer) add a new line to tdmMapDesign.csv or

� (optional, for developer) add a line to tdmOptsDefaultsSet(), if it is a new variable
opts$... and if all existing and further tasks should have a default setting for this
variable

Details We have in tdmMapDesign.r beneath tdmMapDesLoad, tdmMapDesApply a sec-
ond pair of functions tdmMapDesSpot$load, tdmMapDesSpot$apply with exactly the same
functionality. Why? – The second pair of functions is for use in tdmStartSpot(spotConfig)
where we have no access to envT due to the calling syntax of spot(). Instead the object
tdmMapDesSpot store the maps in local, permanent storage of this object’s environment. -
The first pair of functions tdmMapDesLoad, tdmMapDesApply is for use in tdmStartOther,
especially when called by a separate R process when using the tuner cma j. In this case, the
local, permanent storage mechanism does not work across different R sessions. Here we need
the envT-based solution of the first pair, since the environment envT can be restored across
R sessions easily via save & load.

10.5 TDMR seed Concept

In a TDMR task there are usually several places where non-deterministic decisions are made
and therefore certain questions of reproducability / random variability arise:

1. Design point selection of the tuner,

2. Test/training-set division and

3. Model training (depending on the model, RF and neural nets are usually non-determininstic,
but SVM is deterministic).

Part 1) is in the case of SPOT tuning controlled by the variable seedSPOT in the configu-
ration control (controlSC, ctrlSC). You may set seedSPOT=any fixed number for selecting
exactly the same design points in each run. (The design point selection is however dependent
on the DM process: If this process is non-deterministic (i.e. returns different y-values on the

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 27

same initial design points, you will usually get different design points from sequential step 2
on.) Or you set seedSPOT=tdmRandomSeed() and get in each tuning run different design points
(even if you repeat the same tuning experiment and even for a deterministic DM process). In
the case of CMA-ES or other tuning algorithms, we use set.seed(spotConfig$seedSPOT) right
before we randomly select the initial design point and ensure in this way reproducibility. Part
2) and 3) belong to the DM process and the TDMR software supports here three different
cases of reproducability:

a) Sometimes you want two TDMR runs to behave exactly the same (e.g. to see if a certain
software change leaves the outcome unchanged). Then you may set opts$TST.SEED=any
fixed number and opts$MOD.SEED=any fixed number.

b) Sometimes you want the test set selection (RSUB or CV) to be deterministic, but the
model training process non-deterministic. This is the case if you want to formulate
problem tasks of exactly the same difficulty and to see how different models – or the same
model in different runs – perform on these tasks. Then you may set opts$TST.SEED=any
fixed number, opts$MOD.SEED=NULL.

c) Sometimes you want both parts, test set selection and model training, to be non-
deterministic. This is if you want to see the full variability of a certain solution approach,
i.e. if you want to measure the degree of reproducability in a whole experiment. Then
you may set opts$TST.SEED= NULL; opts$MOD.SEED=NULL.

(The case TST.SEED= NULL; MOD.SEED=any value is a fourth possibility, but it has –as far
as I can see – no practical application).

What happens if opts$*.SEED is NULL? – In this case, TDMR will execute

opts$TST.SEED = tdmRandomSeed()

in tdmClassify before each usage of opts$*.SEED. (* = MOD, TST). Here, tdmRandomSeed
is a function which returns a different integer seed each time it is called. This is even true, if
it is called multiple times within the same second (where a function like Sys.time() would
return the same number). This can easily happen in parallel execution mode, where pro-
cesses on different slaves usually will be started in the same second. A second aspect of ran-
dom variability: We usually want each run through main TASK (loop over i in 1:opts$NRUN

in tdmClassifyLoop) and each repeat during tuning (loop over r in 1:des$REPEATS[k] in
tdmStart*) to explore different random regions, even in the case where all seed settings
(seedSPOT, opts$TST.SEED and opts$MOD.SEED) are fixed. We achieve this by storing the
loop variables i and r in opts$i and opts$rep, resp., and use in tdmClassify.r the specific
seeds

newseed=opts$MOD.SEED + (opts$i-1) + opts$NRUN*(opts$rep-1);

and

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 28

newseed=opts$TST.SEED + (opts$i-1) + opts$NRUN*(opts$rep-1);

In this way, each run through main TASK gets a different seed. If opts$*.SEED is any fixed
number, the whole process is however exactly reproducible.

Why is opts$MOD.SEED=tdmRandomSeed() and opts$MOD.SEED=NULL different? – The first
statement selects a random seed at the time of definition time of opts$MOD.SEED, but uses it
then throughout the whole tuning process, i.e. each design point evaluation within this tuning
has the same opts$MOD.SEED. The second statement, opts$MOD.SEED=NULL, is different: Each
time we pass through tdmClassify (start of response.variable-loop) we execute the statement

set.seed(tdmRandomSeed())

which selects a new random seed for each design point and each run.

New Jan’2012: When opts$*.SEED (* = MOD, TST) is the string "algSeed", then TDMR
will set the relevant seed to opts$ALG.SEED, which is the seed spotConfig$alg.seed+r from
SPOT, where spotConfig$alg.seed is set by the user (reproducibility) and r is the repeat-
number for the design point in question (ensure that each repeat gets another seed to explore
the random variability).

Details (RNG = random number generator)

� If TST.SEED=NULL, the RNG seed will be set to (a different) number via tdmRandomSeed()
in each pass through the nrun-loop of tdmClassifyLoop / tdmRegressLoop (at start of
loop).

� If MOD.SEED= NULL, the RNG seed will be set to (a different) number via tdmRandomSeed()
in each pass through the response.variable-loop of tdmClassify / tdmRegress (at start
of step 4.3 ”model training”).

� Before Nov’2010 the TDMR software would not modify RNG seed in any way if TST.SEED=NULL.
But we noticed that with a call from SPOT two runs would exactly produce the same
results in this case. The reason is that SPOT fixes the RNG seed for each configuration
in the same way and so we got the same model training and test set results. To change
this, we moved to the new behaviour, where each *.SEED=NULL leads to a ”random”
RNG-seed at appropriate places.

10.6 TDMR Graphic Device Concept

Utility Functions tdmGraphic* These functions are defined in tdmGraphicUtils.r and
should provide a consistent interface to different graphics device choices.

The different choices for opts$GRAPHDEV are

� ”pdf” : plot everything in one multipage pdf file opts$GRAPHFILE

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 29

� ”png” : each plot goes into a new png file in opts$GD.PNGDIR

� ”win” : each plot goes into a new window (X11())

� ”rstudio”: each plot goes to the RStudio plot window

� ”non” : all plots are suppressed (former opts$DO.GRAPHICS=F)

tdmGraphicCloseWin does not close any X11()-window (because we want to look at it),
but it closes the last open .png file with dev.off(), so that you can look at this .png file with
an image viewer.

GD.RESTART, Case 1: main TASK solo

If GD.RESTART==F: No window is closed, no graphic device restarted.

If GD.RESTART==T we want the following behaviour:

� close initially any windows from previous runs

� not too many windows open (e.g. if NRUN=5, nfold=10, the repeated generation of
windows can easily lead to s.th. like 250 open windows)

� the important windows should be open long enough to view them (at least shortly)

� in the end, the last round of windows should remain open.

We achieve this behaviour with the following actions in the code for the case GD.RESTART==T:

� close all open windows when starting main TASK

� close all open windows before starting the last loop (i==NRUN, k=the.nfold) of tdmClassify

� close all open windows when starting the graphics part (Part 4.7) of tdmClassify UN-
LESS we are in the last loop (i==NRUN, k=the.nfold); this assures that the windows
remain open before the graphics part, that is during the time consuming training part.

� if GD.CLOSE==T and GD.GRAPHDEV="win": close in the end any open .png or .pdf

GD.RESTART, Case 2: During SPOT-Run ”auto”

This will normally have GD.RESTART=F: No window is closed, no graphic device restarted;
but also GD.GRAPHDEV="non", so that no graphic is issued from main TASK, only the graphics
from SPOT.

GD.RESTART, Case 3: During unbiased runs

This will normally have also GD.RESTART=F and GD.GRAPHDEV="non": No graphics. But
you might as well set GD.RESTART=T and choose any of the active GD.GRAPHDEV’s before calling
unbiaseRun *, if you want the plots from the last round of unbiasedRun *.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 30

Table 6: Tuners availabe in TDMR

tdm$tuneMethod Description

spot Sequential Parameter Optimization Toolbox,
Bartz-Beielstein (2010)

lhd Latin Hypercube Design, McKay et al. (1979)
(truncated SPOT, all budget for the initial step)

cmaes Covariance Matrix Adaption ES, Hansen (2006)
(R-version, package cmaes)

cma_j Covariance Matrix Adaption ES, Hansen (2006)
(Java-version, interfaced to R via package rCMA)

powell Powell’s method, Powell (1970)
(direct & local search)

bfgs Broyden, Fletcher, Goldfarb and Shannon method,
Shanno (1985) (direct & local search)

Table 7: Graphic Utility Functions

opts$GRAPHDEV

utility function pdf png win rstudio non

tdmGraphicInit open mul-
tipage pdf

(create
and) clear
PNGDIR

- - -

tdmGraphicNewWin - open new
png file in
PNGDIR

open new
window

- -

tdmGraphicCloseWin - close png
file

- - -

tdmGraphicCloseDev close all
open pdf
devices

close all
open png
devices

close all
devices
(graph-
ics.off())

clear all
plots

-

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 31

11 Summary

This report has shown how to use TDMR, the Tuned Data Mining framework in R. The
examples shown should make the reader familiar with the concepts and the workflow phases
of TDMR. More examples are shown in the companion document TDMR-tutorial.pdf (Konen
and Koch, 2012b). They are deliberately made with fairly small datasets in order to facilitate
quick reproducability. For results on larger datasets the reader is referred to Konen et al.
(2010, 2011).

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 32

A Appendix A: tdmMapDesign.csv

For each variable which appears in ROI section of controlSC:

set its counterpart in list opts.

For each variable not appearing:

leave its optsValue at its default from controlDM.

roiValue; optsValue; isInt

PCA.npc; opts$PRE.PCA.npc; 1

SFA.npc; opts$PRE.SFA.npc; 1

SFA.PPRANGE;opts$PRE.SFA.PPRANGE;1

SFA.ODIM; opts$PRE.SFA.ODIM; 1

NCOPIES; opts$ncopies; 1

TRNFRAC; opts$TST.trnFrac; 0

XPERC; opts$SRF.XPerc; 0

NDROP; opts$SRF.ndrop; 1

MTRY; opts$RF.mtry; 1

NODESIZE; opts$RF.nodesize; 1

NTREE; opts$RF.ntree; 1

SVMkernel; opts$SVM.kernel; 1

SVMdegree; opts$SVM.degree; 1

ADAcoeflrn; opts$ADA.coeflearn; 1

ADAmfinal; opts$ADA.mfinal; 1

EPSILON; opts$SVM.epsilon; 0

GAMMA; opts$SVM.gamma; 0

TOLERANCE; opts$SVM.tolerance; 0

SIGMA; opts$SVM.sigma; 0

COST; opts$SVM.cost; 0

COEF0; opts$SVM.coef0; 0

SAMPSIZE1; opts$RF.samp[1]; 1

SAMPSIZE2; opts$RF.samp[2]; 1

SAMPSIZE3; opts$RF.samp[3]; 1

SAMPSIZE4; opts$RF.samp[4]; 1

SAMPSIZE5; opts$RF.samp[5]; 1

CLASSWT1; opts$CLS.CLASSWT[1];0

CLASSWT2; opts$CLS.CLASSWT[2];0

CLASSWT3; opts$CLS.CLASSWT[3];0

CLASSWT4; opts$CLS.CLASSWT[4];0

CLASSWT5; opts$CLS.CLASSWT[5];0

#

CUTOFF1; opts$CLS.cutoff[1]; 0

CUTOFF2; opts$CLS.cutoff[2]; 0

CUTOFF3; opts$CLS.cutoff[3]; 0

CUTOFF4; opts$CLS.cutoff[4]; 0

CUTOFF5; opts$CLS.cutoff[5]; 0

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 33

B Appendix B: List opts

List opts contains all options relevant for controlling a DM task.

This table – with proper hyperlinks – is as well obtained by typing ?tdmOptsDefaultsSet

within an R session.

[path = dir(tdm$mainFile), if tdm$mainFile is defined, else the current dir. The elements
dir.txt, dir.data, dir.output are relative to path.]

Element Description

dir.txt [data] where to find .txt/.csv files
dir.data [data] where to find other data files, including .Rdata
dir.output [Output] where to put output files
filename ["default.txt"] the task data
filetest [NULL] the test data, only relevant for READ.TstFn!=NULL
data.title ["Default Data"] title for plots
READ.TXT [TRUE] =TRUE: read data from .csv and save as .Rdata,

=FALSE: read from .Rdata
READ.NROW [−1] read this amount of rows or −1 for ’read all rows’
READ.TrnFn function to be passed into tdmReadDataset. Signature:

function(opts) returning a data frame. It reads the train-
validation data.

READ.TstFn [NULL] function to be passed into tdmReadDataset. Signature:
function(opts) returning a data frame. It reads a separate test
data file. If NULL, this reading step is skipped.

READ.INI [TRUE] read the task data initially, i.e. prior to tuning, using
tdmReadDataset. If =FALSE, the data are read anew in each
pass through main_TASK, i.e. in each tuning step (deprecated).

TST.kind ["rand"] How to split the data into train and validation set. One
of the choices from ["cv" | "rand" | "col"] for [cross vali-
adation | random sample | column with train/test flag], see
Sec. 4.2 and tdmModCreateCVindex for details

TST.COL ["TST.COL"] name of column with train/test/disregard-flag
TST.NFOLD [3] number of CV-folds (only for TST.kind=="cv")
TST.valiFrac [0.1] set this fraction of data aside for validation (only for

TST.kind=="rand")
TST.testFrac [0.1] set prior to tuning this fraction of data aside for testing (if

tdm$umode=="SP_T" and opts$READ.INI==TRUE) or set this frac-
tion of data aside for testing after tuning (if tdm$umode=="RSUB"
or =="CV")

TST.SEED [NULL] a seed for the random test set selection (tdmRandom-
Seed) and random validation set selection. (tdmClassifyLoop). If
NULL, use tdmRandomSeed.

NRUN [2] how many runs with different train & test samples – or – how
many CV-runs, if opts$TST.kind="cv"

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 34

PRE.PCA ["none"] PCA preprocessing: ["(default)"none" | "linear"]

for [don’t | normal pca (prcomp)]
PRE.PCA.REPLACE [TRUE] =TRUE: replace with the PCA columns the original nu-

merical columns, =FALSE: add the PCA columns
PRE.PCA.npc [0] if > 0: add monomials of degree 2 for the first PRE.PCA.npc

columns (PCs)
PRE.SFA ["none"] SFA preprocessing (see package rSFA:

["none" | "2nd"] for [don’t | normal SFA with 2nd
degree expansion]

PRE.SFA.REPLACE [FALSE] =TRUE: replace the original numerical columns with the
SFA columns; =FALSE: add the SFA columns

PRE.SFA.npc [0] if > 0: add monomials of degree 2 for the first PRE.SFA.npc
columns

PRE.SFA.PPRANGE [11] number of inputs after SFA preprocessing, only those inputs
enter into SFA expansion

PRE.SFA.ODIM [5] number of SFA output dimensions (slowest signals) to return
PRE.SFA.doPB [TRUE] =TRUE/FALSE: do / don’t do parametric bootstrap for

SFA in case of marginal training data
PRE.SFA.fctPB [sfaPBootstrap] the function to call in case of parametric boot-

strap, see sfaPBootstrap in package rSFA for its interface descrip-
tion

PRE.Xpgroup [0.99] bind the fraction 1− PRE.Xpgroup in column OTHER (see
tdmPreGroupLevels)

PRE.MaxLevel [32] if there are N cases, bind the N − 32 + 1 least frequent cases
in column OTHER (see tdmPreGroupLevels)

SRF.kind ["xperc" (default) |"ndrop" |"nkeep" |"none"] the
method used for feature selection, see tdmModSortedRFimport

SRF.ndrop [0] how many variables to drop (if SRF.kind=="ndrop")
SRF.XPerc [0.95] if ≥ 0, keep that importance percentage, starting with the

most important variables (if SRF.kind=="xperc")
SRF.calc [TRUE] =TRUE: calculate importance & save on

SRF.file, =FALSE: load from SRF.file (SRF.file =

Output/<filename>.SRF.<response.variable>.Rdata)

SRF.ntree [50] number of RF trees
SRF.samp sampsize for RF in importance estimation. See RF.samp for fur-

ther info on sampsize.
SRF.verbose [2]
SRF.maxS [40] how many variables to show in plot
SRF.minlsi [1] a lower bound for the length of SRF$input.variables
SRF.method ["RFimp"]
SRF.scale [TRUE] option ’scale’ for call importance() in tdmModSortedR-

Fimport
MOD.SEED [NULL] a seed for the random model initialization (if model is

non-deterministic). If NULL, use tdmRandomSeed.
MOD.method ["RF" (default) |"MC.RF" |"SVM" |"NB"] use [RF |

MetaCost-RF | SVM | Naive Bayes] in tdmClassify

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 35

["RF" (default) |"SVM" |"LM"] use [RF | SVM | linear
model] in tdmRegress

RF.ntree [500]
RF.samp [1000] sampsize for RF in model training. If RF.samp is a scalar,

then it specifies the total size of the sample. For classification,
it can also be a vector of length n.class (= number of levels in
response variable), then it specifies the size of each strata. The
sum of the vector is the total sample size.

RF.mtry [NULL]
RF.nodesize [1]
RF.OOB [TRUE] if =TRUE, return OOB-training set error as tuning mea-

sure; if =FALSE, return validation set error
RF.p.all [FALSE]
SVM.cost [1.0]
SVM.C [1] needed only for regression
SVM.epsilon [0.005] needed only for regression
SVM.gamma [0.005]
SVM.tolerance [0.008]
ADA.coeflearn [1] =1: ”Breiman”, =2: ”Freund”, =3: ”Zhu” as value for boost-

ing(...,coeflearn,...) (AdaBoost)
ADA.mfinal [10] number of trees in AdaBoost = mfinal boosting(...,mfinal,...)
ADA.rpart.minsplit [20] minimum number of observations in a node in order for a split

to be attempted
CLS.cutoff [NULL] vote fractions for the classes (vector of length n.class =

number of levels in response variable). The class i with maxi-
mum ratio (% votes)/CLS.cutoff[i] wins. If NULL, then each class
gets the cutoff 1/n.class (i.e. majority vote wins). The smaller
CLS.cutoff[i], the more likely class i will win.

CLS.CLASSWT [NULL] class weights for the n.class classes, e.g. c(A=10,B=20)
for a 2-class problem with classes A and B (the higher, the more
costly is a misclassification of that real class). It should be a
named vector with the same length and names as the levels of the
response variable. If no names are given, the levels of the response
variables in lexicographical order will be attached in tdmClassify.
CLS.CLASSWT=NULL for no weights.

CLS.gainmat [NULL] (n.class x n.class) gain matrix. If NULL, CLS.gainmat
will be set to unit matrix in tdmClassify.

rgain.type ["rgain" (default) |"meanCA" |"minCA"] in case classifica-
tion: The measure Rgain returned from tdmClassifyLoop in
result$R_* is [relative gain (i.e. gain/gainmax) | mean class
accuracy | minimum class accuracy] (see Sec. 5.2.1). The goal
is to maximize Rgain.
For binary classification there are the additional measures
["arROC" | "arLIFT" | "arPRE"], see tdmModConfmat.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 36

For regression, the goal is to minimize result$R_* returned
from tdmRegress. In this case, possible values are rgain.type
= ["rmae" (default) |"rmse" | "made"] which stands for [

relative mean absolute error | root mean squared error | mean
absolute deviation] (see Sec. 5.2.2).

ncopies [0] if > 0, activate tdmParaBootstrap in tdmClassify

fct.postproc [NULL] name of a function with signature (pred, dframe, opts)
where pred is the prediction of the model on the data frame dframe
and opts is this list. This function may do some postprocessing on
pred and it returns a (potentially modified) pred. This function
will be called in tdmClassify if it is not NULL.

GD.DEVICE ["win"]
="win": all graphics to (several) windows (X11)
="rstudio": all graphics to RStudio plot window
="pdf": all graphics to one multi-page PDF
="png": all graphics in separate PNG files in opts$GD.PNGDIR

="non": no graphics at all
This affects TDMR graphics, not SPOT (or other tuner) graphics

GD.RESTART [TRUE] =TRUE: restart the graphics device (i.e. close all ’old’
windows or re-open multi-page pdf) in each call to tdmClassify or
tdmRegress, resp. =FALSE: leave all windows open (suitable for
calls from SPOT) or write more pages in same pdf.

GD.CLOSE [TRUE] =TRUE: close graphics device "png", "pdf" at the end of
main_*.r (suitable for main_*.r solo) or =FALSE: do not close
(suitable for call from tdmStartSpot, where all windows should
remain open)

APPLY TIME [FALSE]
VERBOSE [2] =2: print much output, =1: less, =0: none

Additional settings from tdmOptsDefaultsFill(opts), which depend on the already def’d
elements of opts: [* is the stripped part of opts$filename (w/o suffix).]

Element Description

PDFFILE ["*_pic.pdf"] file for multipage graphics in case
opts$GD.DEVICE="pdf"

GD.PNGDIR ["PNG*"] directory for .png files in case opts$GD.DEVICE="png"

LOGFILE ["*.log"] where to log the output
EVALFILE ["*_eval.csv"] file with evaluation results allEVAL
SRF.samp sample size for SRF, derived from opts$RF.samp

SRF.cutoff [opts$CLS.cutoff] cutoff used during SRF modeling
rgain.string one out of c("RGain","MeanCA","MinCA","RMAE","RMSE"), de-

pending on opts$rgain.type

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 37

C Appendix C: List tdm

List tdm contains all options relevant for controlling TDMR.

This table – with proper hyperlinks – is as well obtained by typing ?tdmDefaultsFill within
an R session.

Element Description

mainFile [NULL] if not NULL, source this file from the current dir. It
should contain the definition of tdm$mainFunc.

mainFunc sub(".r","",basename(tdm$mainFile),fixed=TRUE), if
tdm$mainFile is set and tdm$mainFunc is NULL, else
"mainFunc". This is the name of the function called by
tdmStartSpot and unbiasedRun

CMA.propertyFile [NULL] (only for CMA-ES Java tuner) see cma_jTuner.
CMA.populationSize [NULL] (only for CMA-ES Java tuner) see cma_jTuner.
filenameEnvT [NULL] filename where tdmBigLoop will save a small

version of environment envT. If NULL, save envT to
sub(".conf",".RData",tdm$runList[1]).

nExperim [1]
nfold [10] number of CV-folds for unbiased runs (only for umode="CV")
nrun [5] number of unbiased runs
optsVerbosity [0] the verbosity for the unbiased runs
parallelCPUs [1] = 1: sequential, > 1: parallel execution with this many CPUs

(package parallel)
parallelFuncs [NULL] in case tdm$parallelCPUs> 1: a string vector with func-

tions which are clusterExport’ed in addition to tdm$mainFunc.
path [NULL] where to save/load envT. If NULL, path is set to the

actual working directory at the time when tdmEnvTMakeNew is
executed

runList a list of configuration names
stratified [NULL] see tdmReadAndSplit

tdmPath [NULL] from where to source the R sources. If NULL load library
TDMR instead.

test2.string ["default cutoff"]
theSpotPath [NA] use SPOT’s package version
timeMode [1] 1: proc time, 2: system time, 3: elapsed time (columns

Time.TST and Time.TRN in envT$theFinals, see Table 2)
tstCol ["TST"] opts$TST.COL for unbiased runs (only for umode="TST")
tuneMethod ["spot"] other choices: "cmaes", "bfgs", ..., see

tdmDispatchTuner

U.saveModel [FALSE] if TRUE, save the last model, which is trained in
unbiasedRun, onto filenameEnvT

umode ["RSUB"], one out of ["RSUB" | "CV" | "TST" | "SP_T"], see
unbiasedRun

unbiasedFunc ["unbiasedRun"] name of function to call for unbiased evaluation

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 38

withParams [TRUE] include the columns with tuned parameters in final results
TST.trnFrac [NULL] train set fraction (of all train-vali data), overwrites

opts$TST.trnFrac if not NULL.
TST.valiFrac [NULL] validation set fraction (of all train-vali data), overwrites

opts$TST.valiFrac if not NULL.
TST.testFrac [0.2] test set fraction (of *all* data) for unbiased runs (only for

umode="RSUB" or ="SP_T")

Note

The settings tdm$TST.trnFrac and tdm$TST.valiFrac allow to set programmatically cer-
tain values for opts$TST.trnFrac and opts$TST.valiFrac *after* opts has been constructed
(e. g. via controlDM). So use tdm$TST.trnFrac and tdm$TST.valiFrac with CAUTION!

For tdm$timeMode, the ’user time’ is the CPU time charged for the execution of user
instructions of the calling process. The ’system time’ is the CPU time charged for execution
by the system on behalf of the calling process. The ’elapsed time’ is the ’real’ (wall-clock)
time since the process was started.

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 39

D Appendix D: List ctrlSC

List ctrlSC contains all control options for SPOT or other tuners.

This table – with proper hyperlinks – is as well obtained by typing ?defaultSC within an R
session.

Element Description

alg.roi ["NEEDS_TO_BE_SET"] a data frame with columns lower, upper,
type, row.names, each a vector with as many entries as there are
parameter to be tuned

opts ["NEEDS_TO_BE_SET"] the list opts of controls for DM (see App. B
or type ?tdmOptsDefaultsSet in R) is internally attached to
ctrlSC in order to transport these controls to the DM task to
be tuned.

sCName ["NEEDS_TO_BE_SET.conf"] a string ending on .conf, the config-
uration name. envT will be written to file scName.RData.

alg.resultColumn ["Y"] column name containing results
funEvals [20] spot’s funEvals, the budget of function evaluations
OCBA [FALSE] spot’s OCBA

seedSPOT [1] seed for the random number generator used for SPOT
plots [FALSE] TRUE: make a line plot showing progress
design [designLHD] spot’s design, a function that creates the initial de-

sign of experiment
designControl.size [10] number of initial design points
designControl.replicates [2] number of initial repeats
seq.merge.func [mean] how to merge Y over replicates: mean or min
replicates [2] number of repeats for the same model design point
noise [TRUE] whether the object function has noise or not (necessary

if replicates > 1)
model [buildKriging] spot’s model, a function that builds the surrogate

model
optimizer [optimLHD] spot’s optimizer, the optimizer to use when optimiz-

ing on model

optimizerControl.funEvals [100] optimizer budget
optimizerControl.retries [2] optimizer retries

Correspondences between spotConfig (SPOT 1.x) and control (SPOT 2.x)

spotConfig (SPOT 1.x) control (SPOT 2.x) remarks

auto.loop.nevals funEvals
auto.loop.steps -
alg.roi$type types
["FLOAT","INT"] ["numeric","integer","factor"] see also designControl$types
init.design.func design

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 40

[string] [function]

init.design.size designControl$size
init.design.retries designControl$retries
init.design.repeats designControl$replicates
seq.design.maxRepeats replicates see also designControl$replicates
seq.predictionModel.func model
[string] [function]

seq.design.size optimizerControl$funEval how many optimizer evals
seq.design.retries optimizerControl$retries
spot.ocba OCBA
spot.seed seedSPOT
io.verbosity ?

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 41

E Appendix E: Data frames envT$res and envT$bst

Data frame envT$res contains results from each run of tuner SPOT or other tuners producing
equivalent output. Data frame res has the following columns:

� Y: the performance (-Rgain for classification, RMAE for regression) on the validation
data with a specific configuration of the tuning variables (a design point), a value to be
minimized.

� columns between Y and SEED: the values of the configuration (i.e. the design point in
parameter space)

� SEED: seed for random number generator

� STEP: SPOT performs its tuning in several steps. The first step is the initial design (step
0 in the example), where 10 design points are drawn via LHS (latin hypercube design).

� CONFIG: the configuration number (design point number)

� REP: how many repeats were done for a CONFIG.

> envT$res

Y CUTOFF1 CLASSWT2 XPERC SEED STEP CONFIG REP

1 -80.66667 0.6160287 8.143644 0.9500583 1236 0 1 1

2 -77.33333 0.3870275 9.631080 0.9114447 1236 0 2 1

3 -71.33333 0.2636683 13.205968 0.9399057 1236 0 3 1

4 -76.66667 0.5369056 14.286117 0.9857516 1236 0 4 1

5 -69.33333 0.7396785 10.203108 0.9723459 1236 0 5 1

6 -70.66667 0.3264214 7.332868 0.9660157 1236 0 6 1

7 -69.33333 0.1994577 5.100756 0.9212448 1236 0 7 1

8 -54.00000 0.1001375 6.198328 0.9995300 1236 0 8 1

9 -80.00000 0.5198881 12.832352 0.9488441 1236 0 9 1

10 -79.33333 0.6618317 11.971008 0.9080284 1236 0 10 1

11 -76.00000 0.6160287 8.143644 0.9500583 1237 1 1 1

12 -78.66667 0.5378022 12.584936 0.9530634 1236 1 11 1

13 -78.66667 0.5378022 12.584936 0.9530634 1237 1 11 2

14 -80.66667 0.4854926 12.055882 0.9491663 1236 1 12 1

15 -79.33333 0.4854926 12.055882 0.9491663 1237 1 12 2

16 -73.33333 0.6527187 12.708480 0.9063501 1236 1 13 1

17 -76.66667 0.6527187 12.708480 0.9063501 1237 1 13 2

18 -82.66667 0.5198881 12.832352 0.9488441 1237 2 9 1

19 -79.33333 0.4602900 11.756751 0.9545721 1236 2 14 1

20 -78.00000 0.4602900 11.756751 0.9545721 1237 2 14 2

21 -80.66667 0.6530202 12.215844 0.9574122 1236 2 15 1

22 -80.00000 0.6530202 12.215844 0.9574122 1237 2 15 2

23 -78.00000 0.5514645 12.624498 0.9086569 1236 2 16 1

24 -80.00000 0.5514645 12.624498 0.9086569 1237 2 16 2

25 -77.33333 0.4912961 11.326311 0.9611196 1236 3 17 1

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 42

26 -84.66667 0.4912961 11.326311 0.9611196 1237 3 17 2

27 -82.00000 0.5236395 11.964197 0.9307988 1236 3 18 1

28 -81.33333 0.5236395 11.964197 0.9307988 1237 3 18 2

29 -81.33333 0.4928852 13.998331 0.9564483 1236 3 19 1

30 -82.00000 0.4928852 13.998331 0.9564483 1237 3 19 2

Let’s explain the res example above (which is truncated after STEP=3): In the first step
(STEP=0) 10 configurations (design points) are generated by LHS and tested on the data
mining task with SEED=1236. It turns out that CONFIG=4 has the lowest Y=-86.00.

In the next step (STEP=1), three new configurations 11,12,13 are generated (using a
metamodel built upon the previous step) and all of them are evaluated with two repeats
(SEED=1236,1237). To make a fair comparison, CONFIG=4 is evaluated a second time
(SEED=1237). In all cases, the configurations are judged by the average Y of the two
repeats, which are in this case

CONFIG <Y>

4 -84.00
11 -81.00
12 -79.00
13 -81.33

This means that CONFIG=4 survives STEP=1 as the best configuration. Now the next
step (STEP=2) starts, where three new configurations 14,15,16 are evaluated for two repeats.
In this case CONFIG=14 gets an even better average Y = 84.66.

The information which configuration is the best one in each step of the tuning algorithm
is contained as a summary in data frame envT$bst. Most columns have exactly the same
meaning as in data frame envT$res, with the addition of the new column COUNT which
gives the number of repeats being executed for CONFIG at the beginning of STEP.

> envT$bst

Y CUTOFF1 CLASSWT2 XPERC COUNT CONFIG STEP

4 -86.00000 0.5369056 14.28612 0.9857516 1 4 1

41 -84.00000 0.5369056 14.28612 0.9857516 2 4 2

14 -84.66667 0.5364093 14.43284 0.9608062 2 14 3

141 -84.66667 0.5364093 14.43284 0.9608062 2 14 4

142 -84.66667 0.5364093 14.43284 0.9608062 2 14 5

143 -84.66667 0.5364093 14.43284 0.9608062 2 14 6

144 -84.66667 0.5364093 14.43284 0.9608062 2 14 7

145 -84.66667 0.5364093 14.43284 0.9608062 2 14 8

We see that CONFIG=4 is with Y=-86.00 the best configuration at the beginning of
STEP=1. At the beginning of STEP=2 this is reduced to Y=-84.00 due to the 2nd repeat,
but CONFIG=4 is still the best. At the beginning of STEP=3 however, CONFIG=14 takes
over with Y=-84.66 (average of 2 repeats) and it remains the best configuration until the end.

Note: Although the aim of the tuner is to minimize Y, we might sometimes see an increase
in Y in the sequence of rows in envT$bst. This can be the case if we go from a lower COUNT to

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 43

a higher COUNT. The reason is that at COUNT=1 we may have a ’lucky’ validation set which
produces a small Rgain for a certain CONFIG. If we repeat the run with another seed (another
validation set), the same CONFIG may result in a higher Rgain, so that the ’lucky’ Y for that
CONFIG cannot be confirmed at COUNT=2. The higher COUNT has the statistically more
sound value for Y.

References

Bartz-Beielstein, T. (2010). SPOT: An R package for automatic and interactive tuning of
optimization algorithms by sequential parameter optimization. arXiv.org e-Print archive,
http://arxiv.org/abs/1006.4645.

Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Lozano, J., Lar-
ranaga, P., Inza, I., and Bengoetxea, E., editors, Towards a new evolutionary computation.
Advances on estimation of distribution algorithms, pages 75–102. Springer.

Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., and Konen, W. (2012). Tuning
and evolution of support vector kernels. Evolutionary Intelligence, 5:153–170.

Koch, P. and Konen, W. (2012). Efficient sampling and handling of variance in tuning data
mining models. In Coello Coello, C., Cutello, V., et al., editors, PPSN’2012: 12th Inter-
national Conference on Parallel Problem Solving From Nature, Taormina, pages 195–205,
Heidelberg. Springer.

Koch, P. and Konen, W. (2013). Subsampling strategies in SVM ensembles. In Hoffmann, F.
and Hüllermeier, E., editors, Proceedings 23. Workshop Computational Intelligence, pages
119–134. Universitätsverlag Karlsruhe.

Koch, P., Wagner, T., Emmerich, M. T. M., Bäck, T., and Konen, W. (2015). Efficient
multi-criteria optimization on noisy machine learning problems. Applied Soft Computing,
29:357–370.

Konen, W. (2011). Self-configuration from a machine-learning perspective. CIOP Techni-
cal Report 05/11; arXiv: 1105.1951, Research Center CIOP (Computational Intelligence,
Optimization and Data Mining), Cologne University of Applied Science, Faculty of Com-
puter Science and Engineering Science. e-print published at http://arxiv.org/abs/1105.1951
and Dagstuhl Preprint Archive, Workshop 11181 ”Organic Computing – Design of Self-
Organizing Systems”.

Konen, W. and Koch, P. (2012a). The TDMR Package: Tuned Data Mining in R. Technical
Report 02/2012, Research Center CIOP (Computational Intelligence, Optimization and
Data Mining), Cologne University of Applied Science, Faculty of Computer Science and
Engineering Science. Last update: June, 2017.

Konen, W. and Koch, P. (2012b). The TDMR Tutorial: Examples for Tuned Data Mining
in R. Technical Report 03/2012, Research Center CIOP (Computational Intelligence, Op-
timization and Data Mining), Cologne University of Applied Science, Faculty of Computer
Science and Engineering Science. Last update: May, 2016.

http://arxiv.org/abs/1006.4645

CIOP Report 02/2012 The TDMR Package: Tuned Data Mining in R 44

Konen, W., Koch, P., Flasch, O., and Bartz-Beielstein, T. (2010). Parameter-Tuned Data
Mining: A General Framework . In Proc. 20th Workshop Computational Intelligence, pages
136–150. KIT Scientific Publishing, http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000020316.

Konen, W., Koch, P., Flasch, O., Bartz-Beielstein, T., Friese, M., and Naujoks, B. (2011).
Tuned data mining: A benchmark study on different tuners. In Krasnogor, N., editor,
GECCO ’11: Proceedings of the 13th Annual Conference on Genetic andEvolutionary Com-
putation, volume 11, pages 1995–2002.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245.

Powell, M. (1970). A new algorithm for unconstrained optimization. United Kingdom Atomic
Energy Authority.

Shanno, D. (1985). On Broyden-Fletcher-Goldfarb-Shanno method. Journal of Optimization
Theory and Applications, 46(1):87–94.

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing classifier
performance in R. Bioinformatics, 21(20):3940–3941.

Stork, J., Ramos, R., Koch, P., and Konen, W. (2013). SVM ensembles are better when
different kernel types are combined. In Lausen, B., editor, European Conference on Data
Analysis (ECDA13). GfKl.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020316
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020316

	Using TDMR
	Overview
	Installing TDMR

	TDMR Workflow
	Level 1: DM without Tuning
	Level 2: Tuned Data Mining in R
	Level 3: „The Big Loop“

	TDMR Experiment Concept
	TDMR Data Reading and Data Split in Train / Validation / Test Data
	Data Reading
	Training, Validation, and Test Set
	Principles
	Test Set Splitting
	main_TASK and its training/validation/test logic

	Examples

	TDMR Important Variables
	Variable opts
	TDMR RGain Concept
	Classification
	Regression

	Classes tdmClass and tdmRegre
	Environment envT

	TDMR parallel computing concept
	How to use parallel computing
	Environment envT for parallel mode

	Variable-length vectors in TDMR classification
	sampsize
	cutoff
	classwt

	Example Usage
	Frequently Asked Questions (FAQ)
	TDMR for Developers
	TDMR Tuner Concept
	How to use different tuners
	How to integrate new tuners

	How to integrate new machine learning algorithms
	Details on TDMR parallel computing concept
	TDMR Design Mappping Concept
	How to add a new tuning variable

	TDMR seed Concept
	TDMR Graphic Device Concept

	Summary
	Appendix A: tdmMapDesign.csv
	Appendix B: List opts
	Appendix C: List tdm
	Appendix D: List ctrlSC
	Appendix E: Data frames envT$res and envT$bst

