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Abstract

This technical report introduces GBG, the general board game playing and learning
framework. It is a tutorial that describes the set of interfaces, abstract and non-abstract
classes which help to standardize and implement those parts of board game playing
and learning that otherwise would be tedious and repetitive parts in coding. GBG is
suitable for arbitrary 1-player, 2-player and N -player board games. It provides a set
of agents (AI’s) which can be applied to any such game. This document describes
the main classes and design principles in GBG. This document is a largely rewritten
version of the 2017 GBG tutorial.1

GBG is written in Java and available from GitHub.2

1http://www.gm.fh-koeln.de/ciopwebpub/Kone17a.d/TR-GBG.pdf
2https://github.com/WolfgangKonen/GBG
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1 Introduction

1.1 Motivation

General board game (GBG) playing and learning is a fascinating area in the intersection of
machine learning, artificial intelligence and game playing. It is about how computers can
learn to play games not by being programmed but by gathering experience and learning
by themselves (self-play). The learning algorithms are often called AI agents or just „AI“’s
(AI = artificial intelligence). There is a great variety of learning algorithms around, e.g.
reinforcement learning algorithms like TD(λ), Monte Carlo tree search (MCTS), different
neural network algorithms, Minimax, ... to name only a few.

Even if we restrict ourselves to board games, as we do in this paper (and do not con-
sider other games like video games), there is a plethora of possible board games where
an agent might be active in. The term „General“ in GBG refers to the fact that we want
to have in the end agents or AIs which perform well on a large variety of games. There
are quite different games: 1-person games (like Solitaire, 2048, ...), 2-person games (like
Tic-Tac-Toe, Othello, Chess, ...), many-person games (like Settlers of Catan, Poker, ...).
The game environment may be deterministic or it may contain some elements of chance
(like rolling the dices, ...).

A common problem in GBG is the fact, that each time a new game is tackled, the AI
developer has to undergo the frustrating and tedious procedure to write adaptations of
this game for all agent algorithms. Often he/she has to reprogram many aspects of the
agent logic, only because the game logic is slightly different to previous games. Or a new
algorithm or AI is invented and in order to use this AI in different games, the developer has
to program instantiations of this AI for each game.

Wouldn’t it be nice if we had a framework consisting of classes and interfaces which
abstracts the common processes in GBG playing and learning? If someone programs a
new game, he/she has just to follow certain interfaces described in the GBG framework,
and then can easily use and test on that game all AIs in the GBG library.

Likewise, if an AI developer introduces a new learning algorithm which can learn to play
games, she has only to follow the interface for agents laid down in the GBG framework.
Then she can test this new agent on all games of GBG. Once the interface is implemented
she can directly train her agent, inspect its move decisions in each game, test it against
other agents, run competitions, enter game leagues, log games and so on.

The rest of this document introduces the class concept of GBG. After a short (and
probably incomprehensive) summary of related work in Sec. 1.2, Sec. 2 gives an overview
of the relevant classes and Sec. 3 discusses them in detail. Sec. 4 discusses some use
cases and FAQs for the GBG class framework. Appendix A gives more details on game
value functions, Appendix B introduces n-tuples, and Appendix C describes the tasks in
GBG which are multi-core parallelized.
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1.2 Related Work

One of the first general game-playing systems was Pell’s METAGAMER [Pell, 1996]. It played
a wide variety of simplified chess-like games.

Later, the discipline General Game Playing (GGP) [Genesereth and Thielscher, 2014,
Mańdziuk and Świechowski, 2012] became a wider coverage and it has now a long tra-
dition in artificial intelligence: Since 2005, an annual GGP competition organized by the
Stanford Logic Group [Genesereth et al., 2005] is held at the AAAI conferences. Given the
game rules written in the so-called Game Description Language (GDL, Love et al. [2008]),
several AIs enter one or several competitions. As an example for GGP-related research,
Mańdziuk and Świechowski [2012] propose a universal method for constructing a heuristic
evaluation function for any game playable in GGP. With the extension GDL-II [Thielscher,
2010], where II stands for „Incomplete Information“, GGP is able to play games with incom-
plete information or nondeterministic elements as well.

GGP solves a tougher task than GBG: The GGP agents learn and act on previously
unknown games, given just the abstract set of rules of the game. This is a fascinating
endeavour in logic reasoning, where all information about the game (game tactics, game
symmetries and so on) is distilled from the set of rules at run time. But, as Świechowski
et al. [2015] have pointed out, arising from this tougher task, there are currently a number
of limitations or challenges in GGP which are hard to overcome within the GGP-framework:

• Simulations of games written in GDL are slow. This is because math expressions,
basic arithmetic and loops are not part of the language.

• Games formulated in GDL have suboptimal performance as a price to pay for its
universality: This is because „it is almost impossible, in a general case, to detect what
the game is about and which are its crucial, underpinning concepts.“ [Świechowski
et al., 2015]

• The use of Computational Intelligence (CI), most notably neural networks, deep
learning and TD (temporal difference) learning, have not yet had much success in
GGP. As Świechowski et al. [2015] writes: „CI-based learning methods are often too
slow even with specialized game engines. The lack of game-related features present
in GDL also hampers application of many CI methods.“ Michulke and Thielscher
[2009], Michulke [2011] presented first results on translating GDL rules to neural net-
works and TD learning: Besides some successes they faced problems like overfitting,
combinatorial explosion of input features and slowness of learning.

GBG aims at offering an alternative with respect to these limitations, as will be further
exemplified in Sec. 1.3. It has not the same universality as GGP, but agents from the
CI-universum (TD, SARSA, deep learning, ...) can train and act fast on all available games.

Other works with relations to GBG: General Video Game Playing (GVGP, Levine et al.
[2013]) is a related field which tackles video games instead of board games. Likewise,
µRTS [Ontanón and Buro, 2015, Barriga et al., 2017] is an educational framework for AI
agent testing and competition in real-time strategy (RTS) games. OpenAI Gym [Brockman

5



et al., 2016] is a toolkit for reinforcement learning research which has also a board game
environment supporting a (small) set of games.

1.3 Introducing GBG

We define a board game as a game being played with a known number of players, N =
1, 2, 3, . . ., usually on a game board or on a table. The game proceeds through actions
(moves) of each player in turn. This differentiates board games from video or RTS games
where usually each player can take an action at any point in time. Note that our definition
of board games includes (trick-taking) card games (like Poker, Skat, ...) as well. Board
games for GBG may be deterministic or nondeterministic.

What differentiates GBG from GGP? – GBG has not the same universality than GGP
in the sense that GBG does not allow to present new, previously unknown games at run
time. However, virtually any board game can be added to GBG at compile time. GBG then
aims at overcoming the limitations of GGP as described in Sec. 1.2:

• GBG allows fast game simulation due to the compiled game engine (10.000-90.000
moves per second for TD-agents on a single core).

• The game or AI implementer has the freedom to define game-related features or
symmetries (see Sec. 3.6 and Appendix B.3) at compile time which she believes to
be useful for her game. Symmetries can greatly speed up game learning.

• GBG offers various CI agents, e.g. TD- and SARSA-agents and – for the first time –
a generic implementation of TD-n-tuple-agents (see Sec. 3.2), which can be trained
fast and can take advantage of game-related features. With generic we mean that
the n-tuples are defined for arbitrary game boards (hexagonal, rectangular or other)
and that the same agent can be applied to 1-, 2-, . . ., N -player games.

• For evaluating the agent’s strength in a certain game it is possible to include game-
specific agents which are strong or perfect player for that game.3 Then the generic
agents (e. g. MCTS or TD) can be tested against such specific agents in order to
see how near or far from strong/perfect play the generic agents are on that game.4

It is important to emphasize that the generic agents do not have access to the spe-
cific agents during game reasoning or game learning, so they cannot extract game-
specific knowledge from the other strong/perfect agents.

• Each game has a game-specific visualization and an inspect mode which allows to
inspect in detail how the agent responds to certain game situations. This allows to get
deeper insights where a certain agent performs well or where it has still remarkable
deficiencies and what the likely reason is.

3Examples are the perfect-playing AlphaBetaAgent for Connect-4 and BoutonAgent for Nim.
4Note that in GGP agents are compared with other agents from the GGP league. A comparison with

strong/perfect game-specific (non-GGP) agents is usually not made.

6



GBG is written in Java and supports parallelization of multiple cores for time-consuming
tasks. It is available as open source from GitHub5 and as such – similar to GGP – well-
suited for educational and research purposes [Konen, 2019].

2 Class and Interface Overview

Interface StateObservation is the main interface a game developer has to implement once
he/she wants to introduce a new game. A class derived from StateObservation observes
a game state, it can infer from it the available actions, knows when the game is over, can
advance a state into a new legal state given one of the available actions. If a random
ingredient from the game environment is necessary for the next action (of the next player),
the advance function will add it.

The second interface a game developer has to implement is the interface GameBoard,
which realizes the board GUI and the interaction with the board. If one or more humans
play in the game, they enter their moves via GameBoard.

The interface an AI developer has to implement is the interface PlayAgent. It represents
an „AI“ or agent capable of playing games. If necessary, it can be trained by self-play.
Once trained, it has methods for deciding about the best next action to take in a game
state StateObservation and getting the agent’s estimate of the score or value of a certain
game state.

The heart of GBG are the abstract classes Arena and ArenaTrain. In the Arena all
agents meet: They can be loaded from disk, they play a certain game, there can be com-
petitions. In ArenaTrain, which is a class derived from Arena, there are additional options
to parametrize, train, inspect, evaluate and save agents.

The helper classes Feature, XNTupleFuncs, Evaluator, and ACTIONS (+ ACTIONS_VT,
ACTIONS_ST) support the abstraction in the classes Arena and ArenaTrain.

3 Classes in Detail

3.1 Interfaces StateObservation and StateObsNondeterministic

Interface StateObservation observes the current state of the game, it has utility functions
for

• returning the available actions (getAvailableActions()),

• advancing the state of the game with a specific action (advance()),

• copying the current state

• getting the score of the current state
(getScore(StateObservation referingState))

5https://github.com/WolfgangKonen/GBG
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• signaling end and winner of the game

If a game has random elements (like rolling the dices in a dice game or placing a new
tile in 2048), advance() is additionally responsible for invoking such random actions and
reporting the results back in the new state. Examples:

• For a dice-rolling game: the game state is the board & the dice number.

• For 2048: the game state is just the board (with the random tile added).

Implementing classes: StateObserverTTT, StateObserver2048, ..., ObserverBase.

As an example, StateObserverTTT is a state observer for the game TicTacToe: It has
constructors with game-specific parameters (int [][] table, int player). It has ac-
cess functions getTable() and getPlayer(). The latter returns the player who has to
move in the current state.

Some methods, e.g. setters, getters and other common methods, have their defaults
implemented in abstract class ObserverBase. It is recommended to derive a new Sta-
teObservation class from class ObserverBase.

Interface StateObsNondeterministic is derived from StateObservation and provides
functionality around nondeterministic actions. Examples using or implementing StateOb-
sNondeterministic are ExpectimaxNAgent and StateObserver2048.

3.2 Interface PlayAgent and class AgentBase

Interface PlayAgent has all the functionality that an AI (= game playing agent) needs. The
most important methods are:

• getNextAction2(sob,...): given the current game state sob, return the best next
action.

• double getScore(sob): the score (agent’s estimate of final reward) for the current
game state sob.

• trainAgent(sob,...): train agent for one episode6 starting from state sob.

Some more methods, e.g. setters and getters, have their defaults implemented in
abstract class AgentBase. It might be useful to design a new agent class with the signature

... extends AgentBase implements PlayAgent}.

There is an additional method double estimateGameValue(sob) which has the de-
fault implementation getScore(sob) in AgentBase. This method is called when a train-
ing game is stopped prematurely because the maximum number of moves in an episode
(’Episode length’) is reached.7 See Sec. 3.3, 3.4 and Appendix A for more details on game
score and game value.

6An episode is one specific game playout.
7Or, for agents MCTS or MC, when the maximum rollout depth (’Rollout depth’) is reached.
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Table 1: Agents available in GBG.

agent game remark

generic agents
RandomAgent all acts completely random
HumanPlayer all human play
MaxNAgent all generalized ’Minimax’ [Korf, 1991]
ExpectimaxNAgent all MaxN for nondeterministic games
MCAgent all Monte Carlo
MCTSAgentT all Monte Carlo Tree Search [Browne et al., 2012]
MCTSExpectimaxAgt all MCTS extension for nondeterministic games

[Kutsch, 2017]
TDAgent all TD(λ) agent according to Sutton and Barto [1998]

with user-supplied features
TDNTuple3Agt all TD(λ) agent with n-tuple features [Lucas, 2008]
SarsaAgt all SARSA agent (state-action-reward) [Sutton and

Barto, 1998] with n-tuple features [Lucas, 2008]

game-specific agents
AlphaBetaAgent Connect-4 perfect Connect-4 player (alpha-beta search with

opening books) [Thill, 2015]
BoutonAgent Nim perfect Nim player (theory of Bouton [1901])

3.2.1 List of Agents implemented in GBG

Classes implementing interface PlayAgent and derived from AgentBase are shown in
Table 1 and listed below:

• RandomAgent: an agent acting completely randomly

• HumanPlayer: an agent waiting for user interaction

• MinimaxAgent: a simple tree search (max-tree for 1-player games, min-max-tree
for 2-player games). Deprecated, better use MaxNAgent or ExpectimaxAgent for
deterministic and nondeterministic games, resp.8

• MaxNAgent: the generalization of Minimax to N-player games with arbitrary N (see
Korf [1991]). It maximizes the kth score in a score tuple.

• ExpectimaxNAgent: the generalization of MaxNAgent to nondeterministic games:
alternating layers of chance nodes and expectimax nodes.

• MCAgent: Monte-Carlo agent (no tree)

8Note that Minimax is only for 2-player games, while MaxN is for 1-, 2-,..., N-player games. Note that
Minimax in this simple implementation may not be appropriate for games with random elements, because
Minimax follows in each tree step only one path of the possible successors that advance() may produce.
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• MCTSAgentT: Monte-Carlo Tree Search agent

• MCTSExpectimaxAgt: Monte-Carlo Tree Search agent for non-deterministic games:
alternating layers of chance nodes and expectimax nodes. See Kutsch [2017] for
more details.

• TDAgent: general TD(λ) agent (temporal difference reinforcement learning) with neu-
ral network value function (see Sec. 4.7 for more details). This agent requires a
Feature object in constructor, see Sec. 3.5.

• TDNTuple2Agt: TD(λ) agent with n-tuple sets. Deprecated, use TDNTuple3Agt in-
stead.

• TDNTuple3Agt: TD(λ) agent (temporal difference reinforcement learning) using n-
tuple sets as features (see Sec. 4.8 and Appendix B for more details). This agent
requires an object of class XNTupleFuncs in constructor, see Sec. 3.6.

• SarsaAgt: SARSA agent (SARSA is a variant of Q-learning with state-action-pairs)
using n-tuple sets as features (see Appendix B for more details). This agent requires
an object of class XNTupleFuncs in constructor, see Sec. 3.6.

The last four agents are TD(λ) agents which learn by reinforcement (temporal differ-
ence). The last three agents (TDNTuple2Agt, TDNTuple3Agt and SarsaAgt) are based on
n-tuple features. TDNTuple3Agt is the generic implementation of a TD-n-tuple-agent. More
details on TD(λ) (temporal difference learning, reinforcement learning for games, eligibility
traces) can be found in the technical report Konen [2015].

Each agent has an AgentState member, which is either RAW, INIT or TRAINED.
Some of the agents (RandomAgent, HumanAgent, MaxNAgent, ExpectimaxNAgent,

MCAgent, MCTSAgent, MCTSExpectimaxAgt) are directly after construction in a TRAINED
state, i.e. they are ready-to-use. They make their observations on-the-fly, starting from the
given state. Other agents (TDAgent, TDNTuple2Agt, TDNTuple3Agt, SarsaAgt) require
training, they are after construction in state INIT.

Classes implementing PlayAgent should also implement the Serializable interface.
This is needed for loading and saving agents. Agent members which need not to be
included in the serialization process can be flagged with keyword transient. Agent mem-
bers which are user-defined classes should implement the Serializable interface as well.

3.3 Some Remarks on the Game Score

Although the game score (the final result of a game, e. g. „X wins“ or „O wins with that
many points“) seems to be a pretty simple and obvious concept, it becomes a bit more
confusing if one wants to define the game score consistently for a broader class of states,
not just for a terminal state. We use the following conventions:

• For StateObservation so,

so.getGameScore(StateObservation refer)
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Figure 1: A succession of states in TicTacToe: If O makes in state sA the losing move
leading to sB, then sB is a clear win for X, and so is the terminal state sC. The game score
for sC from the perspective of O, the player to move in sC, is −1. The game values (see
Sec. 3.4) for sB and sC are +1 and −1, resp.

returns the sum of rewards in state so, seen from the perspective of the player to
move in state refer. Most 2-player games will give the reward only in the end
(win/tie/loss), so that for those games so.getGameScore(refer) is usually 0 as
long as so is non-terminal. If the game state is terminal, a negative reward will be
returned if refer’s player loses and a positive reward if this player wins. For other
games there might be also rewards during the game.

• If a state is terminal (e. g. „X wins“) then the „player who moves“ has changed a
last time (i. e. to player O, although the game is over.). Thus the score for O will
be −1 („O loses“). It seems a bit awkward at first sight to assign a terminal state a
„player to move“, but this is the only way to guarantee in a succession of actions for
2-player games that the current score is always the negative of the next state’s score
(negamax principle). Fig. 1 shows an example.

Example: State sC in Fig. 1 (TicTacToe) is a terminal state: X has made
a winning move. On this terminal state O would have to move next (if it
were not terminal). So the game score for this terminal state is a negative
reward sC.getGameScore(sC)= −1 for player O.

sC.getGameScore(sC) = -1;
sC.getGameScore(sB) = +1;
sC.getGameScore(sA) = -1;

• There is the (now deprecated) method sC.getGameScore(), which is the game
score of sC for the player to move in sC. This is deprecated, because it can be
expressed equivalently as

sC.getGameScore() = sC.getGameScore(sC);

• StateObservation.getGameWinner() may only be called if the game is over for the
current state (otherwise an assertion fires). It returns an enum Types.WINNER which
may be one out of {PLAYER_WINS, TIE, PLAYER_LOSES}. The player is always
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the player who has to move. The method Types.WINNER.toInt() converts these
enums to integers which correspond to {+1, 0,−1}, resp.

StateObservation defines two methods

public double getMinGameScore();
public double getMaxGameScore();

These methods should return the minimum and maximum game score which can be
achieved in a specific game. This is needed since some PlayAgent (e.g. TDAgent) make
predictions of the estimated game score with the help of a neural network. Since a neural
network has often a sigmoid output function which can emit only values in a certain range
(e.g. [0,1]), it is necessary to map the game scores to that range as well. This can only be
done if the minimum and maximum game score is given.9

3.4 Difference between Game Score and Game Value

There is a subtle distinction between game score and game value. The game score is the
score of a game state according to the game laws. For example, TicTacToe has the score
0 for all intermediate states, while a terminal state has either +1/0/-1 as game score for
win/draw/loss of the player to move. In 2048, the game score is the cumulative sum of all
tile merges. Each player usually wants to maximize the expectation value of ’his’ score at
the end of the game.

But the score in an intermediate game state is not a good indicator of the potential of
that state. The game value of a state is an estimate of the final score attainable from that
state. Two states in 2048 might have the same score, but the game value of these states
can be different. While the first state might be close to the terminal state, the second
one might have a higher mobility and thus ’last’ longer and receive a higher final score.
The precise game value of a state is often not known / not computable, but it is of course
desirable to estimate it. An estimate can be based on a simple heuristic like the weighted
piece count in chess.

The main possibility to deliver a game value is:

• PlayAgent.getScore(StateObservation so) returns the agent’s estimate of the
final score for the player who has to move in StateObservation so – assuming per-
fect play of that player. That is what we call the game value of so. The game value
for 2-player games is usually +1 if it is expected that the player wins finally, 0 if it
is a tie and -1 if he loses. Values in between characterize expectation values in
cases where different outcomes are possible or likely (or where the agent has not yet
gathered enough information or experience).

There are other methods to deliver a game value or a reward

• StateObservation.getReward(refer,boolean)

9If a precise maximum game score for a certain game is not known, a reasonable ’big’ estimate is usually
also sufficient.
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• PlayAgent.estimateGameValue(StateObservation so)

but they are only for advanced users and their description is deferred to Appendix A.

3.5 Interface Feature

Some classes implementing PlayAgent need a game-specific feature vector. As an ex-
ample, consider TDAgent, the general TD(λ) agent (temporal difference reinforcement
learning) with neural network value function. To make the neural network predict the value
of a certain game state, the network needs some feature input (e.g. specific board patterns
which form threats or opportunities, number of them, number of pieces and so on). These
features are usually game-specific. We assume here that every feature can be expressed
as double value (neural networks can only digest real numbers as input), so that the whole
feature vector can be expressed as double[].

To create an Feature object within the general Arena-code, the factory method pattern
is used: Arena defines an abstract method

public Feature makeFeatureClass(int featmode);

The argument featmode allows to construct different flavors of Feature objects and to test
and evaluate them.

In all cases where Arena or ArenaTrain needs a Feature object, it will call this method
makeFeatureClass(int). This will take place whenever a TDAgent object is constructed,
because the TDAgent constructor needs a Feature object as parameter.

Interface Feature has the method

public double[] prepareFeatVector(StateObservation so);

which gets a game state and returns a double vector of features. This vector may serve as
an input for a neural network or other purposes.

Implementing classes: FeatureTTT, Feature2048, ...
More details on how to set up a new Feature class are in Sec. 4.7.

3.6 Interface XNTupleFuncs

There are special agents (TDNTuple3Agt, SarsaAgt), which realizes TD- or SARSA-
learning with n-tuple features. N-tuple features or n-tuple sets (Lucas [2008], Thill et al.
[2014], Bagheri et al. [2015], Thill [2015]) are another way of generating a large number of
features. An n-tuple is a set of board cells. For every game state StateObservation it can
translate the position values present in these cells into a double score or value. In order
to construct such n-tuples, the user has to implement the interface XNTupleFuncs. See
Sec. 4.8 for more details on the member functions of XNTupleFuncs and Appendix B for a
more detailed description of n-tuples.

To create an XNTupleFuncs object within the general Arena-code, the factory method
pattern is used: Arena defines an abstract method
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public XNTupleFuncs makeXNTupleFuncs();

Whenever Arena or ArenaTrain needs a XNTupleFuncs object, it will call this method
makeXNTupleFuncs(). This will take place whenever an n-tuple agent object is con-
structed, because these n-tuple agent constructors need an XNTupleFuncs object as pa-
rameter.

Note: If you do not plan to use an n-tuple agent in your game, you do not need to imple-
ment a specific version of class XNTupleFuncs in your game. Since you do not construct
an object of class TDNTuple3Agt or similar, makeXNTupleFuncs() should never be called.
If it is called nevertheless, the default implementation of makeXNTupleFuncs() in Arena
will throw a RuntimeException.

More details on how to set up a new XNTupleFuncs class are in Sec. 4.8.

3.7 Interface GameBoard

Interface GameBoard has the game board GUI (usually in a separate JFrame). It provides
functionality for:

• Maintaining its own StateObservation object m_so. This object is after construction
in a default start state (e. g. empty board). The same state can be reached via
clearBoard() or getDefaultStartState() as well. The associated GUI will show
the default start state.

• Showing or updating the current game state (StateObservation) in the GUI and en-
abling / disabling the GUI elements (updateBoard(...)).

• Human interaction with the board: see Sec. 3.8.

• Returning its current StateObservation object (getStateObs()).

• chooseStartState(): This method returns randomly one out of a set of different
start states. This is useful when training an agent so that not always the same game
episode is played but some variation (exploration) occurs.

Example TicTacToe: The implementation in GameBoardTTT returns with
probability 0.5 the default start state (empty board) and with probability 0.5
one of the possible next actions (an ’X’ in any of the nine board positions).

Implementing classes: GameBoardTTT, GameBoard2048, ...

3.8 Human interaction with the board and with Arena

During game play: How is the integration between user actions (human moves) and AI
agent actions implemented?

If GameBoard request an action from Arena, then its method isActionReq() returns
true. This causes the selected AI to perform a move. If on the other hand a human interac-
tion is requested, Arena issues a setActionReq(false) and this causes isActionReq()
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to return false as well. GameBoard then waits for GUI events until a user (human) action
is recorded. GameBoard is responsible for checking whether the human action is legal
(isLegalAction()).10 If so, then GameBoard issues an advance(). Method advance()
opens the possibility for invoking random elements from the game environment (e. g.
adding a new tile in 2048), if necessary.

When all this has happened, GameBoard sets its internal state such that isActionReq()
returns true again. Thus it asks Arena for the next action and the cycle continues. Finally,
Arena detects an isGameOver()-condition and finishes the game play.

3.9 Abstract Class Evaluator

Class Evaluator evaluates the performance of a PlayAgent. Evaluators are called in menu
item ’Quick Evaluation’, during training and at the end of each competition in menu item
’Multi-Competition’. It is important to note that Evaluator calls have no influence on the
training process, they just measure the (intermediate or final) strength of a PlayAgent.

In the constructor

public Evaluator(PlayAgent e_PlayAgent, int mode,
int stopEval, int verbose);

the argument mode allows derived classes to create different types of evaluators. These
may test different abilities of PlayAgent.11

A normal evaluation is started by calling Evaluator’s method eval which calls in turn
the abstract method

abstract protected boolean evalAgent();

and counts the consecutive successful returns from that method. The argument stopEval
sets the number of consecutive evaluations that the abstract method eval_Agent() has
to return with true until the evaluator is said to reach its goal (method goalReached()
returns true). This is used in XArenaFunc’s method train() as a possible condition to
stop training prematurely. This test for a premature training stop is however only done if
stopTest>0 and stopEval>0.12

Method eval_Agent() needs to be overridden by classes derived from Evaluator. It
returns true or false depending on a user-defined success criterion. In addition, it lets
method double getLastResult() return a double characterizing the evaluation result
(e. g. the average success rate of games played against Minimax player).

Concrete objects of class Evaluator are usually constructed by the factory method

10 see method HGameMove(x,y) in GameBoardTTT for an example.
11For complex games it is often very difficult or impossible to have a perfect evaluator. Remember that (a)

that the game tree can be too complex to retrieve the perfect action for a certain state and that (b) a perfect
Evaluator should evaluate the actions of PlayAgent for every possible state, which would take too long (or
is impossible) for games with larger state space complexity. A partial way out is to have different Evaluator
modes which evaluate the agent from different perspectives.

12stopTest and stopEval are members of ParOther.
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abstract public Evaluator makeEvaluator(PlayAgent e_PlayAgent,
int stopEval, int mode, int verbose);

in Arena or ArenaTrain.
Implementing classes: EvaluatorTTT, Evaluator2048, ...
More details on how to set up a new evaluator are in Sec. 4.9.

3.10 Abstract Class Arena

Class Arena is an abstract class for loading agents and playing games. Why is it an ab-
stract class? – Arena has to create an object implementing interface GameBoard, and
this object will be game-specific, e. g. a GameBoardTTT object. To create such an ob-
ject within the general Arena-code, the factory method pattern is used: Arena defines the
abstract methods

abstract public GameBoard makeGameBoard();
abstract public Evaluator makeEvaluator(...);

The first method is a factory method for GameBoard objects. The second method is a
factory method for Evaluator objects. Both will be implemented by classes derived from
Arena. That is, a derived class ArenaTTT can be very thin, it just implements the methods
makeGameBoard() and makeEvaluator() and lets them return (in the example of TicTac-
Toe) GameBoardTTT and EvaluatorTTT objects, resp.

Class Arena has in addition the factory method

public Feature makeFeatureClass(int);

If it is not overridden by derived classes, it will throw a RuntimeException (no game-
tailored Feature object available). If a class derived from Arena wants to use a trainable
agent requiring Feature (e. g. TDAgent) then it has to override makeFeatureClass.

Class Arena has similarly the factory method

public XNTupleFuncs makeXNTupleFuncs();

which can be used to generate a game-tailored XNTupleFuncs object, if needed (if agents
TDNTuple3Agt or SarsaAgt are used ). If not overridden, it will throw a RuntimeException.

Class Arena has the following functionality:

• choice of agents for each player (load or set),

• specifying parameters for agents (except parameters for training),

• playing games (AI agents & humans),

• evaluating agents, competitions (one or multiple times),

• inspecting the move choices of an agent,
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Table 2: The Param classes in GBG.

Par... ...Params related agents

ParTD TDParams TDAgent, TDNTuple3Agt, SarsaAgt (TD settings)
ParNT NTParams TDNTuple3Agt, SarsaAgt (n-tuple [Lucas, 2008] & tem-

poral coherence [Beal and Smith, 1999] settings)
ParMaxN MaxNParams MaxNAgent [Korf, 1991], ExpectimaxNAgt and wrap-

pers
ParMC MCParams MCAgent
ParMCTS MCTSParams MCTSAgentT
ParMCTSE MCTSEParams MCTSExpectimaxAgent
ParOther OtherParams Other parameters (all agents)

• logging of played games (option for later replay or analysis),

• a slider during agent-agent game play to control the playing velocity,

• tournaments (round-robin, ..., Elo, Glicko, ...).

• See Sec. 5 Open Issues for planned extensions to the Arena functionality.

Derived abstract class: ArenaTrain.
Derived non-abstract classes: ArenaTTT, Arena2048, ... They usually have a method

public static void main(String[] args)

for starting the specific game.

3.11 Abstract Class ArenaTrain

Class ArenaTrain is an abstract class derived from Arena which has this additional func-
tionality:

• specifying all parameters for agents (including parameters for training),

• training agents (one or multiple times),

• saving agents.

• See Sec. 5 Open Issues for planned extensions to the ArenaTrain functionality.

Derived non-abstract classes: ArenaTrainTTT, ArenaTrain2048, ... They usually have a
method

public static void main(String[] args)

for starting the specific game.
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3.12 The Param Classes

Each agent or group of agents has associated classes for setting its parameters. Table 2
gives an overview of these param classes. These classes come in two flavours:

...Params: TDParams holds the parameters and the GUI (param tab) to set them for
all parameters related to TD (Temporal Difference learning). Similar for all other
...Params classes. These classes are usually derived from Frame and as such their
objects tend to be rather big.

Par...: ParTD holds solely the parameters related to TD. Thus the objects of class Par...
are much smaller and can be easily copied, attached to other objects, passed to
other methods, saved and loaded.

It is advisable to use the classes ...Params only once for the multi-pane Param Tabs
window. For all other use cases (inside agents, loading and saving to disk, ...) you should
use the Par... variant.

Class ParOther holds parameters relevant for all agents in one way or the other. Among
these parameters are the evaluators to use during Quick Evaluation or during training,
some parameters relevant for all trainable agents and the option to wrap all agents in a n-
ply look-ahead tree search (Max-N or Expectimax-N). See GBG Help File for more detailed
information.

3.13 The ACTION Classes

There are three classes (public subclasses of class Types) for specifying actions:

ACTIONS is an action specified by an int and a Boolean predicate randomSelect whether
it was selected by a random move or not.

ACTIONS_ST is derived from ACTIONS and has additionally the ScoreTuple of this action.

ACTIONS_VT is derived from ACTIONS and has additionally a value table for all available
actions, the value of this action and the ScoreTuple of this action.

4 Use Cases and FAQs

4.1 My first GBG project

Follow the install and configure tips from GitHub Wiki:
https://github.com/WolfgangKonen/GBG/wiki – Install and Configure in order to in-
stall the GBG framework.

Run as Java Application one of the ArenaTrain... classes in one of the directories
games/... (not the class ArenaTrain itself – it is an abstract class – but one of the classes
derived from it). For example, run games/TicTacToe/ArenaTrainTTT as Java Application.
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4.2 I have implemented game XYZ and want to use AI agents from GBG –
what do I have to do?

As a game developer you have to implement the following five interfaces for your game:

• StateObserverXYZ implements StateObservation

• GameBoardXYZ implements GameBoard

• EvaluatorXYZ extends Evaluator

• FeatureXYZ extends Feature (only needed, if you want to use the trainable agent
TDAgent, see Sec. 4.7).

• XNTupleFuncsXYZ extends XNTupleFuncs (only needed, if you want to use the
trainable n-tuple agent TDNTuple3Agt or SarsaAgt, see Sec. 4.8).

Once this is done, you only need to write a very ’thin’ class ArenaTrainXYZ with suitable
constructors, which overwrites the abstract methods of class ArenaTrain with the factory
pattern methods

public GameBoard makeGameBoard() {
gb = new GameBoardXYZ(this);
return gb;

}
public Evaluator makeEvaluator(PlayAgent pa, GameBoard gb,

int stopEval, int mode, int verbose) {
return new EvaluatorXYZ(pa,gb,stopEval,mode,verbose);

}

If needed, you should overwrite the methods (see Sec. 4.7 and Sec. 4.8)

public Feature makeFeaturClass(int featmode) {
return new FeatureXYZ(featmode);

}
public XNTupleFuncs makeXNTupleFuncs() {

return new XNTupleFuncsXYZ();
}

as well.
If you do not want to use the agents TDAgent and TDNTuple3Agt needing these fac-

tory methods, you may just implement stubs throwing suitable exceptions:

public Feature makeFeaturClass(int featmode) {
throw new RuntimeException("Feature not implemented for XYZ");

}
public XNTupleFuncs makeXNTupleFuncs() {

throw new RuntimeException("XNTupleFuncs not implemented for XYZ");
}
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Finally you need a main() to launch ArenaTrain. You may copy and adapt the main()
example in ArenaTrainTTT. (And a similar main() and similar factory pattern methods in
ArenaTTT.) The simplest form of main looks like this:

public static void main(String[] args) throws IOException
{

ArenaTrainC4 t_Frame = new ArenaTrainC4("General Board Game Playing");
t_Frame.init();

}

Then you can use for your game all the functionality laid down in Arena and ArenaTrain
and all the wisdom of the AI agents implementing PlayAgent. Cool, isn’t it?

4.3 How to train an agent and save it

1. Create and launch an ArenaTrain object

2. Select an agent and set its parameters

3. Set training-specific parameters:

• maxTrainNum: ’Training games’ = number of training episodes,

• numEval: after how many episodes an intermediate evaluation is done,

• epiLength: ’Episode length’ = maximum allowed number of moves in a training
episode. If it is reached, the game is stopped and PlayAgent.estimateGameValue()
is returned (either up-to-now-reward or estimate of current + future rewards). If
the game terminates earlier, the final game score is returned.

4. Train the agent & visualize intermediate evaluations.

5. Optional: Inspect the agent (how it responds to certain board situations).

6. Save the agent via menu.

4.4 Which AI’s are currently implemented for GBG?

See Sec. 3.2.1 and Table 1 for a list of all AI’s (agents), i. e. classes that implement interface
PlayAgent.

4.5 How to write a new agent (for all games)

Of course your new agent NewAgent has to implement the interface PlayAgent. You may
want to derive your new agent from AgentBase to have a few basic functions already with
their default implementations. These functions can be overridden if necessary.

The new agent should as well implement the interface Serializable (java.io) to be load-
able and savable.

There are a few places in the code where the new agent has to be registered:
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• Types.GUI_AGENT_LIST: Add a suitable agent nickname "nick". This is how the
agent will appear in the agent choice boxes.

• XArenaFuncs.constructAgent(): Add a suitable clause
if (sAgent.equals("nick")) ...

• XArenaFuncs.fetchtAgent(): Add a suitable clause
if (sAgent.equals("nick")) ...

• XArenaTabs.showParamTabs(): Add a suitable clause
if (selectedAgent.equals("nick")) ...

• XArenaMenu.loadAgent(): Add a suitable clause
if (td instanceof NewAgent) ...

• LoadSaveGBG.transformObjectToPlayAgent(): Add a suitable clause
if (obj instanceof NewAgent) ...

If the agent has new sensible default parameters, they may be added to function
setParamDefaults in classes TDParams, NTParams or other Param classes.

If the agent requires a whole set of new parameters which do not fit into the existing
Param classes, then construct new Param classes ...Params and Par... and add them
to the Param tab.

4.6 What is the difference between TDAgent, TDNTuple2Agt and TDNTu-
ple3Agt?

All three agents are trained by TD (temporal difference learning). They differ only in their
feature vectors: While for TDAgent the user has to specify each feature (see Sec. 3.5
through method

public double[] prepareFeatVector(StateObservation so),

the classes TDNTuple2Agt and TDNTuple3Agt construct their features automatically from
the given n-tuple sets and position values (see Sec. 4.8 and Appendix B.1).

It is advisable to use only TDNTuple3Agt, because TDNTuple2Agt is the older TD-n-
tuple variant which is likely to become deprecated in the near future (it is unnecessarily
complicated in source code and not as well generalizable to N -player games with N > 2
as TDNTuple3Agt is).

4.7 How to specialize TDAgent to a new game

Suppose you have implemented a new game XYZ and want to write a TD agent (temporal
difference agent) which learns this game. What do you have to do? – Luckily, you can
re-use most of the functionality laid down in class TDAgent (see Sec. 3.2).

1. Write a new Feature class
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public class FeatureXYZ implements Feature, Serializable

This is the only point where some code needs to be written: Think about what fea-
tures are useful for your game. In the simplest case this might be the raw board po-
sitions, but these features may characterize the win- or loose-probability for a state
only rather indirectly. Other patterns may characterize the value (or the danger) of a
state more directly. For example, in the game TicTacToe any two-in-a-line opponent
pieces accompanied by a third empty position pose an immanent threat. A typical
feature may be the count of those threats. Another way to form features is to count
the number of pieces for each player and let a network learn weights for it. Or the
number of pieces in certain positions on the board.13

2. Add to ArenaXYZ and ArenaTrainXYZ the overriding method

public Feature makeFeatureClass(int featmode) {
return new FeatureXYZ(featmode);

}

TDAgent will generate by reinforcement learning a mapping from feature vectors to
game values (estimates of the final score, see Sec. 3.4) for all relevant game states.

The class ArenaTrainTTT (together with FeatureTTT) may be inspected to view a spe-
cific example for the game TicTacToe.

4.8 How to specialize TDNTuple3Agt agent to a new game

Suppose you have implemented a new game XYZ and want to write a TD (temporal differ-
ence) agent using n-tuples which learns this game. What do you have to do? – Luckily,
you can re-use most of the functionality laid down in class TDNTuple3Agt (see Sec. 3.2).
As a game implementer you have to do the following:

1. Write a new XNTupleFuncs class (Sec. 3.6)

public class XNTupleFuncsXYZ
implements XNTupleFuncs, Serializable

Here you have to code some rather simple things like getNumCells(), the number
of board cells in your game, and getNumPositionValues(), the number of position
values that can appear in each cell. This is for example 9 and 3 (O/empty/X) in the
game TicTacToe.

Next you implement

13The drawback of all these features is that they are not very generic: The user has to code the features in a
game-dependent way for each new game again. – N-tuple sets (Lucas [2008], Thill et al. [2014], Bagheri et al.
[2015], Thill [2015]) are another way of generating a large number of features in a generic way (but they are
not part of TDAgent, see Sec. 4.8, Appendix B and TDNTuple3Agt instead).

22



int[] getBoardVector(so)

which transforms a game state so into an int[] board vector (length: getNumCells()).
See Appendix B.1 for board cell numbering and a specific example.

If your game has symmetries (the game TicTacToe has for example eight symmetries,
4 rotations × 2 mirror reflections), the function

int[][] symmetryVectors(int[] boardVector)

should return for a given board vector all symmetric board vectors (including itself).
If the game has no symmetries, it returns just the board vector itself.

The method

HashSet adjacencySet(int iCell)

returns the set of cells adjacent to the cell with number iCell. Whether adjacency
is a 4-point- or an 8-point-neighborhood or something else is defined by the user.
This function is used by TDNTuple3Agt when creating the shape of new n-tuples by
random walk.

Finally you implement

int[][] fixedNTuples()

a function returning a fixed set of n-tuples suitable for your game. If you do not
need fixed n-tuple sets, you may leave fixedNTuples() unimplemented (i. e. let it
throw an exception) and chose in the NTPar (n-tuple params) tab ’Random n-tuple
generation’.

2. Add to ArenaXYZ and ArenaTrainXYZ the overriding method

public XNTupleFuncs makeXNTupleFuncs() {
return new XNTupleFuncsXYZ();

}

The class ArenaTrainTTT (together with XNTupleFuncsTTT) may be used as a tem-
plate, showing the implementation for the game TicTacToe.

TDNTuple3Agt offers several possibilities to construct n-tuples:

(a) using a predefined, game-specific set of n-tuples (see fixedNTuples() above),

(b) random n-tuples generated by random-cell-picking (the cells in an n-tuple are in gen-
eral not adjacent), and

(c) random n-tuples generated by random walk (every cell in each n-tuple is adjacent to
at least one other cell of this n-tuple; needs method adjacencySet, see above).

A cell may (and often should) be part of several n-tuples.
The same remarks apply if you want to specialize SarsaAgt or TDNTuple2Agt (now

deprecated) to a new game.
See Appendix B for further information on n-tuples.
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4.9 How to set up a new Evaluator

Setting up a good evaluator for a game is not an easy task, because the agent’s strength
in playing a game depends on its reaction to all possible game states, weighted with the
relevance of those states. To evaluate this is for most realistic games an intractable task.
It can often be only approximated by having different evaluators looking at the problem
from different perspectives. Therefore, the Evaluator concept in GBG allows for different
evaluator modes.

When testing a deterministic agent against another deterministic opponent, they will
always play the same episode, so that the evaluation covers only a tiny part of the game
state space. And the result is only binary (ternary): Complete win of either agent or tie. A
little improvement is achieved when the start state is varied (randomly or by looping through
a prescribed set of states). Then the fraction of the state space visited during evaluation is
slightly bigger. More importantly, the evaluation result is a floating point number (win rate
over a set of different episodes), which signals better whether an agent improves or not.
Therefore, most classes derived from Evaluator should have modes where different start
states are used.

These general aspects should be kept in mind when constructing for a game a new
evaluator derived from Evaluator. It is often a good idea to specify different modes where
the agent plays against different opponent, either from the default start state or from a set
of start states.

When deriving a concrete class from Evaluator, you have to implement the abstract
methods of class Evaluator, the most important ones are:

• getAvailabelModes(): returns an int[] with all available modes,

• evalAgent(): run the evaluator with the mode specified in constructor,

• getTooltipString(): return a String (may be multi-line) describing the different
modes (tooltip text shown for the evaluator choice box in OtherParams).

A typical constructor EvaluatorXYZ extends Evaluator looks like:

public EvaluatorXYZ(PlayAgent e_PlayAgent, GameBoard gb, int stopEval,
int mode, int verbose) {

super(e_PlayAgent, mode, stopEval, verbose);
...

}

4.10 Scalable GUI fonts

When writing a new GUI element, this GUI element may be shown on display screens with
largely differing screen sizes. In order to have legible fonts on all such screen sizes, it is
advisable NOT to use explicit font sizes like 12, 14, .... Instead it is better to use variable
font sizes
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int Types.GUI_HELPFONTSIZE
int Types.GUI_DIALOGFONTSIZE

and similar (see Types.java). To define a new font, use for example the form

Font font=new Font("Arial",0,(int)(1.2*Types.GUI_HELPFONTSIZE));

where the factor 1.2 is optional, if you want to adjust the appearance of the associated text
element.

The variable font sizes are automatically scaled to be a certain portion of the screen
width. If you want all fonts to appear bigger or smaller, you may set

double Types.GUI_SCALING_FACTOR

in Types.java to a value slightly higher or lower than 1.0.

4.11 What is a ScoreTuple?

A ScoreTuple has a vector

public double[] scTup

of size N containing the game score or game value – depending on context – for each
player 0, 1, . . . , N − 1.

The class has methods to combine the current ScoreTuple this with a second Score-
Tuple tuple2nd according to one of the following operators:

AVG weighted average or expectation value: add tuple2nd, weighted with a certain prob-
ability weight. The probability weights of all combined tuples should sum up to 1.

MIN combine by retaining this ScoreTuple, which has in scTup[playNum] the lower value.

MAX combine by retaining this ScoreTuple, which has in scTup[playNum] the higher
value.

DIFF subtract from this all values in the other tuple2nd.

5 Open Issues

The current GBG class framework is still under development. The design of the classes
and interfaces may need further reshaping when more games or agents are added to the
framework. There are a number of items not fully tested or not yet addressed:

• Add Arena and ArenaTrain launchers which allow to select between the different
implemented games and then launch the appropriate derived Arena and ArenaTrain
class.

• Undo/redo possibilities
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• Game balancing

• Time measurements for agents (play & train)

• Client-server architecture for game play via applet on a game page. Option for a ’hall
of fame’. An example for the game Sim is available from TU Wien 14.

• Implement the game Sim (= Hexi) in the Arena and ArenaTrain framework. A Java
code example of the Sim board GUI is available from TU Wien 15. Generalize the
number of nodes (not only 6). Later, one may create a 3-player variant of Sim and
test the framework on this.

• Replay memory for better training: This idea has been used by DeepMind in learning
Atari video games. Played episodes are stored in a replay memory pool and used
repeatedly for training.

• The extension to N -player games (N > 2) is fully functional but not yet tested. An
example to fully test N -player games may be the 3-player variant of the game Sim.

14http://www.dbai.tuwien.ac.at/proj/ramsey
15http://www.dbai.tuwien.ac.at/proj/ramsey
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A Appendix: Other Game Value Functions

Sec. 3.3 and 3.4 have introduced with

StateObservation.getGameScore(refer)
PlayAgent.getScore(StateObservation sob)

the main functions to retrieve a game score or game value, resp. There are two other
functions delivering a game value; they are only required for more advanced needs:

• Interface StateObservation delivers with

getReward(StateObservation refer, boolean rgs)

a function returning the game reward. This reward can be simply the game score in
case rgs==true (’reward is game score’), but it can be also another (game-specific)
function in case rgs==false. This opens the possibility that the reward might be
something different from game score. Example: In the game 2048, a possible reward
for a state can be the number of empty tiles in that state.

• Interface PlayAgent delivers with estimateGameValue(so) a function (perhaps train-
able / adjustable from previous experiences) that estimates the future game value
at end of play. The difference to PlayAgent.getScore(StateObservation so):
estimateGameValue(so) may NOT call getScore(so) or getNextAction(so), since
these functions may call estimateGameValue(so) inside (e.g. if a certain episode
length is reached) and this would result in infinite recursion. A simple implementation
can be to return just so.getReward(rgs), but other implementations are possible as
well.

A potential use of pa.estimateGameValue(sob) is to compute in MC or MCTS the
final value of a random rollout in cases where the rollout did not reach a terminal game
state (since the episode lasts longer than the ’Rollout depth’ as it is for example in 2048
often the case).

A second use of pa.estimateGameValue(sob) is in trainable agents, when the maxi-
mum training episode length (if any) is reached.

A third use of pa.estimateGameValue(sob) is in MaxNAgent when the tree depth is
reached but the game is not yet over. Then we call pa.estimateGameValueTuple(sob).

A fourth use of pa.estimateGameValue(sob) is in wrapper MaxNWrapper and Expec-
timaxWrapper when the prescribed n-ply tree depth is reached. These wrappers implement
estimateGameValue(sob) and let it return the wrapped agent’s game value via

wrappedAgt.getScore(sob)

where sob is the state at the leaf node of the wrapper tree.
It is dependent on the class implementing PlayAgent what

estimateGameValue(sob)
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Table 3: Summary of all game score and game value functions in GBG.
method remark

class StateObservation (so)
getGameScore() (deprecated) game score of this
getGameScore(refer) game score of this relative to refering state refer
getGameScore(int i) ... relative to player i
getGameScoreTuple() a ScoreTuple with game scores for all players
getReward(rgs) (deprecated) the game reward of this
getReward(refer,rgs) game reward of this relative to refering state refer
getReward(int i,rgs) ... relative to player i
getRewardTuple(rgs) a ScoreTuple with rewards for all players

class PlayAgent (pa)
getScore(so) the game value = agent’s estimate of so’s final score
getScoreTuple(so) a ScoreTuple with game values for all players
estimateGameValue(so) agent’s estimate of game value for so
estimateGameValueTuple(so) a ScoreTuple with agent estimates for all players

actually returns. If it is too complicated to train a value function (or if it is simply not
needed, because for a game like TicTacToe we come always to an end during rollout),
then estimateGameValue(sob) may simply return sob.getReward(rgs).

If we integrate a trainable game value estimation into a class implementing PlayAgent,
then agents that formerly did not need training (Minimax, MC, MCTS, ...) will require train-
ing. They should be after construction in AgentState INIT. How the training is actually done
depends fully on the implementing agent.

Table 3 gives an overview over all functions in GBG returning a game score or a game
value. Summary of main facts:

• so.getGameScore() is deprecated, because it can be expressed equivalently via
so.getGameScore(so).

• getReward(...,rgs) returns getGameScore(...), if rgs==true. Otherwise it re-
turns a specific reward, depending on the nature of the game (whatever the class
derived from StateObservation implements).

• getReward() and getGameScore() return the cumulative reward and game score
for the StateObservation object this. If the user wants the delta reward, he/she has
to substract the reward of the preceding state.

• getReward(...) is used in all places where agents reason about the next action.
This is in move calculation (getNextAction2), in estimateGameValue... and dur-
ing training.

• If a game has its StateObservation class derived from ObserverBase and it does not
implement getReward(...), then default implementations from ObserverBase are

28



taken which implement the reward just as game score and issue a warning when
called with rgs==true.

• pa.getScore returns the agent’s estimate of the game value, i.e. the estimate of
the final score attainable for pa – assuming perfect play. To calculate this, it may
ask a model (e.g. NN or some weighted piece-position formula), or it may perform
recursive search up to a tree depth / rollout depth, depending on the nature of the
agent. If the maximum depth is reached, it may call estimateGameValue.

• pa.estimateGameValue returns also an game value estimate. But it returns a coarser
estimate, since it may not call getScore back (to avoid an infinite loop).

• All game score and game value methods have associated ...Tuple versions: They
return instead of a single game score or game value a ScoreTuple (Sec. 4.11) of N
values for all players 0, 1, . . . , N − 1.

B Appendix: N-Tuples

B.1 Board Cell Numbering

Each n-tuple is a list of board cells Lucas [2008]. Board cells are specified by numbers. The
canonical numbering for a rectangular board is row-by-row, from left to right. For example,
a 4× 4 board would carry the numbers

00 01 02 03
04 05 06 07
08 09 10 11
12 13 14 15

Other (irregular) boards may carry other (user-specified) cell numbers. Each choice of
numbering is o.k., it has only to be used consistently throughout the game.

Given the board cell numbering, the method

int[] XNTupleFuncs::getBoardVector(StateObservation so)

returns a board vector, a vector whose length is the number of board cells

int XNTupleFuncs::getNumCells()

, carrying the position value for each board cell according to this numbering. The position
value of a cell is a game-specific coding of all states a board cell can be in. It is a number
in {0, 1, 2, . . . , P − 1} with P = XNTupleFuncs::getNumPositionValues().

Example: The canonical board cell numbering for the game TicTacToe run from
00 to 08. The position values are 0: O, 1: empty, 2: X. Each board vector has
length 9. For state sA in Fig. 1 the board vector is

bVec = {1, 1, 0, 1, 2, 2, 1, 1, 1};
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Figure 2: Two examples for n-tuples: (a) 3 n-tuples, (b) 4 n-tuples of varying length and
placement.

B.2 N-Tuple Creation

N-tuple sets can be created through explicit specification by the user (n-tuple fixed mode)
or through a random initialization process.

Fig. 2 shows two examples of 4× 4 boards with fixed (user-specified) n-tuple sets. The
canonical cell number is obtained from

4× row_number + col_number

Example (a) in Fig. 2 is coded in a class derived from XNTupleFuncs as

public int[][] fixedNTuples() {
int nTuple[][]={ {0,1,2,3}, {1,5,6,2}, {0,4,8,9,10,11} };
return nTuple;

}

Example (b) is coded as

public int[][] fixedNTuples() {
int nTuple[][]={ {4,5,6,7}, {2,6,7,3}, {0,4,8,9,13}, {10,11} };
return nTuple;

}

Each n-tuple contains each cell at most once. But a set of n-tuples may (and often
should) contain the same cell multiple times.
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The following random initialization processes to create n-tuple sets are provided by the
n-tuple factory:

1. Random points: Cells are picked at random, no cell twice16, no topographical con-
nection. This is often not advantageous because in many board games the neigh-
borhood of a cell is more important for determining its value than an arbitrary other
more distant cell.

2. Random walks: Cells are picked at random, no cell twice, with adjacency constraint.
That is, each cell of the n-tuple list must be adjacent to at least one other cell in the
n-tuple. What adjacent actually means in a certain game is specified by the user
through the XNTupleFuncs method

public HashSet adjacencySet(int iCell);

which returns the set of all neighbors of cell iCell.

B.3 N-Tuple Training and Prediction

How are the n-tuples used to generate features? – Each n-tuple has an associated look-up
table (LUT) of length Pn where n is the n-tuple length and P is the number of position
values each cell might have.

Example: TicTacToe has P = 3 cell position values: {O,-,X}. For an n-tuple
of length n = 2 this leads to 32 = 9 possible LUT entries

{OO, O-, OX, -O, --, -X, XO, X-, XX}

These LUT-entries are features. Even for a small number of n-tuples this will generate quite
a large number of features. For example in Fig. 2(a), if we assume 3 position values for
each cell, the number of features is 34 + 34 + 36 = 891, because there are 2 4-tuples and
one 6-tuple. On a larger board, a more realistic setting would be, for example, 40 n-tuples
of length 8, resulting in 40 · 38 = 262 440 features.

Each feature i in n-tuple ν has an associated weight wν,i. Given a certain board state,
we look first which of those features are active (xν,i = 1) or inactive (xν,i = 0) in that board
state. Then the n-tuple network computes its estimate V (est) of the game value through

V (est) = σ

(
m∑
ν=1

Pn−1∑
i=0

wν,ixν,i

)
(1)

which is a simple a neural net without hidden layer and with a sigmoid function σ(·).17 We
compare the estimate generated by this net with the target game value V prescribed by

16within the same n-tuple
17In TDNTuple3Agt the sigmoid function is always σ = tanh (see helper class NTupleValueFunc), so that

V (est) ∈ [−1, 1] holds.
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Table 4: Summary of various multi-core threads in GBG.
method remark

class MCAgent, MCAgentN
getNextAction_PAR parallelization over available actions
getNextAction_MassivePAR parallelization over available actions AND

over rollouts

class EvaluatorHex
competeAgainstMCTS_diffStates_PAR parallelization over different start states for

eval mode 10 & agent TDNTuple3Agt

class Evaluator2048
eval_Agent two parallelizations over evaluation games

for 2 agents MCTS-Expectimax & Expecti-
maxWrapper

TD-learning. A δ-rule learning step with step-size α (gradient descent) is made for each
weight in order to decrease the perceived difference δ = V − V (est) between both game
values (Thill et al. [2014], Thill [2015]).

For complex games it might be necessary to train such a network for several hundred
thousand or even million games in order to reach a good performance. The so-called
eligibility traces are a general technique from TD-learning to speed up learning. They can
be activated in the GBG framework by setting parameter λ > 0 in the TD pars parameter
tab. Further details on eligibility traces are found in Thill et al. [2014].

Once the network is trained, the game value estimate V (est) is used to decide about
the next action.

To further speed up learning, symmetries may be used: Symmetries are transforma-
tions of the board state which lead to board states with the same game value. If weights
for symmetric states are trained simultaneously, this will lead to better generalization of
the trained agent. For example, Tic-tac-toe and 2048 have eight symmetries (4 rotations
× 2 mirror reflections). Instead of performing only one learning step with the board state
itself, one can do eight learning steps by looping through all symmetric states. This may
greatly speed up learning, since more weights can learn on each move and the network
generalizes better.

If the game has symmetries, the user has to code them in XNTupleFuncs method

public int[][] symmetryVectors(int[] boardVector);

See Sec. 4.8 for further information on this method.

C Appendix: Multi-Core Threads

GBG supports for several time-consuming operations multi-core (parallel) threads to speed
up calculation. The operations are given in Table 4.
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Note that an operation can only be parallelized, if the relevant routines and agents are
thread-safe. This is for example the case for agent TDNTuple3Agt when it is evaluated
(where its method getNextAction2 is needed): This method does not change any data of
this agent, so different threads can use the same TDNTuple3Agt object and call this method
independently. This is what we do in the parallel thread of EvaluatorHex.

On the other hand, an agent like MCTS is not thread-safe, because each call to get-
NextAction2(sob,..) with a different state sob would construct different MCTS tree data.
The only way to parallelize game play with MCTS is that each thread has its own copy of
an MCTS with the parameters given. This is exactly what we do in the two parallel threads
in Evaluator2048.

D Appendix: String Representations of Agents

Table 5 shows and distinguishes different methods for agent string representations.

Table 5: Summary of various agent string representation methods in GBG.
method remark

getName the name given to the constructor of the agent,
e.g. TD-Ntuple-3 (see Types.GUI_AGENT_LIST)

getClass.getSimpleName the simple name of the underlying class,
e.g. TDNTuple3Agt

getClass.getName the full class name,
e.g. controllers.TD.ntuple2.TDNTuple3Agt

stringDescr simple class name + parameter settings
stringDescr2 full class name + additional parameter settings

If a class derived from AgentBase does not specify stringDescr and stringDescr2,
then the default implementation from AgentBase is taken, which is only the simple and the
full class name, resp.

E Appendix: Files Written by GBG

Table 6 shows and distinguishes the files written by GBG.

18The file theNtuple.txt is not meant for permanent storage. It is only an intermediate print-out of a certain
n-tuple configuration (perhaps a good-working one generated by random walk) and enables to copy it into the
source code of a game as a fixed n-tuple mode.
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Table 6: Summary of all files written by GBG.
filename directory remark

text files
playStats.csv agents/<game>[/<subdir>]/csv statistics of a ’Play’ episode
multiTrain.csv agents/<game>[/<subdir>]/csv multi-training results
theNtuple.txt18 agents n-tuple configuration (last loading)

binary files
*.agt.zip agents/<game>[/<subdir>] saved agents
*.tsr.zip agents/<game>[/<subdir>]/TSR tournament system results
*.gamelog logs/<game>[/<subdir>] log files
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advances in general game playing. The Scientific World Journal, 2015, 2015. 5

35

http://www.gm.fh-koeln.de/ciopwebpub/Kutsch17.d/Kutsch17.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kutsch17.d/Kutsch17.pdf


Michael Thielscher. A general game description language for incomplete information
games. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010. 5

Markus Thill. Temporal difference learning methods with automatic step-size adaption
for strategic board games: Connect-4 and Dots-and-Boxes. Master thesis, TH Köln –
Cologne University of Applied Sciences, June 2015. URL http://www.gm.fh-koeln.
de/~konen/research/PaperPDF/MT-Thill2015-final.pdf. 9, 13, 22, 32

Markus Thill, Samineh Bagheri, Patrick Koch, and Wolfgang Konen. Temporal difference
learning with eligibility traces for the game Connect-4. In Mike Preuss and Günther
Rudolph, editors, CIG’2014, International Conference on Computational Intelligence in
Games, Dortmund, 2014. 13, 22, 32

36

http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf
http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MT-Thill2015-final.pdf

	Introduction
	Motivation
	Related Work
	Introducing GBG

	Class and Interface Overview
	Classes in Detail
	Interfaces StateObservation and StateObsNondeterministic
	Interface PlayAgent and class AgentBase
	List of Agents implemented in GBG

	Some Remarks on the Game Score
	Difference between Game Score and Game Value
	Interface Feature
	Interface XNTupleFuncs
	Interface GameBoard
	Human interaction with the board and with Arena
	Abstract Class Evaluator
	Abstract Class Arena
	Abstract Class ArenaTrain
	The Param Classes
	The ACTION Classes

	Use Cases and FAQs
	My first GBG project
	I have implemented game XYZ and want to use AI agents from GBG – what do I have to do?
	How to train an agent and save it
	Which AI's are currently implemented for GBG?
	How to write a new agent (for all games)
	What is the difference between TDAgent, TDNTuple2Agt and TDNTuple3Agt?
	How to specialize TDAgent to a new game
	How to specialize TDNTuple3Agt agent to a new game
	How to set up a new Evaluator
	Scalable GUI fonts
	What is a ScoreTuple?

	Open Issues
	Appendix: Other Game Value Functions
	Appendix: N-Tuples
	Board Cell Numbering
	N-Tuple Creation
	N-Tuple Training and Prediction

	Appendix: Multi-Core Threads
	Appendix: String Representations of Agents
	Appendix: Files Written by GBG

