
The rCMA Tutorial:

Examples for using CMA-ES in R

Wolfgang Konen,
Cologne University of Applied Sciences

May, 2015

1 Overview

rCMA is a package to perform CMA-ES optimization, using the Java implementation by Niko
Hansen Hansen [2009]. CMA-ES Hansen and Ostermeier [1996, 2001], Hansen [2011, 2013] is
the Covariance Matrix Adapting Evolutionary Strategy for numeric black box optimization.

rCMA realizes an R-binding to CMA-ES using package rJava Urbanek [2013, 2014], the
R-to-Java interface. The main features of rCMA are:

1. Abiltiy to start the Java CMA-ES optimization with fitness functions defined in R.

2. Constraint handling: Arbitrary constraints can be incorporated, see function parameter
isFeasible in cmaOptimDP.

3. Extensibility: Full access to all methods of the Java class CMAEvolutionStrategy through
package rJava Urbanek [2013, 2014]. New methods can be added easily. See the docu-
mentation of cmaEvalMeanX for further details, explanation of JNI types Oracle [2014]
and a full example.

4. Test and Debug: The access of Java methods from R allows for easy debugging and test
of programs using CMAEvolutionStrategy through R scripts without the necessity to
change the underlying JAR file.

Note that package rCMA differs from package cmaes. cmaes realizes CMA completely in R,
but has no methods for constraint handling and has only fewer parameters of CMA accessible
than there are in Hansen’s Java class CMAEvolutionStrategy.

2 Installing rCMA

Once you have R (http://www.r-project.org/), > 2.14, up and running, simply install rCMA
with

1

http://www.r-project.org/

CIOP Report 05/2015 rCMA-Tutorial 2

install.packages("rCMA");

Then, library rCMA is loaded with

library(rCMA);

If on starting rCMA there is an error related to rJava, see Appendix A.

3 Lessons

3.1 Lesson 1: Optimizing the 2D sphere problem

demoCMA1.R

fitFunc <- function(x) { sum(x*x); }
cma <- cmaNew();

cmaInit(cma,seed=42,dimension=2,initialX=1.5, initialStandardDeviations=0.2);

res1 = cmaOptimDP(cma,fitFunc,iterPrint=30);

plot(res1$fitnessVec,type="l",log="y",col="blue"

,xlab="Iteration",ylab="Fitness");

str(res1);

First we define with fitFunc the function to be minimized. It is the sphere function for
arbitrary dimensions with its global minimum at the origin.

Next we construct in line 2 with cmaNew() a new CMA object which is an Java object
of class CMAEvolutionStrategy. Various parameters of object cma (see rCMA Getters and
Setters) could be set at this point, but we do not do it in this demo.

In line 3 the object cma is initialized with cmaInit. Several parameters are set, especially
the dimension is set to n = 2. As a side effect, cmaInit sets the population size according to
the usual CMA rule (see https://www.lri.fr/ hansen/cmatutorial.pdf, Table 1):

λ = 4 + b3ln(n)c (1)

which amounts to λ = 6 in our case (can be verified with cmaGetPopulationSize(cma)).

As a further side effect of cmaInit, the object cma is transformed to an augmented state
such that no further modifications on its parameters are allowed. It is now ready for doing
optimization.

The CMA optimization starts in line 4 with cmaOptimDP from the initial point initialX=
(1.5, 1.5). Every iterPrint=30 iterations a printout shows the optimization progress, until
CMA terminates through one of its stop conditions. The printout from cmaOptimDP looks as
follows:

https://www.lri.fr/~hansen/cmatutorial.pdf

CIOP Report 05/2015 rCMA-Tutorial 3

0030 1.437185e-03 | 2.3652e-02, 2.9627e-02

0060 1.859678e-07 | 3.8003e-04, 2.0383e-04

0090 3.777315e-13 | -6.0544e-07, -1.0570e-07

Terminated due to TolFun: function value changes below stopTolFun=1.0E-12 (iter=108,eval=648)

cfe,ffe, %infeasible: 648 648 0.000000

The line

0030 1.437185e-03 | 2.3652e-02, 2.9627e-02

tells us that after 30 generations the best fitness value is 1.43e-03 with the corresponding best
point in input space at (2.36e-02, 2.96e-02).

The termination message tells us that CMA stopped because the change in fitness value
dropped below 1e-12 in iteration 108, at which time the fitness function was evaluated 648
times. The last line tells this again: 648 cfe (constraint function evaluations) and 648 ffe
(fitness function evaluations) have been done, meaning that every individual was feasible (%
infeasible=0.0), which is clear because the whole search space is feasible in this demo.

0 20 40 60 80 100

1e
−

16
1e

−
08

1e
+

00

Iteration

F
itn

es
s

Figure 1: The result of the plot-command from demoCMA1.R

The call to cmaOptimDP returns an object res1, which is a list with several diagnostic
informations about the CMA run. See help(cmaOptimDP) for further details. With the help
of res1$fitnessVec we plot Fig. 1 with the command in line 5 showing the development of
the ever-best fitness.

CIOP Report 05/2015 rCMA-Tutorial 4

Finally, the last line depicts with str(res1) an overview of res1.

If we like to do the optimization of the sphere function in 100 dimensions, we only have to
change dimension=2 to dimension=100 in the call to cmaInit.

This ends the first lesson and hopefully shows that it is fairly easy to set up and start a
CMA optimization with the help of rCMA.

3.2 Lesson 2: Constrained optimization with rCMA

In this lesson we want to do a simple form of constrained optimization. rCMA offers the
possibility to hand over a Boolean function isFeasible(x) to cmaOptimDP.

As an example we consider the problem TR2, which is the sphere problem with an addi-
tional tangent inequality constraint

n∑
i=1

xi ≥ n. (2)

Points below the tangent line passing through (1, 1) are infeasible. Fig. 2 depicts the situation
and shows that the constrained optimum is at point (1, 1).

y

x

Figure 2: Sketch of the TR2 problem. The green area is the infeasible region. The feasible
region is the white area above and including the diagonal. The blue point at (1, 1) is the
optimum (minimum).

Now we look at the code for solving this optimization problem. The first 5 lines are identical
to Lesson 3.1:

demoCMA2.R

fitFunc <- function(x) { sum(x*x); }
n = 2;

cma <- cmaNew();

CIOP Report 05/2015 rCMA-Tutorial 5

cmaInit(cma,seed=42,dimension=n,initialX=1.5, initialStandardDeviations=0.2);

res1 = cmaOptimDP(cma,fitFunc,iterPrint=30);

isFeasible <- function(x) { (sum(x) - length(x)) >= 0; }
cma <- cmaNew();

cmaInit(cma,seed=42,dimension=n,initialX=1.5, initialStandardDeviations=0.2);

res2 = cmaOptimDP(cma,fitFunc,isFeasible,iterPrint=30);

fTarget =c(0,n);

plot(res1$fitnessVec-fTarget[1],type="l",log="y"

,xlim=c(1,max(res1$nIter,res2$nIter))

,xlab="Iteration",ylab="Distance to target fitness");

lines(res2$fitnessVec-fTarget[2],col="red");

legend("topright",legend=c("TR2","sphere"),lwd=rep(1,2),col=c("red","black"))

str(res2);

bestSolution=rCMA::cmaEvalMeanX(cma,fitFunc,isFeasible);

str(bestSolution);

In line 6 we define function isFeasible according to Eq.(2). Then we call in line 9
cmaOptimDP with isFeasible as the third argument. The termination message from cmaOptimDP:

Terminated due to TolFun: function value changes below stopTolFun=1.0E-12 (iter=210,eval=1260)

cfe,ffe, %infeasible: 1889 1260 0.499206

tells us that cfe exceeds ffe by roughly 50%, meaning that every second feasible check returned
FALSE. This is in agreement with the expected placement of the CMA-ellipsoid in all but the
first few iterations: Its mean is centered near the minimum c(1,1), so it is at the border
of feasibility. Then half of the individuals drawn at random from the distribution will be
infeasible.

In line 11 we plot the TR2 result together with the unconstrained sphere result from res1.
We see that it takes about twice as many iterations to solve TR2, but finally we reach a similar
accuracy.

Now we look at the last two lines where bestSolution is calculated with the help of
cmaEvalMeanX. It is stated in the CMA-tutorial Hansen [2011] that the population mean from
the last generation may be an even better solution than the best-so-far solution. With the
help of cmaEvalMeanX we calculate this mean, compare its fitness value with the best-so-far
solution and update bestSolution, if the mean is better and feasible. If the mean is better,
then bestEvalNum = lastEvalNum. From the printout str(bestSolution) we see that it is
not the case here:

bestSolution=rCMA::cmaEvalMeanX(cma,fitFunc,isFeasible);

str(bestSolution);

List of 5

CIOP Report 05/2015 rCMA-Tutorial 6

0 50 100 150 200

1e
−

16
1e

−
08

1e
+

00

Iteration

D
is

ta
nc

e
to

 ta
rg

et
 fi

tn
es

s TR2
sphere

Figure 3: The result of the plot-command from demoCMA2.R

$ bestX : num [1:2] 1 1

$ meanX : num [1:2] 1 1

$ bestFitness: num 2

$ bestEvalNum: num 1214

$ lastEvalNum: num 1262

Note that bestX and meanX are very close to the true optimum c(1,1). The difference in the
order of 1e-8 is only seen when subtracting the true optimum from bestX or meanX.

Again, as in Lesson 3.1, if we like to do the optimization TR2 in 100 dimensions, we only
have to change n=2 to n=100 in line 2.

We close this lesson with a warning remark: The constraint handling approach is a very
simple one: DP = death penalty. That is, if we get an infeasible individual, it is immediately
discarded and a new one is drawn from the current CMA distribution. This approach will run
into trouble (infinite while-loop) if the current distribution does not allow to reach any feasible
solutions. But for the simple constrained problem TR2 it works well.

4 Further informations

Further informations on package rJava are found in Urbanek [2013, 2014].

CIOP Report 05/2015 rCMA-Tutorial 7

Further informations on JNI (Java Native Interface) and JNI types are found in Oracle
[2014].

A Fixing problems with the rJava installation

rCMA uses package rJava Urbanek [2013, 2014] for Java-R-communication.

On some operating systems, especially Windows 7, it may happen that the command
require(rJava) issues an error of the form

Error : .onLoad failed in loadNamespace() for 'rJava', details: ...

This means that rJava was not installed properly on your computer. Try then the following:

1. Define the environment variable JAVA_HOME: Explorer - RightMouse on ”Computer” -
Properties - Environment Variables, and add there

JAVA_HOME = C:\Program Files\Java\jdk1.7.0_11\jre7

and restart R. (The path is the correct one on my computer, on others it might be
slightly different. It is the path to the Java Runtime Environment within your JDK.)

2. Package rJava needs to find the Java DLL jvm.dll. To enable this, expand the environ-
ment variable Path: Explorer - RightMouse on ”Computer” - Properties - Environment
Variables - Path - Edit, and add at the end of the Path string

;C:\Program Files\Java\jdk1.7.0_11\jre\bin\server

and restart R. (The path is the correct one on my computer, on others it might be
slightly different. It is the subdirectory in the current Java installation containing
jvm.dll.)

Note that the above remarks are for 64-bit-Java and 64-bit-R. If you use 32-bit-Java, the
locations might be slightly different as well.

On some Linux/UNIX systems there might be also problems with the installation of rJava
because R cannot locate the Java installation. In that case, fix it permanently by issuing the
command

sudo R CMD javareconf -e

at the UNIX prompt (needs superuser rights). If you do not have superuser rights, you may
invoke

R CMD javareconf -e

in each session where you need rJava.

CIOP Report 05/2015 rCMA-Tutorial 8

References

Nikolaus Hansen. Javadoc for CMA-ES Java package fr.inria.optimization.cmaes, 2009. URL
https://www.lri.fr/~hansen/javadoc.

Nikolaus Hansen. The CMA evolution strategy: A tutorial, June 2011. URL https://www.

lri.fr/~hansen/cmatutorial.pdf.

Nikolaus Hansen. The CMA evolution strategy web page, 2013. URL https://www.lri.fr/

~hansen/cmaesintro.html.

Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In Evolutionary Computation,
1996., Proceedings of IEEE International Conference on, pages 312–317. IEEE, 1996.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evo-
lution strategies. Evolutionary Computation, 9:159–195, 2001. URL https://www.lri.fr/

~hansen/CMAES.pdf.

Oracle. The Java Native Interface. Programmer’s guide and specification. Chapter 3 (JNI
types), Sec. ”Type Signatures”, 2014. URL http://docs.oracle.com/javase/7/docs/

technotes/guides/jni/spec/jniTOC.html.

Simon Urbanek. rJava: Low-level R to Java interface, 2013. URL http://cran.r-project.

org/web/packages/rJava.

Simon Urbanek. rJava: Low-level R to Java interface, 2014. URL http://www.rforge.net/

rJava/index.html.

https://www.lri.fr/~hansen/javadoc
https://www.lri.fr/~hansen/cmatutorial.pdf
https://www.lri.fr/~hansen/cmatutorial.pdf
https://www.lri.fr/~hansen/cmaesintro.html
https://www.lri.fr/~hansen/cmaesintro.html
https://www.lri.fr/~hansen/CMAES.pdf
https://www.lri.fr/~hansen/CMAES.pdf
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://cran.r-project.org/web/packages/rJava
http://cran.r-project.org/web/packages/rJava
http://www.rforge.net/rJava/index.html
http://www.rforge.net/rJava/index.html

	Overview
	Installing rCMA
	Lessons
	Lesson 1: Optimizing the 2D sphere problem
	Lesson 2: Constrained optimization with rCMA

	Further informations
	Fixing problems with the rJava installation

