
e-print http://www.gm.fh-koeln.de/ciopwebpub/Kone17a.d/TR-GBG.pdf

The GBG Class Interface Tutorial:
General Board Game Playing and Learning

Wolfgang Konen

Computer Science Institute,
TH Köln,

University of Applied Sciences,
Germany

wolfgang.konen@th-koeln.de

Initial version: June 2017

Last update: January 2018

Abstract

This technical report introduces GBG, the general board game playing and learning
framework. It is a tutorial that describes the set of interfaces, abstract and non-abstract
classes which help to standardize and implement those parts of board game playing
and learning that otherwise would be tedious and repetitive parts in coding. GBG is
suitable for arbitrary 1-player, 2-player and N -player board games. It provides a set of
agents (AI’s) which can be applied to any such game. This document describes the
main classes and design principles in GBG. GBG is written in Java.

1

http://www.gm.fh-koeln.de/ciopwebpub/Kone17a.d/TR-GBG.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone17a.d/TR-GBG.pdf
mailto:wolfgang.konen@th-koeln.de

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Related Work . 4

2 Class and Interface Overview 6

3 Classes in Detail 6
3.1 Interface StateObservation . 6
3.2 Interface PlayAgent and class AgentBase 7
3.3 Some Remarks on the Game Score . 8
3.4 Difference between Game Score and Game Value 10
3.5 Interface Feature . 11
3.6 Interface XNTupleFuncs . 11
3.7 Interface GameBoard . 12
3.8 Human interaction with the board and with Arena 12
3.9 Abstract Class Evaluator . 13
3.10 Abstract Class Arena . 14
3.11 Abstract Class ArenaTrain . 15

4 Use Cases and FAQs 15
4.1 I have implemented game XYZ and want to use AI agents from GBG – what

do I have to do? . 15
4.2 How to train an agent and save it . 16
4.3 Which AI’s are currently implemented for GBG? 17
4.4 How to write a new agent (for all games)? 17
4.5 How to specialize the TD agent to a new game? 18
4.6 How to write a new TDNTuple2Agt agent for a specific game? 18

5 Open Issues 20

A Appendix: Interface Summary 21
A.1 Interface StateObservation . 21
A.2 Interface GameBoard . 22
A.3 Interface PlayAgent . 23
A.4 Classes ACTIONS and ACTIONS_VT . 23
A.5 Interface Feature . 24
A.6 Interface XNTupleFuncs . 24
A.7 Abstract class Evaluator . 25
A.8 Abstract class Arena . 25
A.9 Abstract class ArenaTrain . 26

B Appendix: Other Game Value Functions 27

2

C Appendix: N-Tuples 29
C.1 Board Cell Numbering . 29
C.2 N-Tuple Creation . 30
C.3 N-Tuple Training and Prediction . 30

D Appendix: Multi-core threads 31

3

1 Introduction

1.1 Motivation

General board game (GBG) playing and learning is a fascinating area in the intersection of
machine learning, artificial intelligence and game playing. It is about how computers can
learn to play games not by being programmed but by gathering experience and learning
by themselves (self-play). The learning algorithms are often called AI agents or just „AI“’s
(AI = artificial intelligence). There is a great variety of learning algorithms around, e.g.
reinforcement learning algorithms like TD(λ), Monte Carlo tree search (MCTS), different
neural network algorithms, Minimax, ... to name only a few.

Even if we restrict ourselves to board games, as we do in this paper (and do not con-
sider other games like video games), there is a plethora of possible board games where
an agent might be active in. The term „General“ in GBG refers to the fact that we want
to have in the end agents or AIs which perform well on a large variety of games. There
are quite different games: 1-person games (like Solitaire, 2048, ...), 2-person games (like
Tic-Tac-Toe, Othello, Chess, ...), many-person games (like Settlers of Catan, Poker, ...).
The game environment may be deterministic or it may contain some elements of chance
(like rolling the dices, ...).

A common problem in GBG is the fact, that each time a new game is tackled, the AI
developer has to undergo the frustrating and tedious procedure to write adaptations of
this game for all agent algorithms. Often he/she has to reprogram many aspects of the
agent logic, only because the game logic is slightly different to previous games. Or a new
algorithm or AI is invented and in order to use this AI in different games, the developer has
to program instantiations of this AI for each game.

Wouldn’t it be nice if we had a framework consisting of classes and interfaces which
abstracts the common processes in GBG playing and learning? If someone programs a
new game, he/she has just to follow certain interfaces described in the GBG framework,
and then can easily use and test on that game all AIs in the GBG library.

Likewise, if an AI developer introduces a new learning algorithm which can learn to play
games, she has only to follow the interface for agents laid down in the GBG framework.
Then she can test this new agent on all games of GBG. Once the interface is implemented
she can directly train her agent, inspect its move decisions in each game, test it against
other agents, run competitions, enter game leagues, log games and so on.

The rest of this document introduces the class concept of GBG. GBG is written in Java.
After a short (and probably incomprehensive) summary of related work in Sec. 1.2, Sec. 2
gives an overview of the relevant classes and Sec. 3 discusses them in detail. Sec. 4
discusses some use cases and FAQs for the GBG class framework. Appendix A lists the
methods of the important classes and interfaces.

1.2 Related Work

Epstein [2001] presented with Hoyle an early general board game playing program. It
learned to play 18 diverse board games, where its strategic principles are general and not

4

game specific. The software implementation of Hoyle is not further described in Epstein
[2001].

There is the discipline General Game Playing (GGP) (Genesereth and Thielscher
[2014], Mańdziuk and Świechowski [2012]) which has a long tradition in artificial intelli-
gence: A GGP competition organized by the Stanford Logic Group is held annually at the
AAAI conferences since 2005 (Genesereth et al. [2005]). Given the game rules written
in the so-called Game Description Language (GDL, Love et al. [2008]), several AIs en-
ter one or several competitions. As an example for GGP-related research, Mańdziuk and
Świechowski [2012] propose a universal method for constructing a heuristic evaluation
function for any game playable within the GGP framework. Méhat and Cazenave [2010]
show a study of single player games in the GGP context where they use variants of Monte
Carlo Tree Search. The program is based on Ary, which is written in C with a Prolog inter-
face engine. The program was tested on 22 single player games. Michulke and Thielscher
[2009] proposes a GGP learning framework where the AI’s learn from experience with
TD(λ) reinforcement learning.

Why then do we need GBG if we have GGP already? – GGP usually solves a tougher
task, each agent is a Tabula Rasa, i. e. no game specific features are known to the AI’s at
compile time. But then GGP is usually only concerned with rather simple games or – if it
tackles more complex games like Connect Four or Othello – it reaches only a very modest
playing strength on them. Another restriction is that GGP can only deal with deterministic
games. We aim with GBG at a slightly different goal: A framework where the game or AI
implementer has the freedom to define features or symmetries at compile time which she
believes to be useful for her game, but where the learning of the game tactics (when to
perform which action) is completely left to the AIs (e. g. learning through self-play). Yet
the features are embedded in a generic interface, so that the agents are general and can
be applied to any game. We then aim at developing AI’s which learn to play perfectly on
simple games and which exhibit a decent playing strength on games of larger complexity.
We include in GBG explicitly non-deterministic games with stochastic elements as well.

Other work which is somewhat related to GBG: OpenAI Gym (Brockman et al. [2016])
is a toolkit for reinforcement learning research which has also a board games environ-
ment supporting a (small) set of games. General Video Game Playing (GVGP, Levine et al.
[2013]) is a related field which does not tackle board games as in GGP or GBG, but instead
video games. There is a yearly GVGP competition GVG-AI [Perez-Liebana et al., 2016].
Similarly, µRTS [Ontanón and Buro, 2015, Barriga et al., 2017] is a framework for com-
paring and competition between AI’s when applied to a simple Real-Time Strategy (RTS)
game.

We define in GBG a board game as a game being played with a known number of
players, N = 1, 2, 3, . . ., usually on a game board or on a table. The game proceeds
through actions (moves) of each player in turn. This differentiates board games from video
games or RTS games where usually each player can take an action at any point in time.
Note that our definition of board games includes (trick-taking) card games (like Poker, Skat,
...) as well. Games for GBG may be deterministic or non-deterministic.

To summarize we propose with GBG a framework which differs from existing frame-
works in the following aspects:

5

• It is written in Java and thus available on most OS platforms.

• It allows the user to define game specific features (see Sec. 3.5) and symmetries
(see Sec. 3.6) which are embedded into the agent framework in a generic way.

• It allows to tackle non-deterministic games.

• It offers an n-tuple based TD(λ) agent (see Sec. 3.6, Sec. 4.6 and Appendix C).

• It allows agent-agent competitions and human-agent play.

2 Class and Interface Overview

Interface StateObservation is the main interface a game developer has to implement once
he/she wants to introduce a new game. A class derived from StateObservation observes
a game state, it can infer from it the available actions, knows when the game is over, can
advance a state into a new legal state given one of the available actions. If a random
ingredient from the game environment is necessary for the next action (of the next player),
the advance function will add it.

The second interface a game developer has to implement is the interface GameBoard,
which realizes the board GUI and the interaction with the board. If one or more humans
play in the game, they enter their moves via GameBoard.

The interface an AI developer has to implement is the interface PlayAgent It represents
an „AI“ or agent capable of playing games. If necessary, it can be trained by self-play.
Once trained, it has methods for deciding about the best next action to take in a game
state StateObservation and getting the agent’s estimate of the score or value of a certain
game state.

The heart of GBG are the abstract classes Arena and ArenaTrain. In the Arena all
agents meet: They can be loaded from disk, they play a certain game, there can be com-
petitions. In ArenaTrain, which is a class derived from Arena, there are additional options
to parametrize, train, inspect, evaluate and save agents.

The helper classes Feature, XNTupleFuncs, and Evaluator support the abstraction in
the classes Arena and ArenaTrain.

3 Classes in Detail

3.1 Interface StateObservation

Interface StateObservation observes the current state of the game, it has utility functions
for

• returning the available actions (getAvailableActions()),

• advancing the state of the game with a specific action (advance()),

• copying the current state

6

• getting the score of the current state
(getScore(), getScore(StateObservation referingState))

• signaling end and winner of the game

If a game has random elements (like rolling the dices in a dice game or placing a new
tile in 2048), advance() is additionally responsible for invoking such random actions and
reporting the results back in the new state. Examples:

• For a dice-rolling game: the game state is the board & the dice number.

• For 2048: the game state is just the board (with the random tile added).

Implementing classes: StateObserverTTT, StateObserver2048, ...
As an example, StateObserverTTT is a state observer for the game TicTacToe: It has

constructors with game-specific parameters (int [][] table, int Player). It has ac-
cess functions getTable() and getPlayer(). The latter returns the Player who has to
move in the current state.

Interface StateObsNondeterministic is derived from StateObservation and

3.2 Interface PlayAgent and class AgentBase

Interface PlayAgent has all the functionality that an AI (= game playing agent) needs. The
most important methods are:

• getNextAction2(sob,...): given the current game state sob, return the best next
action.

• double getScore(sob): the score (agent’s estimate of final reward) for the current
game state sob.

• trainAgent(sob,...): train agent for one episode1 starting from state sob.

Some more methods, e.g. setters and getters, have their defaults implemented in
class AgentBase.2 It might be useful to design a new agent class with the signature ...

extends AgentBase implements PlayAgent.
There is an additional method double estimateGameValue(sob) which has the de-

fault implementation getScore(sob) in AgentBase. This method is called when a train-
ing game is stopped prematurely because the maximum number of moves in an episode
(’Episode length’) is reached.3 See Sec. 3.3 and 3.4 for more details on game score and
game value.

Classes implementing interface PlayAgent and derived from AgentBase:

• RandomAgent: an agent acting completely randomly

1An episode is one specific game playout.
2AgentBase does not implement all methods of the interface PlayAgent, so it has no ... implements

PlayAgent.
3Or, for agents MCTS or MC, when the maximum rollout depth (’Rollout depth’) is reached.

7

• HumanPlayer: an agent waiting for user interaction

• MinimaxAgent: a simple tree search (max-tree for 1-player games, min-max-tree for
2-player games)4

• MaxNAgent: the generalization of Minimax to N-player games with arbitrary N (see
Korf [1991]). It maximizes the kth score in a score tuple.

• ExpectimaxNAgent: the generalization of MaxNAgent to nondeterministic games:
alternating layers of chance nodes and expectimax nodes.

• MCAgent: Monte-Carlo agent (no tree)

• MCTSAgent: Monte-Carlo Tree Search agent

• MCTSExpectimaxAgt: Monte-Carlo Tree Search agent for non-deterministic games:
alternating layers of chance nodes and expectimax nodes. See Kutsch [2017] for
more details.

• TDAgent: general TD(λ) agent (temporal difference reinforcement learning) with neu-
ral network value function (see Sec. 4.5 for more details). This agent requires a
Feature object in constructor, see Sec. 3.5.

• TDNTuple2Agt: TD(λ) agent (temporal difference reinforcement learning) using n-
tuple sets as features (see Sec. 4.6 and Appendix C for more details). This agent
requires an object of class XNTupleFuncs in constructor, see Sec. 3.6.

More details on TD(λ) (temporal difference learning, reinforcement learning for games,
eligibility traces) can be found in the technical report Konen [2015].

Each agent has an AgentState member, which is either RAW, INIT or TRAINED.
Some of the agents (RandomAgent, HumanAgent, MinimaxAgent, MCTSAgent, MCA-

gent) are directly after construction in a TRAINED state, i.e. they are ready-to-use. Mini-
max, MCTS and MC make their observations on-the-fly, starting from the given state. Some
other classes (TDAgent, TDNTuple2Agt, ...) require training, they are after construction in
state INIT.

Classes derived from PlayAgent should implement the Serializable interface. This
is needed for loading and saving agents. Agent members which should be not included
in the serialization process have to be flagged with keyword transient. Agent members
which are user-defined classes should implement the Serializable interface as well.

3.3 Some Remarks on the Game Score

Although the game score (the final result of a game, e. g. „X wins“ or „O wins with that
many points“) seems to be a pretty simple and obvious concept, it becomes a bit more

4Note that Minimax in this simple implementation may not be appropriate for games with random elements,
because Minimax follows in each tree step only one path of the possible successors that advance() may
produce.

8

X

O to move

O

X

X to move

O

X X

O to move
sA

O

X X

O

X to move
sB

O

X X X

O

’O to move’
sC

Figure 1: A succession of states in TicTacToe: If O makes in state sA the losing move
leading to sB, then sB is a clear win for X, so terminal state sC should be a clear loss for
O to be consistent. The game score for sC is −1. The game values (see Sec. 3.4) for sB
and sC are +1 and −1, resp.

confusing if one wants to define the game score consistently for a broader class of states,
not just for a terminal state. We use the following conventions:

• StateObservation.getGameScore() returns the sum of rewards for the player who
has to move in the current state. Most 2-player games will give the reward only in
the end (win/tie/loss), so that for those games getGameScore() is usually 0 as long
as the game state is non-terminal. If the game state is terminal, a negative reward
will be returned if the player loses and a positive reward if the player wins. For other
games there might be also rewards during the game.

• If a state is terminal (e. g. „X wins“) then the „player who moves“ has changed a last
time (i. e. to player O, although the game is over.). Thus the score will be -1 („O
loses“). This seems a bit awkward at first sight, but it is the only way to guarantee
in a succession of actions for 2-player games that the current score is always the
negative of the next state’s score (negamax principle). Fig. 1 shows an example.

• Example: A 2-player game like TicTacToe is terminal when X makes a winning move.
On this terminal state O would have to move next (if it were not terminal). So the
game score for this terminal state (sC in Fig. 1) is a negative reward −1 for player O.
It turns out that TicTacToe is always terminated with either a negative reward or a tie.

• What differentiates sC.getGameScore(StateObservation referingState) from
sC.getGameScore()? – The latter is the game score of sC for the player to move
in sC, while the former is the game score of sC viewed from the perspective of the
player to move in state referingState. In 2-person games this amounts to a factor
−1 if the players in sC and referingState are different. I. e. in the example of
Fig. 1:

sC.getGameScore(sC) = -1 = sC.getGameScore();

sC.getGameScore(sB) = +1;

sC.getGameScore(sA) = -1;

9

This is advantageous for agents like MC or MCTS who perform rollouts from referingState.
With method sC.getGameScore(referingState) they get in all settings a quantity
which they have to maximize, no matter which player ends the game.

• StateObservation.getGameWinner() may only be called if the game is over for the
current state (otherwise an assertion fires). It returns an enum Types.WINNER which
may be one out of {PLAYER_WINS, TIE, PLAYER_LOSES}. The player is always
the player who has to move. The method Types.WINNER.toInt() converts these
enums to integers which correspond to {+1, 0,−1}, resp.

StateObservation defines two methods

public double getMinGameScore();

public double getMaxGameScore();

These methods should return the minimum and maximum game score which can be
achieved in a specific game. This is needed since some PlayAgent (e.g. TDAgent) make
predictions of the estimated game score with the help of a neural network. Since a neural
network has often a sigmoid output function which can emit only values in a certain range
(e.g. [0,1]), it is necessary to map the game scores to that range as well. This can only be
done if the minimum and maximum game score is given.5

3.4 Difference between Game Score and Game Value

There is a subtle distinction between game score and game value. The game score is
the score of a game according to the game laws. For example, TicTacToe has the score
0 for all intermediate states, while a terminal state has either +1/0/-1 as game score for
win/draw/loss of the player to move. In 2048, the game score is the cumulative sum of all
tile merges. Each player usually wants to maximize the expectation value of ’his’ score at
the end of the game.

But the score in an intermediate game state is not a good indicator of the potential of
that state. Two states in 2048 might have the same score, but the game value of these
states can be different. While the first state might be close to the terminal state, the second
one might have a higher mobility and thus ’last’ longer and receive a higher final score.
The precise game value of a state is often not known / not computable, but it is of course
desirable to estimate it. An estimate can be based on a simple heuristic like the weighted
piece count in chess.

The main possibility to deliver a game value is:

• PlayAgent.getScore(StateObservation so) returns the agent’s estimate of the
final score for the player who has to move in StateObservation so – assuming per-
fect play of that player. That is what we call the game value of so. The game value
for 2-player games is usually +1 if it is expected that the player wins finally, 0 if it

5If a precise maximum game score for a certain game is not known, a reasonable ’big’ estimate is usually
also sufficient.

10

is a tie and -1 if he loses. Values in between characterize expectation values in
cases where different outcomes are possible or likely (or where the agent has not yet
gathered enough information or experience).

There are other methods to deliver a game value

• StateObservation.getReward(boolean)

• PlayAgent.estimateGameValue(StateObservation so)

but they are only for advanced users and their description is deferred to Appendix B.

3.5 Interface Feature

Some classes implementing PlayAgent need a game-specific feature vector. As an ex-
ample, consider TDAgent, the general TD(λ) agent (temporal difference reinforcement
learning) with neural network value function. To make the neural network predict the value
of a certain game state, the network needs some feature input (e.g. specific board patterns
which form threats or opportunities, number of them, number of pieces and so on). These
features are usually game-specific. We assume here that every feature can be expressed
as double value (neural networks can only digest real numbers as input), so that the whole
feature vector can be expressed as double[].

To create an Feature object within the general Arena-code, the factory method pattern
is used: Arena defines an abstract method

public Feature makeFeatureClass(int featmode);

The argument featmode allows to construct different flavors of Feature objects and to test
and evaluate them.

In all cases where Arena or ArenaTrain needs a Feature object, it will call this method
makeFeatureClass(int). This will take place whenever a TDAgent object is constructed,
because the TDAgent constructor needs a Feature object as parameter.

Interface Feature has the method

public double[] prepareFeatVector(StateObservation so);

which gets a game state and returns a double vector of features. This vector may serve as
an input for a neural network or other purposes.

Implementing classes: FeatureTTT, Feature2048, ...

3.6 Interface XNTupleFuncs

There is one special agent TDNTuple2Agt, which realizes TD-learning with n-tuple fea-
tures. N-tuple features or n-tuple sets (Lucas [2008], Thill et al. [2014], Bagheri et al.
[2015], Thill [2015]) are another way of generating a large number of features. An n-tuple
is a set of board cells. For every game state StateObservation it can translate the posi-
tion values present in these cells into a double score or value. In order to construct such

11

n-tuples, the user has to implement the interface XNTupleFuncs. See Sec. 4.6 for more
details on the member functions of XNTupleFuncs and Appendix C for more details on
n-tuples.

To create an XNTupleFuncs object within the general Arena-code, the factory method
pattern is used: Arena defines an abstract method

public XNTupleFuncs makeXNTupleFuncs();

In all cases where Arena or ArenaTrain needs a XNTupleFuncs object, it will call this
method makeXNTupleFuncs(). This will take place whenever a TDNTuple2Agt object is
constructed, because the TDNTuple2Agt constructor needs an XNTupleFuncs object as
parameter.

Note: If you do not plan to use TDNTuple2Agt in your game, you do not need to imple-
ment a specific version of class XNTupleFuncs. The default implementation of makeXNTupleFuncs()
in Arena will just throw a RuntimeException.

3.7 Interface GameBoard

Interface GameBoard has the game board GUI (usually in a separate JFrame). It provides
functionality for:

• Maintaining its own StateObservation object m_so. This object is after construction
in a default start state (e. g. empty board). The same state can be reached via
clearBoard() or getDefaultStartState() as well. The associated GUI will show
the default start state.

• Showing or updating the current game state (StateObservation) in the GUI and en-
abling / disabling the GUI elements (updateBoard(...)).

• Human interaction with the board: see Sec. 3.8.

• Returning its current StateObservation object (getStateObs()).

• chooseStartState01(): This method returns randomly one out of a set of different
start states. This is useful when training an agent so that not always the same game
episode is played but some variation (exploration) occurs.

Example for TicTacToe: The implementation in GameBoardTTT returns with proba-
bility 0.5 the default start state (empty board) and with probability 0.5 one out of the
possible next actions (an ’X’ in any of the nine board positions).

Implementing classes: GameBoardTTT, GameBoard2048, ...

3.8 Human interaction with the board and with Arena

During game play: How is the integration between user actions (human moves) and AI
agent actions implemented?

12

If GameBoard request an action from Arena, then its method isActionReq() returns
true. This causes the selected AI to perform a move. If on the other hand a human interac-
tion is requested, Arena issues a setActionReq(false) and this causes isActionReq()

to return false as well. GameBoard then waits for GUI events until a user (human) action
is recorded. GameBoard is responsible for checking whether the human action is legal
(isLegalAction()).6 If so, then GameBoard issues an advance(). Method advance()

opens the possibility for invoking random elements from the game environment (e. g.
adding a new tile in 2048), if necessary.

When all this has happened, GameBoard sets its internal state such that isActionReq()
returns true again. Thus it asks Arena for the next action and the cycle continues. Finally,
Arena detects an isGameOver()-condition and finishes the game play.

3.9 Abstract Class Evaluator

Class Evaluator evaluates the performance of a PlayAgent. Evaluators are called in menu
item ’Quick Evaluation’, during training and at the end of each competition in menu item
’Multi-Competition’. It is important to note that Evaluator calls have no influence on the
training process, they just measure the (intermediate or final) strength of a PlayAgent.

In the constructor

public Evaluator(PlayAgent e_PlayAgent, int stopEval,

int mode, int verbose);

the argument mode allows derived classes to create different types of evaluators. These
may test different abilities of PlayAgent.7

A normal evaluation is started by calling Evaluator’s method eval which calls in turn
the abstract method

abstract protected boolean eval_Agent();

and counts the consecutive successful returns from that method. The argument stopEval
sets the number of consecutive evaluations that the abstract method eval_Agent() has
to return with true until the evaluator is said to reach its goal (method goalReached()

returns true). This is used in XArenaFunc’s method train() as a possible condition to
stop training prematurely.

Method eval_Agent() needs to be overridden by classes derived from Evaluator. It
returns true or false depending on a user-defined success criterion. In addition, it lets
method double getLastResult() return a double characterizing the evaluation result
(e. g. the average success rate of games played against Minimax player).

Concrete objects of class Evaluator are usually constructed by the factory method

6 see method HGameMove(x,y) in GameBoardTTT for an example.
7For complex games it is often very difficult or impossible to have a perfect evaluator. Remember that (a)

that the game tree can be too complex to retrieve the perfect action for a certain state and that (b) a perfect
Evaluator should evaluate the actions of PlayAgent to every possible state, which would take too long (or is
impossible) for games with larger state space complexity. A partial way out is to have different Evaluator modes
which evaluate the agent from different perspectives.

13

abstract public Evaluator makeEvaluator(PlayAgent e_PlayAgent,

int stopEval, int mode, int verbose);

in Arena or ArenaTrain.
Implementing classes: EvaluatorTTT, Evaluator2048, ...

3.10 Abstract Class Arena

Class Arena is an abstract class for loading agents and playing games. Why is it an ab-
stract class? – Arena has to create an object implementing interface GameBoard, and
this object will be game-specific, e. g. a GameBoardTTT object. To create such an ob-
ject within the general Arena-code, the factory method pattern is used: Arena defines the
abstract methods

abstract public GameBoard makeGameBoard();

abstract public Evaluator makeEvaluator(...);

The first method is a factory method for GameBoard objects. The second method is a
factory method for Evaluator objects. Both will be implemented by classes derived from
Arena. That is, a derived class ArenaTTT can be very thin, it just implements the methods
makeGameBoard() and makeEvaluator() and lets them return (in the example of TicTac-
Toe) GameBoardTTT and EvaluatorTTT objects, resp.

Class Arena has in addition the factory method

public Feature makeFeatureClass(int);

If it is not overridden by derived classes, it will throw a RuntimeException (no game-
tailored Feature object available). If a class derived from Arena wants to use a trainable
agent requiring Feature (e. g. TDAgent) then it has to override makeFeatureClass.

Class Arena has similarly the factory method

public XNTupleFuncs makeXNTupleFuncs();

which can be used to generate a game-tailored XNTupleFuncs object, if needed (if agent
TDNTuple2Agt is used). If not overridden, it will throw a RuntimeException.

Class Arena has the following functionality:

• choice of agents for each player (load)

• playing games (AI agents & humans)

• inspecting the move choices of an agent

• logging of played games (option for later replay or analysis)

• a slider during agent-agent game play to control the playing velocity

• (TODO) undo/redo possibilities

14

• (TODO) game balancing

• (TODO) game leagues, round-robin tournaments, ...

Derived abstract class: ArenaTrain. Derived non-abstract classes: ArenaTTT, Arena2048,
...

3.11 Abstract Class ArenaTrain

Class ArenaTrain is an abstract class derived from Arena which has additional functional-
ity:

• specifying all parameters for an agent

• training an agent (one or multiple times)

• evaluating agents, competitions (one or multiple times)

• saving agents

• (TODO) replay memory for better training

The helper classes XArenaFuncs, XArenaButtons, XArenaMenu, XArenaTabs contain
functionality needed for Arena and ArenaTrain.

Derived non-abstract classes: ArenaTrainTTT, ArenaTrain2048, ...

4 Use Cases and FAQs

4.1 I have implemented game XYZ and want to use AI agents from GBG –
what do I have to do?

As a game developer you have to implement the following four interfaces for your game:

• StateObserverXYZ implements StateObservation

• GameBoardXYZ implements GameBoard

• EvaluatorXYZ extends Evaluator

• FeatureXYZ extends Feature (only needed, if the game wants to use trainable
agents like TDAgent).

• XNTupleFuncsXYZ extends XNTupleFuncs (only needed, if the game wants to use
the n-tuple agent TDNTuple2Agt).

Once this is done, you only need to write a very ’thin’ class ArenaTrainXYZ with suitable
constructors, which overwrites the abstract methods of class ArenaTrain with the factory
pattern methods

15

public GameBoard makeGameBoard() {

gb = new GameBoardXYZ(this);

return gb;

}

public Evaluator makeEvaluator(PlayAgent pa, GameBoard gb,

int stopEval, int mode, int verbose) {

return new EvaluatorXYZ(pa,gb,stopEval,mode,verbose);

}

If needed, you should overwrite the methods (see Sec. 4.5 and Sec. 4.6)

public Feature makeFeaturClass(int featmode) {

return new FeatureXYZ(featmode);

}

public XNTupleFuncs makeXNTupleFuncs() {

return new XNTupleFuncsXYZ();

}

as well.
If you do not want to use the agents TDAgent and TDNTuple2Agt needing these fac-

tory methods, you may just implement stubs throwing suitable exceptions:

public Feature makeFeaturClass(int featmode) {

throw new RuntimeException("Feature not implemented for XYZ");

}

public XNTupleFuncs makeXNTupleFuncs() {

throw new RuntimeException("XNTupleFuncs not implemented for XYZ");

}

Finally you need a class with main() to launch ArenaTrain. You may copy and adapt
the example in LaunchTrainTTT.

Then you can use for your game all the functionality laid down in ArenaTrain and all the
wisdom of the AI agents implementing PlayAgent. Cool, isn’t it?

4.2 How to train an agent and save it

1. Create an ArenaTrain object

2. Select an agent and set its parameters

3. Set training-specific parameters:

• maxTrainNum: ’Training games’ = number of training episodes,

• numEval: after how many episodes an intermediate evaluation is done,

• epiLength: ’Episode length’ = maximum allowed number of moves in a training
episode. If it is reached, the game is stopped and PlayAgent.estimateGameValue()

is returned (either up-to-now-reward or estimate of current + future rewards). If
the game terminates earlier, the final game score is returned.

16

4. Train the agent & visualize intermediate evaluations.

5. Optional: Inspect the agent (how it responds to certain board situations).

6. Save the agent

4.3 Which AI’s are currently implemented for GBG?

The following AI’s (agents) are currently implementing interface PlayAgent:

• Class TDAgent (Temporal difference reinforcement learning)

• Class TDNTuple2Agt (Temporal difference learning with n-tuples)

• Class MC (pure Monte Carlo search, no tree)

• Class MCTSAgent (Monte Carlo Tree Search)

• Class MCTSExpectimaxAgt (Monte Carlo Tree Search for non-deterministic games)

• Class MinimaxAgent (Minimax tree search of prescribed depth)

• Class RandomAgent (an agent acting completely randomly)

• Class HumanAgent (an agent waiting for human input on the game board)

4.4 How to write a new agent (for all games)?

Of course your new agent NewAgent has to implement the interface PlayAgent. You may
want to derive your new agent from AgentBase to have a few basic functions already with
their default implementations. These functions can be overridden if necessary.

The new agent should as well implement the interface Serializable (java.io) to be load-
able and savable.

There are a few places in the code where the new agent has to be registered:

• Types.GUI_AGENT_LIST: Add a suitable agent nickname "nick". This is how the
agent will appear in the agent choice boxes.

• XArenaFuncs.constructAgent(): Add a suitable clause
if (sAgent.equals("nick")) ...

• XArenaFuncs.fetchtAgent(): Add a suitable clause
if (sAgent.equals("nick")) ...

• XArenaTabs.showParamTabs(): Add a suitable clause
if (selectedAgent.equals("nick")) ...

• XArenaMenu.loadAgent(): Add a suitable clause
if (td instanceof NewAgent) ...

17

• LoadSaveGBG.loadGBGAgent(): Add a suitable clause
if (obj instanceof NewAgent) ...

If the agent has new sensible default parameters, they may be added to function
setParamDefaults in classes TDParams, NTParams or other.

4.5 How to specialize the TD agent to a new game?

Suppose you have implemented a new game XYZ and want to write a TD agent (temporal
difference agent) which learns this game. What do you have to do? – Luckily, you can
re-use most of the functionality laid down in class TDAgent (see Sec. 3.2).

1. Write a new Feature class

public class FeatureXYZ implements Feature, Serializable

This is the only point where some code needs to be written: Think about what fea-
tures are useful for your game. In the simplest case this might be the raw board po-
sitions, but these features may characterize the win- or loose-probability for a state
only rather indirectly. Other patterns may characterize the value (or the danger) of a
state more directly. For example, in the game TicTacToe any two-in-a-line opponent
pieces accompanied by a third empty position pose an immanent threat. A typical
feature may be the count of those threats. N-tuple sets (Lucas [2008], Thill et al.
[2014], Bagheri et al. [2015], Thill [2015]) are another way of generating a large num-
ber of features in a generic way (but they are not part of TDAgent, see Sec. 4.6,
Appendix C and TDNTuple2Agt instead).

2. Add to ArenaXYZ and ArenaTrainXYZ the overriding method

public Feature makeFeatureClass(int featmode) {

return new FeatureXYZ(featmode);

}

TDAgent will generate by reinforcement learning a mapping from feature vector to
game value (estimates of the final score, see Sec. 3.4) for all relevant game states.

The class ArenaTrainTTT (together with FeatureTTT) may be inspected to view a spe-
cific example for the game TicTacToe.

4.6 How to write a new TDNTuple2Agt agent for a specific game?

Suppose you have implemented a new game XYZ and want to write a TD (temporal differ-
ence) agent using n-tuples which learns this game. What do you have to do? – Luckily,
you can re-use most of the functionality laid down in class TDNTuple2Agt (see Sec. 3.2).
As a game implementer you have to do the following:

1. Write a new XNTupleFuncs class (Sec. 3.6)

18

public class XNTupleFuncsXYZ

implements XNTupleFuncs, Serializable

Here you have to code some rather simple things like the number of board cells in
your game (getNumCells()) and the number of position values (getNumPositionValues())
that can appear in each cell. This is for example 9 and 3 (O/empty/X) in the game
TicTacToe.

Next you implement

int[] getBoardVector(so)

which transforms a game state so into an int[] board vector (length: getNumCells()).
See Appendix C.1 for board cell numbering and a specific example.

If your game has symmetries (the game TicTacToe has for example eight symmetries,
4 rotations × 2 mirror reflections), the function

int[][] symmetryVectors(int[] boardVector)

should return for a given board vector all symmetric board vectors (including itself).
If the game has no symmetries, it returns just the board vector itself.

The method

HashSet adjacencySet(int iCell)

returns the set of cells adjacent to the cell with number iCell. Whether adjacency is
a 4-point- or an 8-point-neighborhood or something else is defined by the user. This
function is needed by TDNTuple2Agt if the shape of the n-tuples is to be created by
random walk.

Finally you implement

int[][] fixedNTuples()

a function returning a fixed set of n-tuples suitable for your game. If you do not
need fixed n-tuple sets, you may leave fixedNTuples() unimplemented (i. e. let it
throw an exception) and chose in the NTPar (n-tuple params) tab ’Random n-tuple
generation’.

2. Add to ArenaXYZ and ArenaTrainXYZ the overriding method

public XNTupleFuncs makeXNTupleFuncs() {

return new XNTupleFuncsXYZ();

}

19

The class ArenaTrainTTT (together with XNTupleFuncsTTT) may be inspected to view
a specific example for the game TicTacToe.

TDNTuple2Agt offers several possibilities to construct n-tuples:

(a) using a predefined, game-specific set of n-tuples (see fixedNTuples() above),

(b) random n-tuples generated by random-cell-picking (the cells in an n-tuple are in gen-
eral not adjacent), and

(c) random n-tuples generated by random walk (every cell in each n-tuple has adjacent
at least one other cell of this n-tuple; needs method adjacencySet, see above).

A cell may (and often should) be part of several n-tuples.
See Appendix C for further information on n-tuples.

5 Open Issues

The current GBG class framework is still in its test phase. The design of the classes
and interfaces may need further reshaping when more games or agents are added to the
framework. There are a number of items not fully tested or not yet addressed:

• The GUI for Arena and ArenaTrain is just a quick hack adapted from earlier programs
and may need further refinement.

• The above-mentioned elements for Arena and ArenaTrain and further elements that
are planned but not yet implemented:

– Add Arena and ArenaTrain launchers which allow to select between the differ-
ent implemented games and then launch the appropriate derived Arena and
ArenaTrain class.

– undo/redo possibilities

– game balancing

– game leagues, round-robin tournaments, ...

– competition framework, time measurements for agents (play &train)

– client-server architecture for game play via applet on a game page. Option for
a ’hall of fame’. An example for the game Hexi is available from TU Wien 8.

– Implement the game Sim (= Hexi) in the Arena and ArenaTrain framework. A
Java code example of the Sim board GUI is available from TU Wien 9. Gener-
alize the number of nodes (not only 6). Later, one may create a 3-player variant
of Sim and test the framework on this.

8http://www.dbai.tuwien.ac.at/proj/ramsey
9http://www.dbai.tuwien.ac.at/proj/ramsey

20

http://www.dbai.tuwien.ac.at/proj/ramsey
http://www.dbai.tuwien.ac.at/proj/ramsey

– Replay memory for better training: This is the idea used by DeepMind in learn-
ing Atari video games. Played episodes are stored in a replay memory pool and
used repeatedly for training.

• The extension to N -player games (N > 2) is fully functional but not yet tested. An
example to fully test N -player games may be the 3-player variant of the game Sim.
The cases N = 1 and N = 2 need also to be tested on a variety of 1- and 2-player
games.

• The extension to games with multi-moves per turn is functional but not yet tested. A
candidate to test such multi-moves would be the game Kalah (and other variants of
the Mancala type, see https://en.wikipedia.org/wiki/Kalah)

A Appendix: Interface Summary

A.1 Interface StateObservation

/**

* Class StateObservation observes the current state of the game,

* it has utility functions for

*

* returning the available actions (getAvailableActions()),

* advancing the state of the game with a specific action (advance()),

* copying the current state

* signaling end, score and winner of the game

*

*

* @author Wolfgang Konen, TH Köln, Feb'17

*/

public interface StateObservation {

public StateObservation copy();

public String getName();

public String stringDescr();

public double getGameScore();

public double getGameScore(StateObservation referingState);

public ScoreTuple getGameScoreTuple();

public double getReward(boolean rgs);

public double getReward(StateObservation referingState, boolean rgs);

public double getMinGameScore();

public double getMaxGameScore();

public void advance(ACTIONS action);

public void advanceDeterministic(ACTIONS action);

21

https://en.wikipedia.org/wiki/Kalah

public void advanceNondeterministic();

public boolean isDeterministicGame();

public boolean isLegalState();

public boolean isGameOver();

public Types.WINNER getGameWinner();

public ArrayList<ACTIONS> getAvailableActions();

public void setAvailableActions();

public int getNumAvailableActions();

public ACTIONS getAction(int i);

public void storeBestActionInfo(ACTIONS actBest, double[] vtable);

public int getNumPlayers(); // n

public int getPlayer(); // (0,1,...,n-1)

}

A.2 Interface GameBoard

/**

* Each class implementing interface GameBoard has the board game GUI.

*

* It has an internal object derived from StateObservateion which

* represents the current game state. It can be retrieved (getStateObs()),

* reset and retrieved (getDefaultStartState()) or a random start

* state can be chosen (@link #chooseStartState01()).

* @author Wolfgang Konen, TH Köln, Nov'16

*/

public interface GameBoard {

public void clearBoard(boolean boardClear, boolean vClear);

public void updateBoard(StateObservation so, boolean enableOccupiedCells

, boolean showValueOnGameboard);

public void showGameBoard(Arena arena,boolean alignToMain);

public void toFront();

public boolean isActionReq(); // action requested from Arena?

public void setActionReq(boolean actionReq);

public void enableInteraction(boolean enable);

public StateObservation getStateObs();

public StateObservation getDefaultStartState(); // empty-board state

public StateObservation chooseStartState01();

public String getSubDir();

}

22

A.3 Interface PlayAgent

/**

* The abstract interface for the game playing agents.

*

* @author Wolfgang Konen, TH Köln, Nov'16

*/

public interface PlayAgent {

public enum AgentState {RAW, INIT, TRAINED};

public ACTIONS_VT getNextAction2(StateObservation sob,

boolean random, boolean silent);

public double getScore(StateObservation sob);

public ScoreTuple getScoreTuple(StateObservation sob);

public double estimateGameValue(StateObservation sob);

public Types.ScoreTuple estimateGameValueTuple(StateObservation sob);

public boolean trainAgent(StateObservation so); // for one episode

public String printTrainStatus();

public String stringDescr();

public String stringDescr2();

public String getName();

public void setName(String name);

public AgentState getAgentState();

public void setAgentState(AgentState aState);

public int getMaxGameNum();

public void setMaxGameNum(int num);

public int getGameNum();

public long getNumLrnActions();

public long getNumTrnMoves();

public void setGameNum(int num);

}

A.4 Classes ACTIONS and ACTIONS_VT

public class ACTIONS implements Serializable, Comparable<ACTIONS> {

public ACTIONS(int numVal, boolean random);

public int toInt();

public static ACTIONS fromInt(int iAct);

public int hashCode();

public boolean equals(Object object);

public int compareTo(ACTIONS action);

public boolean isRandomAction();

public void setRandomSelect(boolean randomSelect);

23

}

public class ACTIONS_VT extends ACTIONS {

public ACTIONS_VT(int numVal, boolean random, double [] vtable, double vbest);

public double[] getVTable();

public double getVBest();

}

A.5 Interface Feature

/**

* Interface Feature translates game states into feature vectors.

*

* Method prepareFeatVector(so) returns the feature vector

* for state so. Child classes have usually constructors accepting a

* single argument 'featmode'. The argument 'featmode' allows to

* construct different flavors of Feature objects.

* The acceptable values for 'featmode' in a certain child class

* are retrieved with getAvailFeatmode().

*/

public interface Feature {

public double[] prepareFeatVector(StateObservation so);

public String stringRepr(double[] featVec);

public int getFeatmode();

public int[] getAvailFeatmode();

public int getInputSize(int featmode);

}

A.6 Interface XNTupleFuncs

/**

* Interface XNTupleFuncs contains game-specific functions

* for using n-tuple sets.

*/

public interface XNTupleFuncs {

public int getNumCells();

public int getNumPositionValues();

public int getNumPlayers();

public int[] getBoardVector(StateObservation so);

public int[][] symmetryVectors(int[] boardVector);

public int[][] fixedNTuples(int mode);

24

public int[] getAvailFixedNTupleModes();

public HashSet adjacencySet(int iCell);

}

A.7 Abstract class Evaluator

/**

* Evaluates the performance of a PlayAgent in a game.

*/

abstract public class Evaluator {

protected PlayAgent m_PlayAgent;

protected int verbose=1;

public Evaluator(PlayAgent e_PlayAgent, int stopEval);

public Evaluator(PlayAgent e_PlayAgent, int stopEval, int verbose);

public boolean eval();

abstract protected boolean eval_Agent();

abstract public double getLastResult();

public boolean goalReached(int gameNum);

public boolean setState(boolean stateE);

public boolean getState();

public String getMsg();

public String getGoalMsg(int gameNum);

abstract public boolean isAvailableMode(int mode);

abstract public int[] getAvailableModes();

public static int getDefaultEvalMode()

abstract public int getQuickEvalMode();

abstract public int getTrainEvalMode();

abstract public int getMultiTrainEvalMode();

abstract public String getPrintString();

abstract public String getPlotTitle();

}

A.8 Abstract class Arena

/**

* This class contains the GUI and the task dispatcher for the game.

* The GUI for buttons and choice boxes is in {@link XArenaButtons}.

*

* Run this class from the {@code main} in {@link LaunchArenaTTT})

* for the TicTacToe game.

*

25

* @author Wolfgang Konen, TH Köln, Nov'16

*/

abstract public class Arena extends JPanel implements Runnable

{

public enum Task {PARAM, TRAIN, MULTTRN, PLAY, INSPECTV

, COMPETE, SWAPCMP, MULTCMP, IDLE };

protected GameBoard gb;

public Task taskState;

public Arena();

public Arena(JFrame);

public void init();

public void run();

public void PlayGame();

public void enableButtons(boolean state);

public void setStatusMessage(String msg);

public StatusBar getStatusBar();

public Feature makeFeatureClass(int featmode);

public XNTupleFuncs makeXNTupleFuncs();

abstract public String getGameName();

abstract public GameBoard makeGameBoard();

abstract public Evaluator makeEvaluator(PlayAgent pa, GameBoard gb,

int stopEval, int mode, int verbose);

abstract public void performArenaDerivedTasks();

}

A.9 Abstract class ArenaTrain

/**

* This class contains the GUI for the arena with train capabilities.

* It extends the task dispatcher of Arena with method

* performArenaDerivedTasks() which contains tasks to trigger functions

* for agent learning, parameterization, inspection and so on.

*

* @author Wolfgang Konen, TH Köln, Nov'16

*/

abstract public class ArenaTrain extends Arena

{

public ArenaTrain();

public ArenaTrain(JFrame frame);

public void performArenaDerivedTasks(); // extend task dispatcher

protected void InspectGame(); // inspect agent X on game positions

}

26

B Appendix: Other Game Value Functions

Sec. 3.3 and 3.4 have introduced with

StateObservation.getGameScore()

PlayAgent.getScore(StateObservation sob)

the main functions to retrieve a game score and a game value. There are two other func-
tions delivering a game value; they are only required for more advanced needs:

• Interface StateObservation delivers with getReward(boolean rgs) a function sim-
ply returning the game score in case rgs==true (’reward is game score’) and an-
other (game-dependent) function in case rgs==false. This opens the possibility
that the reward might be something different from game score. Example: In the
game 2048, a possible reward for a state can be the number of empty tiles in that
state.

• Interface PlayAgent delivers with estimateGameValue(so) a function (perhaps train-
able / adjustable from previous experiences) that estimates the future game value
at end of play. The difference to PlayAgent.getScore(StateObservation so):
estimateGameValue(so) may NOT call getScore(so) or getNextAction(so), since
these functions may call estimateGameValue(so) inside (e.g. if a certain episode
length is reached) and this would result in infinite recursion. A simple implementation
can be to return just so.getReward(rgs), but other implementations are possible as
well.

A potential use of pa.estimateGameValue(sob) is to compute in MC or MCTS the
final value of a random rollout in cases where the rollout did not reach a terminal game
state (since the episode lasts longer than the ’Rollout depth’ as it is for example in 2048
often the case).

A second use of pa.estimateGameValue(sob) is in trainable agents, when the maxi-
mum training episode length (if any) is reached.

A third use of pa.estimateGameValue(sob) is in MaxNAgent when the tree depth is
reached but the game is not yet over. Then we call pa.estimateGameValueTuple(sob).

The wrapper MaxNWrapper overrides pa.estimateGameValueTuple(sob) and lets
the wrapped agent return its score tuple via wrappedAgt.getScoreTuple(sob).

It is dependent on the class implementing PlayAgent what

estimateGameValue(sob)

actually returns. If it is too complicated to train a value function (or if it is simply not
needed, because for a game like TicTacToe we come always to an end during rollout),
then estimateGameValue(sob) may simply return sob.getReward(rgs).

If we integrate a trainable game value estimation into a class implementing PlayAgent,
then agents that formerly did not need training (Minimax, MC, MCTS, ...) will require train-
ing. They should be after construction in AgentState INIT. How the training is actually done
depends fully on the implementing agent.

27

method remark

class StateObservation
getGameScore() the game score
getGameScore(sob) ... relative to refering state sob
getGameScore(int i) ... relative to player i
getGameScoreTuple() a ScoreTuple with game scores for all players
getReward(rgs) the game reward (=game score, if rgs==true)
getReward(sob,rgs) ... relative to refering state sob
getReward(int i,rgs) ... relative to player i
getRewardTuple(rgs) a ScoreTuple with rewards for all players

class PlayAgent
getScore(sob) the game value = agent’s estimate of sob’s final score
getScoreTuple(sob) a ScoreTuple with game values for all players
estimateGameValue(sob) agent’s estimate of game value for sob
estimateGameValueTuple(sob) a ScoreTuple with agent estimates for all players

Table 1: Summary of all game score and game value functions in GBG.

Is there a need to distinguish between an PlayAgent’s

pa.getScore(sob) and pa.estimateGameValue(sob)

? – Yes, it is! For a PlayAgent that uses estimateGameValue(sob) inside getScore(sob)

(as it is the case for Max-N, MCTS and MC when the final tree depth or rollout depth
is reached), it is necessary that there is a final method estimateGameValue(sob) which
returns a game value without calling getScore(sob). Otherwise an infinite loop would
result.

Table 1 gives an overview over all functions in GBG returning a game score or a game
value. Summary of main facts:

• getReward(...,rgs) returns getGameScore(...,rgs), if rgs==true. Otherwise it
returns a specific reward, depending on the nature of the game (whatever the class
derived from StateObservation implements).

• getReward() and getGameScore() return the cumulative reward and game score
for the StateObservation object this. If the user wants the delta reward, he/she has
to substract the reward of the preceding state.

• getScore returns the agent’s estimate of the game value. It may contain recursion
up to a tree / rollout depth, depending on the nature of the agent. If the maximum
depth is reached, it may call estimateGameValue.

• estimateGameValue returns also the game value estimate. But it returns a coarser
estimate, since it may not call getScore back (to avoid an infinite loop).

• The same holds for the ...Tuple versions of getScore and estimateGameValue.

28

(a)

0 1 2 3

0 3

1 2

0

1

2 3 4 5

0 1 2 3

0

1

2

3

(b)

0 1 2 3

0 3

1 2

0

1

2 3

4

0 1

0 1 2 3

Figure 2: Two examples for n-tuples: (a) 3 n-tuples, (b) 4 n-tuples of varying length and
placement.

C Appendix: N-Tuples

C.1 Board Cell Numbering

Each n-tuple is a list of board cells Lucas [2008]. Board cells are specified by numbers. The
canonical numbering for a rectangular board is row-by-row, from left to right. For example,
a 4× 4 board would carry the numbers

00 01 02 03

04 05 06 07

08 09 10 11

12 13 14 15

Other (irregular) boards may carry other (user-specified) cell numbers. Each choice of
numbering is o.k., it has only to be used consistently throughout the game.

Given the board cell numbering, the method

int[] XNTupleFuncs::getBoardVector(StateObservation so)

returns a board vector with the position value for each board cell according to this number-
ing. Take for example the canonical board cell numbering and the game TicTacToe, where
the board cells run from 00 to 08. The position values are 0: O, 1: empty, 2: X. For state
sA in Fig. 1 the board vector is

bVec = {1, 1, 0, 1, 2, 2, 1, 1, 1};

29

C.2 N-Tuple Creation

Fig. 2 shows two examples of 4 × 4 boards with fixed (user-specified) n-tuple sets. The
canonical cell number is obtained from

4× row_number + col_number

Example (a) would be coded in a class derived from XNTupleFuncs as

public int[][] fixedNTuples() {

int nTuple[][]={ {0,1,2,3}, {1,5,6,2}, {0,4,8,9,10,11} };

return nTuple;

}

Example (b) would be coded as

public int[][] fixedNTuples() {

int nTuple[][]={ {4,5,6,7}, {2,6,7,3}, {0,4,8,9,13}, {10,11} };

return nTuple;

}

Each n-tuple contains each cell at most once. But a set of n-tuples may (and often should)
contain the same cell multiple times.

Fixed n-tuples are a user-specified way of creating n-tuples. It is also possible to let the
n-tuple factory build random n-tuples:

1. Random points: Cells are picked at random, no cell twice10, no topographical con-
nection. This is often not advantageous because in many board games the neigh-
borhood of a cell is more important for determining its value than an arbitrary other
more distant cell.

2. Random walks: Cells are picked at random, no cell twice, with adjacency constraint.
That is, each cell of the n-tuple list must be adjacent to at least one other cell in the
n-tuple. What adjacent actually means in a certain game is specified by the user
through the XNTupleFuncs method

/* Return all neighbors of cell number iCell */

public HashSet adjacencySet(int iCell);

C.3 N-Tuple Training and Prediction

How are the n-tuples used to generate features? – Each n-tuple has an associated look-up
table (LUT) of length Pn where n is the n-tuple length and P is the number of position
values11 each cell might have. Consider the example of TicTacToe with 3 cell position
values {X,-,O} (P = 3) leading for an n-tuple of length n = 2 to 32 = 9 possible LUT
entries

10within the same n-tuple
11the number that XNTupleFuncs method getNumPositionValues() returns

30

{XX, -X, OX, X-, --, O-, XO, -O, OO}

These are features. Even for a small number of n-tuples this will generate quite a large
number of features. For example in Fig. 2(a), the number of features is 34+34+36 = 891.
On a larger board, a more realistic setting would be, for example, 40 n-tuples of length 8,
resulting in 40 · 38 = 262 440 features.

Each feature i in n-tuple ν has an associated weight wν,i. Given a certain board state,
we look first which of those features are active (xν,i = 1) or inactive (xν,i = 0) in that board
state. Then the n-tuple network computes its estimate V (est) of the game value through

V (est) = σ

(
m∑
ν=1

Pn−1∑
i=0

wν,ixν,i

)
(1)

which is simply a neural net without hidden layer and with a sigmoid function σ(·).12 We
compare the estimate generated by this net with the target game value V prescribed by
TD-learning. A δ-rule learning step with step-size α (gradient descent) is made for each
weight in order to decrease the perceived difference δ = V − V (est) between both game
values (Thill et al. [2014], Thill [2015]).

For complex games it might be necessary to train such a network for several hundred
thousand or even million games in order to reach a good performance. The so-called
eligibility traces are a general technique from TD-learning to speed up learning. They can
be activated in the GBG framework by setting parameter λ > 0 in the TD pars parameter
tab. Further details on eligibility traces are found in Thill et al. [2014].

Once the network is trained, the game value estimate V (est) is used to decide about
the next action.

To further speed up learning, symmetries may be used: Symmetries are transforma-
tions of the board state which lead to board states with the same game value. If weights
for symmetric states are trained simultaneously, this will lead to better generalization of
the trained agent. For example in the case of TicTacToe, there are eight symmetries: the
board state itself plus its three 90o rotations and the mirrored board state with its three
90o rotations. Instead of performing only one learning step with the board state itself, one
can do eight learning steps with all symmetric states. This may greatly speed up learning,
since more weights can learn on each move and the network generalizes better.

The knowledge of the symmetric states is game-specific. The user has to code it in
XNTupleFuncs method

public int[][] symmetryVectors(int[] boardVector);

See Sec. 3.6 and Sec. 4.6 for further information on this method.

D Appendix: Multi-core threads

GBG supports for several time-consuming operations multi-core (parallel) threads to speed
up calculation. The operations are given in Table 2.

12In TDNTuple2Agt the sigmoid function is always σ = tanh (see helper class NTupleValueFunc), so that
V (est) ∈ [−1, 1] holds.

31

method remark

class MCAgent, MCAgentN
getNextAction_PAR parallelization over available actions
getNextAction_MassivePAR parallelization over available actions AND

over rollouts

class EvaluatorHex
competeAgainstMCTS_diffStates_PAR parallelization over different start states for

eval mode 10 & agent TDNTuple2Agt

class Evaluator2048
eval_Agent 2 parallelization threads over evaluation

games for 2 agents MCTS-Expectimax & Ex-
pectimaxWrapper

Table 2: Summary of various multi-core threads in GBG.

Note that an operation can only be parallelized, if the relevant routines and agents are
thread-safe. This is for example the case for agent TDNTuple2Agt when it is evaluated
(where its method getNextAction2 is needed): This method does not change any data
of this agent, so different threads can use the same TDNTuple2Agt and call this method
independently. This is what we do in the parallel thread of EvaluatorHex.

On the other hand, an agent like MCTS is not thread-safe, because each call to get-
NextAction2(sob,..) with different state sob would construct different MCTS tree data. The
only way to parallelize game play with MCTS is that each thread has its own copy of an
MCTS with the parameters given. This is exactly what we do in the two parallel threads in
Evaluator2048.

References

S. Bagheri, M. Thill, P. Koch, and W. Konen. Online adaptable learning rates for the game
Connect-4. IEEE Transactions on Computational Intelligence and AI in Games, 8(1):
33–42, 2015. 11, 18

Nicolas A Barriga, Marius Stanescu, and Michael Buro. Combining strategic learning and
tactical search in real-time strategy games. arXiv preprint arXiv:1709.03480, 2017. 5

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016. 5

S. L. Epstein. Learning to play expertly: A tutorial on Hoyle. Machines that learn to play
games, pages 153–178, 2001. 4, 5

Michael Genesereth and Michael Thielscher. General game playing. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 8(2):1–229, 2014. 5

32

Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing: Overview
of the AAAI competition. AI magazine, 26(2):62, 2005. 5

W. Konen. Reinforcement learning for board games: The temporal difference algorithm.
Technical report, Research Center CIOP (Computational Intelligence, Optimization and
Data Mining), TH Köln – University of Applied Sciences, 2015. URL http://www.gm.

fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf. 8

Richard E Korf. Multi-player alpha-beta pruning. Artificial Intelligence, 48(1):99–111, 1991.
8

J. Kutsch. KI-Agenten für das Spiel 2048: Untersuchung von Lernalgorithmen für
nichtdeterministische Spiele, 2017. URL http://www.gm.fh-koeln.de/ciopwebpub/

Kutsch17.d/Kutsch17.pdf. Bachelor thesis, TH Köln – University of Applied Sciences.
8

John Levine, Clare Bates Congdon, Marc Ebner, Graham Kendall, Simon M Lucas, Risto
Miikkulainen, Tom Schaul, and Tommy Thompson. General video game playing. Tech-
nical report, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2013. 5

Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language specification, 2008. 5

S. M. Lucas. Learning to play Othello with n-tuple systems. Australian Journal of Intelligent
Information Processing, 4:1–20, 2008. 11, 18, 29

J. Mańdziuk and M. Świechowski. Generic heuristic approach to general game playing.
In International Conference on Current Trends in Theory and Practice of Computer Sci-
ence, pages 649–660. Springer, 2012. 5

J. Méhat and T. Cazenave. Combining UCT and nested Monte Carlo search for single-
player general game playing. IEEE Transactions on Computational Intelligence and AI
in Games, 2(4):271–277, 2010. 5

D. Michulke and M. Thielscher. Neural networks for state evaluation in general game play-
ing. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 95–110. Springer, 2009. 5

Santiago Ontanón and Michael Buro. Adversarial hierarchical-task network planning for
complex real-time games. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015. 5

Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Simon M Lucas, and Tom
Schaul. General video game AI: Competition, challenges and opportunities. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016. 5

M. Thill. Temporal difference learning methods with automatic step-size adaption for strate-
gic board games: Connect-4 and Dots-and-Boxes. Master thesis, Cologne University of

33

http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kutsch17.d/Kutsch17.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kutsch17.d/Kutsch17.pdf

Applied Sciences, June 2015. URL http://www.gm.fh-koeln.de/~konen/research/

PaperPDF/MT-Thill2015-final.pdf. 11, 18, 31

M. Thill, S. Bagheri, P. Koch, and W. Konen. Temporal difference learning with eligibility
traces for the game Connect-4. In Mike Preuss and Günther Rudolph, editors, CIG’2014,
International Conference on Computational Intelligence in Games, Dortmund, 2014. 11,
18, 31

34

http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf
http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf

	Introduction
	Motivation
	Related Work

	Class and Interface Overview
	Classes in Detail
	Interface StateObservation
	Interface PlayAgent and class AgentBase
	Some Remarks on the Game Score
	Difference between Game Score and Game Value
	Interface Feature
	Interface XNTupleFuncs
	Interface GameBoard
	Human interaction with the board and with Arena
	Abstract Class Evaluator
	Abstract Class Arena
	Abstract Class ArenaTrain

	Use Cases and FAQs
	I have implemented game XYZ and want to use AI agents from GBG – what do I have to do?
	How to train an agent and save it
	Which AI's are currently implemented for GBG?
	How to write a new agent (for all games)?
	How to specialize the TD agent to a new game?
	How to write a new TDNTuple2Agt agent for a specific game?

	Open Issues
	Appendix: Interface Summary
	Interface StateObservation
	Interface GameBoard
	Interface PlayAgent
	Classes ACTIONS and ACTIONS_VT
	Interface Feature
	Interface XNTupleFuncs
	Abstract class Evaluator
	Abstract class Arena
	Abstract class ArenaTrain

	Appendix: Other Game Value Functions
	Appendix: N-Tuples
	Board Cell Numbering
	N-Tuple Creation
	N-Tuple Training and Prediction

	Appendix: Multi-core threads

