e-print http://www.gm.fh-koeln.de/ciopwebpub/Konel5c.d/TR-TDgame_EN.pdf, July 2015

Reinforcement Learning for Board Games:
The Temporal Difference Algorithm

Wolfgang Konen

Cologne University of Applied Sciences
Steinmiillerallee 1, D-51643 Gummersbach,
Germany

http://www.gm.fh-koeln.de/~konen
wolfgang.konen@fh-koeln.de

July 2015

Abstract

This technical report shows how the ideas of reinforcement learning (RL) and temporal
difference (TD) learning can be applied to board games. This report collects the main ideas
from Sutton and Barto [1998], Tesauro [1992] and Sutton and Bonde [1992] in a compact form
and gives hints for the practical application.

It contains a section on 'Self-Play’ TD algorithms, a section on game-learning applications
for TD(\), furthermore appendices on eligibility traces and typical function approximators.

http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/~konen
http://www.gm.fh-koeln.de/~konen
mailto:wolfgang.konen@fh-koeln.de

Contents

1 Introduction 2
2 States und After-States 2
3 The Value Function 3
4 The Temporal Difference (TD) Algorithm 4
4.1 Basicideas o e e e 4
4.1.1 Temporal Difference e 4

4.1.2 Function Approximation 4

4.1.3 Feature Vector e)

4.2 The TD(A) Algorithm e 6
4.3 ,Self-Play“ : Incremental TD(\) Algorithm 7

5 Hints for Practical Applications 8
6 Applications of TD()\) and Self-Play 8
7 Conclusion 9
A Eligibility Traces 9
B Typical Function Approximators 11

1 Introduction

Reinforcement learning (RL) is a powerful optimization method for complex problems. It has
special advantages if not every single action is accompanied by a reward, but only after a sequence
of actions a certain reward (or punishment) can be given. This is the typical situation in board
games.

Temporal difference (TD) learning is a popular technique in reinforcement learning.

2 States und After-States

A game situation in board games like chess, go, Connect-4, TicTacToe or Nimm-3 is usually de-
scribed by

e the information who’s move it is
e the position on the board.

Both elements together form the state s; of the game. Heret = 0,1,2,..., N denotes the sequence
of moves (more correctly half-moves, a. k. a. ply). In TicTacToe N is at most 9, but the game can
be over in less than 9 moves as well.

When coding the game situation we can distinguish the state and the after-state variant:

X — X — X[X||— X[X||— || X[X|X
O O

X’s move O’s move X’s move O’s move X’s move

v] [Le] [w] [

Figure 1: Exemplary course of a game for TicTacToe. The game is finished after N = 5 moves.

e State coding:

— position before the player has made his move

— information who’s move it is
o After-State coding:

— position after the player has made his move

— information who made the move.

In most cases the after-state coding is advantageous, because for board games it is usually
only important which is the board after the move. Multiple (state+move)-combinations may lead
to the same after-state, but each (state+move)-combination leads exactly to one after-state. The
complexity is reduced if we take the after-state perspective.

Let us take a specific course of a game: It can always be represented as a sequence of states s;
= {after-state + who made the move}. Fig. 1 shows a TicTacToe-example for a course of a game.

3 The Value Function

The goal of reinforcement learning is to train an agent from a (usually large) set of such game
sequences. We would have an optimal agent, if we knew for every state s; the value function
V(s¢). This value function should give those states being advantageous for White (X) a high
value and those states being advantageous for Black (O) a low value.! White will evaluate for
all possible after-states s;y1 the value function V(s;y1) and takes the one with the highest value.
Black evaluates the same value function, but she takes the lowest value.

The problem is: We do not have this ideal value function, and there is usually no direct
approach to calculate it. However, we can assign to every final state sy of a specific game the
reward belonging to it. In the example Fig. 1 above it is the reward r(s5) = r(sy) = +1, because
X has won. In the opposite case, if O had won, the reward would be r(sy) = 0 and r(sy) = 0.5, if
it is a draw. The value of the finale state sy in the figure above is thus = +1. The value function
V(s4) in the example above should be ideally V' (s4) = +1 as well, since if O leaves this after-state
to his opponent, an optimally playing agent X will win for sure. A learning system can in this way
learn in a deductive way successively ,,from behind“ which positions are , good “ and which are
»,bad “. This is the central idea of temporal difference learning.

"How high or how low is usually irrelevant as long as the best after-state has the highest / lowest score.

The ideal value function V(s;) contains in the end the probabilty that perfectly playing
agents will reach from s; a win for X (Tesauro [1992]). More generally speaking — not only
for games — the value function V'(s;) should code the sum of the future rewards in this episode
starting from state s; (the expected value of the sum of those rewards).

4 The Temporal Difference (TD) Algorithm

4.1 Basic ideas

The goal is to learn the value function V(s;). We are facing here two major challenges:

1. Except for the terminal state sy, it is not known what the teacher signal for V(s;) should
be.

2. For non-trivial games the space of possible states {s; } is vastly big, so that it is not possible
to have them all in a big table or to visit them all sufficiently often.

Solutions for both problems are described in Sutton & Barto’s influential book Sutton and Barto

[1998].

4.1.1 Temporal Difference

Thw first problem is solved by reinforcement learning, which defines an error signal §; for state
V(St)i
6t = 1(se41) + YV (8t41) — V(se) (1)

The error signal vanishes if V(s;) reaches the target r(si+1) + vV (st+1). The algorithm waits for
the next state sy;11 and looks if for that state the reward or the value function is known. If so, it
changes V'(s;) in that direction. Parameter v (typically 0.9) is the so-called discount factor: It
takes into account that a state further away in the future, say V' (s;y+10) = 1, might be a possible
successor of s; in the course of the game, but it is not guarenteed that the game path (for all course
of games) leads from s; to sy;+19. Thus the game states more distant in the future are discounted
in their effect on V(s;).

This clarifies the name ,,TD*: Since for most states the reward is zero, the error signal is in
most cases the temporal difference in the value function and the algorithm based on that is called
the temporal difference (TD) algorithm.

4.1.2 Function Approximation

The second problem is solved by function approximation [Sutton and Barto, 1998, Sec. 8]: Instead
of putting all values V(s;) into a (gigantic) table, a function f(w;s;) with free parameters w (the
weights) is defined such that

V(st) = f(w;st) (2)

is approximated in the best possible way. Typical realisations for f(w;s;) are:
e a neural net with s; as input, a hidden layer, weights w and one output neuron

e a neural net with feature vector g(s;) as input

e a linear function: f(w;sy) =w - s =), wisw

e a linear function with feature vector g(s;) as input:

f(w;s) =w-g(s) = Zwkgk(st)
K

With function approximation, a change in w which diminuishes the error signal é; = (V(s¢) —
f(w; s4))? for a certain s; will at the same time change other values f(w;s,),u # t. But this
is often a desirable effect, becaus not all states can be visited anyway. This property is known
as generalization: transfer knowledge from visited states and their rewards to other, similar,
non-visited states.

There is a peculiarity to be pointed out: Due to the generalization effect it will be usually the
case that for a final state sy the value function V(sy) is not zero. This contradicts the notion of
the value function V'(s;) which should reflect for a given state s; the sum of rewards to be expected
in the future. Since it is a final state, the sum has to be zero. In order not to count something
twice, one defines usually:

V(s;) = (3)

f(w;sy), otherwise

{0, if s; final

4.1.3 Feature Vector

The approximation of V' by f will be usually easier if neighboring states in input space have similar
outputs. This is the reason why often feature vectors g() are introduced in the realization of
f(w;st). A difficult” input-output mapping may become much easier if the right feature is found,
as the following example demonstrates.

Example feature vector: The game Nimm-3. The game Nimm-3 has the goal to capture
the final piece from a pile of pieces, when each player in turn has the right to grab 1, 2 or 3 pieces.
The well-known optimal strategy is to seek for an after-state with the sum of pieces divisible by 4.
This can be expressed with the feature

ga(st) = (s is divisible by 4 7 1: 0). (4)

This feature in itself is already a perfect coding of the value function after a move of White. (We
recall: The value function should code the probability that White will win from that state. If on
the other hand s; is the after-state for Black, one has only to swap 1 and 0 in Eq. (4).)

For more complex games such a perfect feature is normally not possible or it is not known at
the time of coding. If one has the assumption that divisibility plays a role in general for a game,
one can define the feature vector g(s¢) = (gx(st)), k = 2,..., M with

gk (8t) = (8¢ is divisible by & 7 1:0) (5)

Then the learning algorithm should learn for Nimm-3 in the course of time that only g4 is important
and all other gi, k # 4 are of no importance.

Algorithm 1 TD(\) algorithm. Input: The course of the game {s:|t = 0,1,...,N} and the
associated rewards r(s;). A function f(wy;s;) with (partially trained) weights wq to approximate
the value function V(s;). Output: improved weights wy.

function TDLTRAIN({s|t =1,..., N}, wo)
€o <+ Vau, f(wo; s0) > Initial eligibility traces
for (teO;t<N;t<—t+1) do
Void < f(we; st) > Value function current state
V(st41) 0 if 841 'ﬁnal > Value function next state
f(wy; s¢41), otherwise
o < 1r(8t+1) + 7V (S141) — Voud > Error signal
Wit — Wy + adrey > Learning step
eir1 < YA e + Vi f (Wit 1; 8e41) > Eligibility traces
end for

return wy
end function

4.2 The TD()\) Algorithm

Finally we need an update rule (learning rule) for the weights w. Such a rule is given in [Sutton
and Barto, 1998, Sec. 8.2]:

Wil = W + aétet (6)
er1 = Y et + Vo f(wiyr; Se+1) (7)

The vector e; contains the so-called eligibility traces for each weight. The theory behind eligibility
traces is not that easy for A > 0. Some explanations are found in Appendix A. Let us restrict
ourselves here to the case A = 0: Then e; is nothing else than the gradient of the function V' (s;) =
f(wy; s¢). The gradient points into the direction of steepest ascent. If the error signal §; in Eq. (1)
is positive then we move with a change according to Eq. (6) up the hill, i. e. V(s¢) is increased.
If 6; is negative we move down the hill, i. e. V(s;) is reduced. If we do not move too far — this is
controlled by the learning step size a — then the error signal in Eq. (1) should be reduced in every
step. This technique is therefore known as , gradient descent®.

We now have everything together to formulate the TD(A) algorithm according to [Sutton and
Barto, 1998, Sec. 8.2] and Sutton and Bonde [1992] in Algorithm 1.

Annotations for Algorithm 1:

e Each learning step will move V(s;) = f(wy, s¢) closer to the target r(s¢11) + YV (se41) (if «
is not too big).

e It is important (and sometimes forgotten in implementations of TD(A)), that the response
has to be recalculated after each learning step because the weights have changed. Therefore
we recalculate V4 in every pass (and do not re-use V(sy41) from the previous pass through
the loop).

e Algorithm 1 is formulated in such a way that it corresponds nearly line-by-line with the
main() function from [SuttonBonde93]. Typical parameters are v = 0.9, A < v, = 0.1.

e In case A = 0 the algorithm reduces to the usual gradient descent.

4.3 ,Self-Play“ : Incremental TD()\) Algorithm

We now consider the case where only the game environment is given, but no courses of games from
an external source are provided. In that case we have to change the algorithm in such a way that
the algorithm generates many courses of games {s;|t = 0,1,..., N} as the learning incrementally
progresses. This self-play algorithm is shown in Algorithm 2.

Function SELFPLAY is called repeatedly, each time with an initial position sy and with the
learned weights returned from the previous call. (In the first call we start with randomly initialised
weights.) SELFPLAY performs a full game until a final state s; € Spinqr is reached.

Function SELFPLAY is extended in two points with respect to Algorithm 1: 1) The next state
S¢4+1 is choosen by the algorithm itself (either a random move or a greedy move exploiting the value
function learned so far). 2) The error signal is usually set to zero in case of a random move.

Algorithm 2 ,,Self-Play*: Incremental TD()) algorithm for board games. Input: Starting player
p [= +1 (White) or —1 (Black)], initial position sg. Furthermore (partially trained) weights wq
for function f(w;s;) approximating the value function V(s;). Reward function r(s;) from the
game-playing environment. OQutput: Improved weights wy.

function SELFPLAY(p, s, wy)

ey + Vau f(wo; so) > Initial eligibility traces
for (t — 0358 ¢ Spinajtt+ 1) do > Srinai: set of all final states
Vora < f(wy, st) > Value function current state

Choose randomly ¢ € [0, 1]
if (¢ <€) then

Choose a random sy41 > Explorative move (random move)
else
Choose a legal after-state sy11 such that > Greedy move

P (r(st+1) 7V (8t41))
is maximized.

end if
0, if 8441 € Spy
V(st41) < i) Final > Value function next state
f(wy; 8¢41), otherwise
0 ifg<eAs Sri
6 << 1 t+1 & Srinal > Error signal
7(s¢41) YV (841) — Voua, else
w1 — wy + adiey > Learning step
eir1 < YA e + Vi f(Wit1; Se41) > Eligibility traces
p+ (—p)
end for

return wy
end function

Annotations for Algorithm 2:

e Typically, function SELFPLAY is started with an empty board as starting position sg. Equally
well another (randomly) starting position can be choosen to improve exploration.

e The random moves guarantee that not always the same course of game is undertaken. To

train a TD()) agent, the start weights are initialised randomly and function SELFPLAY is
called many (e. g. 10000) times.

e Typically, the exploration rate € and the learning rate a will be diminuished during training.
This enforces that there is more exploration in the beginning, while in the end we have
convergence to a (hopefully well-playing) agent.

e The FoRr-loop will be left as soon as s;41 is a final state. Note that the function approximator
is never trained to move V(sy) closer to r(sy). Only the predecessors of V(sy) are trained.
The generalization effect might indirectly change V(sy) as well, but this value is never used
by the algorithm.

e Why is learning inhibited after a random move? — Because the random move is with high
probability not the best move. Therefore it leads with high probabilty to a ,bad“ V(s¢y1)
(,bad*“ for p). This would deteriorate V'(s;) if it were a winning state. This is certainly not
a desired behaviour. Therefore we skip the learning step after a random move. The only
exception from this rule is if s;11 is a final state with a win for player p: Then the random
move was obviously the best — or one of the best — choices. Therefore V' (s;) should be trained.

5 Hints for Practical Applications

e Apart from complex function approximators (e. g. backprop) one should always try the simple
linear function approximator (possibly with feature vector) as well:

f(w;s) =w-g(s) = Zwkgk;(st) (8)
K

The reason: The linear approximator learns more robustly (has no local minima) and often
learns faster. Although a linear function cannot realize complex I/O-mappings, this disad-
vantage is often compensated when offering complex features in the input. (It is often more
advisable to start with too many features than with too few!)

e [t pays off to think thoroughly about the coding of the feature vector.

e Function approximators with no sigmoid function for the output neuron are sometimes better.

6 Applications of TD()\) and Self-Play

The following overview of applications for TD-learning in games is by no means comprehensive.
We list here only some of the literature relatively close to the algorithms presented.

An application of the Algorithms 1 and 2 presented here to simple games like Nimm-3 or
TicTacToe, including the evaluation of different feature vectors, is shown in Konen and Bartz-
Beielstein [2008, 2009).

The associated Java software has been improved continuously since 2008 and is in the near
future available as open source from Github ... The extensions include N-tuple features, temporal
coherence and an MCTS agent for comparison.

The first application of N-tuple features for TD(\)-based game learning was described in Lucas
[2008a,b] fiir the complex game Othello (in German: Reversi).

The application of TD(A) to the likewise complex game Connect-4 is covered in the papers
Thill et al. [2012], Thill [2012], Thill et al. [2014], Konen and Koch [2014], Bagheri et al. [2015],
Thill [2015]. These papers use N-tuple features as well and this leads to large networks with several
millions of weights. The authors show that such big networks nevertheless can be trained efficiently
using TD()) and eligibility traces.

The associated Java software is available as open source from Github: Thill and Konen [2014].
This software offers an efficient implementation of eligibility traces for millions of weights. Fur-
thermor it allows the comparison of numerous online-adaptive learning methods (IDBD, Autostep,
Temporal Coherence, K1 and others), see Bagheri et al. [2015], Konen and Koch [2014] for further
details.

7 Conclusion

In practice, the most relevant algorithm for board games is the variant , Self-Play: Incremental
TD(A) (Sec. 4.3). It is formulated in such a way that the pseudo code from Sutton and Bonde
[1992], which implements a simple neural network (Backprop) as function approximator, can be
relatively easy incorporated.

Likewise, a function approximation with a linear function over a feature vector can be included.
The gradient is in this case nothing else than the feature vector itself (see Appendix B).

As the numerous applications in Sec. 6 show, the TD(\) algorithm is a powerful tool in the
area of game learning.

Appendix

A Eligibility Traces

This appendix tries to give a short, relavitvely understandable explanation for the method of
eligibility traces.

A problem in temporal difference learning is that a good final reward r(sy) has first to be
transferred by learning to V(sy—_1). Only if this is done (or at least partially done), learning for
V(sn—2) can proceed and so forth. This makes learning slowly and cumbersome.

There are other approaches. One is described in Sutton and Barto [1998] as the so-called Monte
Carlo method (see also Thill et al. [2014]). In this method one waits first for the end of the game,
collects the final reward r(sy) and defines an error signal d; = r(sy) — V(s;) for all states s; visited
during this game. Only when these final error signals d; are available, the learnings steps for all s;
are carried out in analogy to Eq. (6). This method is good in principle, but unwieldy in practice,
since all states and their gradients have to be memorized until the end of the game. Furthermore,
at the end of the game N updates are undertaken in a row. Possible impacts of the 1., 2., ...
update on successive updates are not taken into account.

Let us look again at TD(0) (learning without eligibility traces) and analyze why this methods
learns usually only , slowly and cumbersome®. As an example consider a game with N moves which
finally ends with a reward r(sy). Let us assume that a certain weight w; is involved in every move

Figure 2: Exemplary time course of an eligibility trace (a), if the associated weight gets activations
at certain points in time (b). In the case A < 1 shown here we have exponentially decaying curves.
In the case A = 1 we would have an increasing step function.

81,...,8n.2 Thus the weight ideally should get N times an update u; = a6V, V. But if the value
function is not yet trained®, then we get the answers V(sg) = ... = V(sy_1) ~ 0 from the value
function evaluation. Consequently, the error signal 0; = V(s¢41) — V(s¢) and the update u; will be
zero as well. Only the last step will see a non-zero error signal dy = r(sy) — V(sy—1) = r(sn)
and there is once an update uy = adyV,V with dy =~ r(sy). This will slow down learning
tremendously.

Eligibility traces are a way to cure this. Note at first that the dimension of the eligibility trace
vector e; is equal to the dimension of the weight vector w;. Every weight has its own eligibility
trace. The name eligibility trace says that e;; codes how eligible (for changes) a weight wy; is due to
previous activations of that same weight. e;; contains a trace in time of all such earlier activations.

To explain how eligibility traces work, we look at the special case A = v = 1. This is most
closely to the Monte-Carlo methods mentioned above. Since our weight w; is involved in every
move, it will receive acc. to Eq. (7) in every step an additive contribution V,,V to its eligibility
trace:

€11 =¢€ + VyV

If we assume for simplicity that the gradient has the same value in every step,” we get finally
en—1 = NV, V. If we enter the final learning step Eq. (6) with this ey_; and take dy =~ r(sy)
into account we get:

wy = wy-_1+ aden—1
= wny_1+arNnNV,V

That is, at the end of the complete episode we get a cumulative update N-times u; = aryV,V.

2 With ’involved’ we mean that this weight is substantial activated in every move. If we take for example a binary
feature x; = gi(s:) € {0,1}, then the associated weight w; is in case of a linear function approximater either fully
involved in a move s; (V,V = z; =1) or fully uninvolved (V,,V = z; = 0).

3 This means that the value function has small random weights and any weight sum is close to 0 with high
probability.

4 This is exactly the case for binary features z; = g;(s;) € {0,1} and a linear function approximator.

10

This is what we ideally wanted to have (see above) and what the Monte-Carlo method would deliver
as well.

Now we have an understanding for the TD(1) method. The general TD(A) method offers with
parameter A € [0, 1] the possibility to steer continuously between classical TD methods (A = 0)
and Monte-Carlo methods (A = 1). The TD(1) method has compared to the original Monte-Carlo
method the big advantage that no complicated bookkeeping of states and gradients is necessary.
TD(1) collects the individual weight change elements in the eligibilty trace and applies them finally
in one step, when the reward becomes available.

Is TD(1) always the best among all possible TD(A) methods? — This is not the case since the
TD(1) method sums up — similar to the Monte-Carlo method — all changes for a weight and applies
them in one step. Possible cross-relation effects which the 1., 2., ... learning step could have on the
successive learning steps remain unconsidered. In practice it is often the case that a TD(\) method
with A < 1 is better. Finding the right A is often a matter of experiments. In many applications,
best results are achieved with A € [0.7,0.9].

When using TD(A) with A < 1 the activations more distant in the past will be ,,forgotten* more
and more. Every activation in the past creates an exponentially decaying trace in the correspoding
eligibility trace (Fig. 2).

Further explanations on eligibility traces and their application to a complex learning problem
(Connect-4) are presented in Thill et al. [2014]. This work explains in addition other eligibility
trace variants (replacing traces, resetting traces).

B Typical Function Approximators

Typical function approximators for the value function in Sec. 4.1.2 are:

1. Linear function without output sigmoid:

flw;s) =w-g(s) = wrgk(sy)
k

e The gradient is in this case V,, f(w; st) = g(s¢).

e g(s;) is either a feature vector of arbitrary length formed out of the state s;, or it is
simply s; itself.

2. Linear function with output sigmoid:

fw;sy) =o(w-g(sy)) =0 (Z kak(«*)’t))

k

e The output sigmoid is for example the Fermi function

which has the derivative o/(y) = o(y)(1 — o(y)).
e The gradient is in this case V4, f(w;s:) = f(1 — f)g(se).

11

3. Neural network with output sigmoid:

H

f(wj,vji; St) =0 ijhj mit hj =0 (Z vjigi(st)>

j=1
e The neural network contains H hidden neurons, one output neuron, hidden-to-output
weights w; and input-to-hidden weights v;;.

e The output sigmoid is for example the Fermi function

which has the derivative o/(y) = o(y)(1 — o(y)).

e The gradient is in this case

of _ .
Gu = J0=Dh ()
of of) Oh; = f(1— flw; - hj(1—hj)z; (10)

(%jl- N Thj 8’Uji

References

S. Bagheri, M. Thill, P. Koch, and W. Konen. Online adaptable learning rates for the game Connect-
4. IEEFE Transactions on Computational Intelligence and Al in Games, (accepted 11/2014):1,
2015. doi: http://dx.doi.org/10.1109/TCIAIG.2014.2367105. URL http://www.gm.fh-koeln.
de/~konen/Publikationen/Baghl5.pdf. 9

W. Konen and T. Bartz-Beielstein. Reinforcement learning: Insights from interesting failures
in parameter selection. In G. Rudolph, editor, Proc. Parallel Problem Solving From Nature
(PPSN’2008), pages 478-487. Springer, Berlin, 2008. 8

W. Konen and T. Bartz-Beielstein. Reinforcement learning for games: failures and successes —
CMA-ES and TDL in comparision. In GECCO ’09: Proceedings of the 11th Annual Conference
Companion on Genetic and Fvolutionary Computation Conference, pages 2641-2648, Montreal,
Québec, Canada, 2009. ACM. URL http://www.gm.fh-koeln.de/~konen/Publikationen/
evo-reinforce-GECC02009.pdf. 8

W. Konen and P. Koch. Adaptation in nonlinear learning models for nonstationary tasks. In Bogdan
Filipic, editor, PPSN’2014: 13th International Conference on Parallel Problem Solving From
Nature, Ljubljana, Heidelberg, 2014. Springer. URL http://www.gm.fh-koeln.de/ciopwebpub/
Konel4a.d/Konelda.pdf. 9

S. Lucas. Investigating learning rates for evolution and temporal difference learning. In Proc. IEEFE
Symposium on Computational Intelligence and Games CIG2008, Perth, Australia, December
2008a. IEEE Press. 8

S. M. Lucas. Learning to play Othello with n-tuple systems. Australian Journal of Intelligent
Information Processing, 4:1-20, 2008b. 8

12

http://www.gm.fh-koeln.de/~konen/Publikationen/Bagh15.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/Bagh15.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/evo-reinforce-GECCO2009.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/evo-reinforce-GECCO2009.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone14a.d/Kone14a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone14a.d/Kone14a.pdf

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998. 1, 4, 6, 9, 13

R. S. Sutton and A. Bonde. Nonlinear TD /Backprop pseudo C-code. Technical report, GTE Labo-
ratories, 1992. URL http://webdocs.cs.ualberta.ca/~sutton/td-backprop-pseudo-code.
text. 1, 6,9, 13

G. Tesauro. Practical issues in temporal difference learning. Mach. Learning, 8:257-277,1992. 1, 4

G. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master-level play. Neural
Computation, 6:215-219, 1994. 13

M. Thill. Using n-tuple systems with TD learning for strategic board games (in German). CIOP
Report 01/12, Cologne University of Applied Science, 2012. URL http://www.gm.fh-koeln.
de/ciopwebpub/Thilli2a.d/Thilll2a.pdf. 9

M. Thill. Temporal difference learning methods with automatic step-size adaption for strate-
gic board games: Connect-4 and Dots-and-Boxes. Master thesis, Cologne University of Ap-
plied Sciences, June 2015. URL http://www.gm.fh-koeln.de/~konen/research/PaperPDF/
MT-Thill12015-final.pdf. 9

M. Thill and W. Konen. Connect-4 game playing framework (C4GPF), October 2014. URL
http://github.com/MarkusThill/Connect-Four. 9

M. Thill, P. Koch, and W. Konen. Reinforcement learning with n-tuples on the game Connect-
4. In Carlos Coello Coello, Vincenzo Cutello, et al., editors, PPSN’2012: 12th International
Conference on Parallel Problem Solving From Nature, Taormina, pages 184-194, Heidelberg,
2012. Springer. URL http://www.gn.fh-koeln.de/ciopwebpub/Thil2.d/Thill2.pdf. 9

M. Thill, S. Bagheri, P. Koch, and W. Konen. Temporal difference learning with eligibility traces
for the game Connect-4. In Mike Preuss and Giinther Rudolph, editors, CIG’2014, International
Conference on Computational Intelligence in Games, Dortmund, 2014. URL http://wuw.gn.
fh-koeln.de/~konen/Publikationen/ThillCIG2014.pdf. 9, 11

Sutton and Bonde [1992] is a 'nearly’ complete TD(A) implementation, astonishingly short (!).
Only I/0 and random number generator are missing. The theory behind is explained in Sutton
and Barto [1998], Sec. 6.1-6.4 (TD), (6.8: after states), 7.1-7.3 (eligibility traces), 8.1-8.2 (function
approximation, gradient descent).

Tesauro [1994] is the famous TD-Gammon paper in which Tesauro shows that an RL agent with
astonishingly little prior knowledge can learn to play the game backgammon on a world-class master
level.

13

http://webdocs.cs.ualberta.ca/~sutton/td-backprop-pseudo-code.text
http://webdocs.cs.ualberta.ca/~sutton/td-backprop-pseudo-code.text
http://www.gm.fh-koeln.de/ciopwebpub/Thill12a.d/Thill12a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Thill12a.d/Thill12a.pdf
http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf
http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf
http://github.com/MarkusThill/Connect-Four
http://www.gm.fh-koeln.de/ciopwebpub/Thi12.d/Thil12.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/ThillCIG2014.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/ThillCIG2014.pdf

	Introduction
	States und After-States
	The Value Function
	The Temporal Difference (TD) Algorithm
	Basic ideas
	Temporal Difference
	Function Approximation
	Feature Vector

	The TD() Algorithm
	„Self-Play“ : Incremental TD() Algorithm

	Hints for Practical Applications
	Applications of TD() and Self-Play
	Conclusion
	Eligibility Traces
	Typical Function Approximators

