
SFA classification with few training data:

Improvements with parametric bootstrap

Wolfgang Konen
Cologne University of Applied Sciences

wolfgang.konen@fh-koeln.de

February 8, 2012

Slow Feature Analysis (SFA) is a versatile algorithm to find stable features or slow-
varying signals in multidimensional data. It is capable of finding highly relevant features
for classification tasks. This paper deals with the marginal training data problem which
appears in SFA classification when the number of training records is too low. We derive a
quantitative condition between training set size and SFA configuration parameters which
allows to predict whether the marginal training data problem will occur. We analyze the
reasons for the problem and propose several strategies to avoid it. Among these strategies,
the parametric bootstrap approach, which augments the training data with virtual training
patterns drawn from an estimated distribution, successfully solves the marginal training
data problem. We report first evidence, that parametric bootstrap is also beneficial for
non-marginal SFA and for other machine learning algorithms like Random Forests.

Contents

1 Introduction 2

2 SFA 2

3 Marginal Training Data 3
3.1 Observation . 3
3.2 Explanation . 3

3.2.1 A Simple Example . 4
3.2.2 The General Case . 5
3.2.3 Real Data Example . 6
3.2.4 Effect on the Gaussian Classifier 6

4 Solving the Marginal Training Data Problem 7
4.1 Fewer Features . 8
4.2 Parametric Bootstrap . 8

5 Results 9

6 Conclusion and Outlook 10

1

1 Introduction

Slow Feature Analysis (SFA) is a new learning algorithm emerging from neuroscience which is capa-
ble of learning new features or ’concepts’ from multidimensional (time) signals in an unsupervised
fashion. SFA has been originally developed in context of an abstract model of unsupervised learning
of invariances in the visual system of vertebrates by Laurenz Wiskott [Wis98] and is described in
detail in [WS02, Wis03]. Although SFA is inspired from neuroscience, it does not have the drawbacks
of conventional ANNs (Artificial Neural Networks) such as long training times or strong dependen-
cies on initial conditions. A MATLAB implementation of SFA is available as open-source toolkit
sfa-tk [Ber03] and [Ber05] extended the SFA algorithm originally developed for time series to be
applicable to classification tasks as well. [Kon09] extended sfa-tk with a new variant SVD-SFA with
better numerical stability on arbitrary input signals and [KKH10] successfully applied sfa-tk to a
gesture recognition test case where it has shown a similar performance to state-of-the-art machine
learning algorithms like Random Forest (RF) [Bre01]. SFA is fast in training and it has the potential
to find hidden features in multidimensional signals, as has been shown impressively by [Ber05] for
handwritten-digit recognition.

However, it was observed in [KKH10] that the SFA classification algorithm shows suboptimal
behavior if the number of training patterns is too small. We will refer to this effect as marginal
training data problem. After a very short introduction to SFA in Sec. 2 it is the main purpose of
this paper to describe the marginal training data problem and the circumstances under which it
may appear in more detail (Sec. 3), to propose a new solution for this problem based on parametric
bootstrap (Sec. 4) and to show some results on classification datasets (Sec. 5).

2 SFA

We give here a very short introduction to the main ingredients of SFA. For a more comprehensive
discussion of SFA and SFA-based classification, the reader is referred to [WS02, Wis03, Ber05, Kon09].

In a nutshell, the SFA approach is defined as follows: For a signal ~x(t) where t indicates time and
~x is a vector of dimension npp, find the set of real-valued output functions g1(~x), g2(~x), ..., gJ(~x), such
that each output signal

yj(t) = gj(~x(t)), j = 1, . . . , J, (1)

minimally changes in time:
〈∆yj2〉t is minimal. (2)

Here, 〈·〉t means average over time and ∆y indicates the time difference operator in the case of time
series and the intra-class pattern difference vector in the case of classification [Ber05].

To exclude trivial solutions we add some constraints:

〈yj〉t = 0 (zero mean) and 〈y2j 〉t = 1 (unit variance). (3)

For arbitrary functions this problem is difficult to solve, but SFA finds a solution by expanding the
npp-dimensional input signal in a nonlinear function space of certain basis functions, e.g. monomials
of degree 2:

~z =
[
x1, . . . , xnpp , x

2
1, x1x2, . . . , x

2
npp

]T
(4)

This expanded signal ~z is transformed to a sphered expanded signal

~v = S(~z − 〈~z〉t) (5)

where the sphering matrix S is choosen such that the constraint 〈~v ~v T 〉t = I (unit matrix) is fulfilled.
Then SFA calculates the time difference of the sphered expanded signal and determines from its

2

covariance matrix

C = Cov(∆~v)

the normalized eigenvectors ~w1, . . . , ~wJ with the smallest eigenvalues. Finally the sphered expanded
signal is projected onto these eigenvectors to obtain the slow output signals

yj(t) = ~wj · ~v, j = 1, . . . , J.

It is easy to show that due to the sphering of Eq. (5) the output signals fulfill automatically the
constraints of Eq. (3).

In SFA classification [Ber05] each pair of patterns from the same class level is used to form a mini
time series of length 2. Thus, if we have P patterns for a certain class level, we can form P (P − 1)/2
mini time series. The optimization goal is now to minimize the variation of (2) on average over all
such mini time series. The goal of SFA to find a ’slow’ signal transformation yj(t) then translates
to finding a transformation with small intra-class variation. Such a transformation is suitable for
subsequent classification by a simple classifier, e.g. a Gaussian classifier.

3 Marginal Training Data

3.1 Observation

Sometimes data is rare, e.g. for classification with few observations. Normally, the performance of
a classifier will slowly degrade if we slowly diminuish the number of training patterns. This is for
example the case for the RF classifier in Fig. 1(a). SFA classification, on the other hand, shows on
the same dataset a problematic behaviour: When only a small number of training data N is available
for classification (more specifically: if N < Dx where Dx is the dimension of the expanded function
space) then the SFA classifier is not better than random guessing on new test data.

The situation was studied in more detail with the following experiment: We applied SFA and RF
as reference method to the same set of data (5-class gesture data set from [KKH10]). The ratio of
training and test set was varied starting with a high number of training data and low number of
test data and then decreasing the training data while increasing the test data, respectively. For each
number of training data, ten runs with different random seeds were carried out and in Fig. 1 we show
the mean values and the standard deviations (error bars) for this experiment.

Both plots show that the classification rates of the two classifiers are promising with enough
training data available (e. g. > 120 training patterns). However, with fewer training patterns the
SFA detection rates become quite unsatisfying. The error rate increases immensely for < 90 training
patterns, while the error on the training set constantly stays at zero level. We therefore see a case
of severe overfitting. The RF predictor has with the same data no overfitting problem, the training
set error is always a good predictor of the test set error and both errors are only moderately rising
when the number of training patterns is diminuished.

3.2 Explanation

Why has SFA classification such an overfitting problem with marginal training data? The answer
to this question lies in the way how SFA computes the output signal. The algorithm computes the
covariance matrix of the expanded input signal and determines its eigenvalues. We show in Sec. 3.2.2
that a certain covariance matrix becomes rank deficient if too few training examples are available.
This leads to an underdetermined linear system to be solved by the algorithm. As a necessary
precondition to avoid rank deficiency in SFA, we show below in Eq. (8) that the constraint

N ≥ Dx +K (6)

3

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training Patterns

C
la

ss
ifi

ca
tio

n
er

ro
r

RF on train set
RF on test set

(a) RF error rates

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training Patterns

C
la

ss
ifi

ca
tio

n
er

ro
r

SFA on train set
SFA on test set

(b) SFA error rates

Figure 1: Error rates on a gesture classification benchmark when varying the number of training
patterns. (a) RF (Random Forest): The test set error on unseen data increases only
slowly as we move from right to left into the regime of fewer training patterns. The
training set error (OOB in the case of RF) is a good predictor for the test set error. (b)
SFA with npp = 12: The test set error suddenly increases when the number of patterns
is too small for a sufficient rank of the covariance matrix (< 90 patterns), while the
training set error stays constantly near zero.

has to be met. Here N is the number of patterns available for training and K is the number of classes
and Dx is the dimension of the nonlinear expanded function space used by SFA.

3.2.1 A Simple Example

As a simple example consider the case of N = 4 training patterns ~v in a (Dx = 3)-dimensional
expanded function space. We assume K = 2 classes with 2 patterns in class 1 and 2 patterns in
class 2. The two patterns of class 1 necessarily lie on a line l1, their difference vector ∆~v1 forms an
eigenvector direction of C := Cov(∆~v). Similarly, the two patterns of class 2 have another difference
vector ∆~v2 parallel to line l2. The subspace spanned by both vectors ∆~v1 and ∆~v2 is a 2-dimensional
plane and it contains the two eigenvectors of C with the smallest non-zero eigenvalues.

In the threedimensional expanded function space there is necessarily a direction (perpendicular to
the eigenvector plane) for which all training patterns show no intra-class variation. (Analoguously,
if the feature space is 4-dimensional, there are two directions with no intra-class variation at all.)
Therefore C will have at least one eigenvalue exactly 0 or close to 0 within machine accuracy. The
associated eigenvector direction is usually not a good direction for discriminating the underlying class
distributions: It is just an artefact of the specific set of training patterns (see Fig. 2). If different
training patterns (different two points in the 3D feature space) are selected, usually a different
direction of the first eigenvector will emerge.

Let us depict in Fig. 3 a concrete case where l1 coincides with the x-axis and l2 is a line parallel
to the y-axis but passing through the point (x, y, z) = (0, 0, 2). Thus, for the patterns of class 1
and 2 we have vz = 0 and vz = 2, resp. The mean vector ~µ of all training patterns has µz = 1.
The two lines l1 and l2 do not intersect, but they have a common direction perpendicular to them
which is the direction of the z-axis. This direction will emerge as an eigenvector of C := Cov(∆~v)
with eigenvalue 0, because all the intra-class difference vectors have no component in this direction.
Therefore the z-axis will be the SFA eigenvector with the slowest signal: the slowest signal y1 is
simply the projection of each vector (~v − ~µ) on the z-axis, which is in our case constantly −1 for
class-1 patterns and +1 for class-2 patterns.

4

l1

Class 1

Figure 2: If there are only two training patterns for
class 1, the corresponding eigenvector direc-
tion will be along line l1. This may be a bad
characterization of the principal axis of the
underlying distribution (ellipsoid).

l2

l1
x

y

z

2

1 μ

Figure 3: A very simple 2-class problem.

If now a new test pattern arrives, it will have almost always a z-projection different from −1
and +1. Even more, the z-projection will not be very significant for the class membership, since
the z-direction was an artefact of the training data. Nevertheless, SFA will rely completely on this
direction and therefore it makes with high probability a wrong classification.

This example should give the reader a basic and visual understanding for the reasons why SFA
classification will fail on marginal training data. We will now transfer the arguments to arbitrary
dimensions (Sec. 3.2.2) and to realistic datasets (Sec. 3.2.3).

3.2.2 The General Case

Given a classification problem with N training patterns ~x(n), where each training pattern belongs to
one of the K classes m = 1, . . . ,K. Each pattern ~x(n) is transformed to a point ~v(n) in the nonlinear,
Dx-dimensional expanded function space used by SFA. The SFA matrix C = Cov(∆~v) is formed
from all intra-class difference vectors ∆~v = ~v(i) − ~v(j), where ~v(i) and ~v(j) are patterns belonging to
the same class m. We show here that matrix C is rank deficient as soon as N < Dx +K.

Lemma:

rank(C) ≤ min(Dx, N −K) (7)

Proof. Each of the N patterns belongs to one class m. If Nm is the number of patterns belonging to
class m = 1, . . . ,K, we have

N1 +N2 + . . .+NK = N.

The difference vectors ∆~v = ~v
(m)
i − ~v(m)

j for class m will span at most an (Nm − 1)-dimensional

subspace, since the Nm points ~v
(m)
i can not span more than Nm − 1 dimensions.1 The matrix C

1Note that this is true even though the number of difference vectors ∆~v entering into the calculation of C is larger
than Nm, namely Nm(Nm − 1)/2 in the case of monomials of degree 2.

5

is formed from these subspaces and thus can not have a rank larger than the direct sum of these
subspaces:

rank(C) ≤ N1 − 1 +N2 − 1 + . . .+NK − 1 = N −K.

Since on the other hand C is a square matrix with Dx rows and columns, it can not have a rank
larger than Dx. In combination this proves the Lemma above.

Thus, if N −K < Dx then C is rank deficient. There remain at least Dx − (N −K) dimensions
perpendicular to all difference vectors. These dimensions will have associated eigenvalues exactly 0
or close to 0 within machine accuracy, but they are not stable, since a different selection of N training
patterns will lead to other directions. Therefore we will get 0% training set error (by construction),
but with high probability a large test set error. In other words,

N ≥ Dx +K (8)

is a necessary condition to avoid rank deficiency and overfitting.
To see more clearly why we get 0% training set error by construction, we have to look at the way

how SFA processes training and test data for classification (cf. Fig. 3): Each pattern is transformed
into the sphered expanded function space yielding a vector ~v. The mean vector ~µ of all expanded
training vectors is subtracted. Then several projections on the slowest SFA directions take place,
which are in the case of rank deficiency parallel to eigenvectors ~wj of C with eigenvalue 0. All
training records of one class are in a hyperplane with a constant offset to ~µ, therefore the projection
of ~v · ~wj will be the same number for all training patterns of the same class and a usually different
number for each different class. Any classifier trained on such data will have 0% training set error
by construction.

3.2.3 Real Data Example

Fig. 4(a) shows the results from a gesture recognition experiment [KKH10] where SFA with Dx = 90
was used on a sufficient number of 159 training records which is enough for Dx +K = 95 as required
by Eq. (8). The slowest SFA signal y1 shows some intra-class variation and a sharp inter-class
separation. A Gaussian classifier trained on the four slowest SFA signals y1, . . . , y4 can learn quite
robustly to separate the 5 classes; the test set errror is with 8% quite low. In contrast, Fig. 4(b) shows
the results from SFA when there are too few training records. Here the number of N = 71 training
records is smaller than Dx+K = 95. Consequently we get a rank-deficient covariance matrix and the
SFA ouput signal shows absolutely no intra-class variation on the training data (severe overfitting).
The SFA model will select any of the 95 − 71 dimensions with eigenvalue zero, and almost surely
this dimension will be meaningless for the test data. As a result we get a high error rate of 77% on
independent test data, which is not better than random guessing.

3.2.4 Effect on the Gaussian Classifier

What is the effect of a rank-deficient matrix C on the subsequent classifier, which is in our SFA
case usually a Gaussian classifier? The effect of zero or very small (10−7 and below) eigenvalues on
the Gaussian classifier is very drastical: As explained in the preceeding section, the projection of
the training data on the corresponding eigenvector dimensions will yield a zero variance of the SFA
output in these dimensions. Consequently, the Gaussian classifier will model a Gaussian distribution
which is completely flat in these dimensions.

Now if new test data arrive for the classifier, they will usually not have zero projections in these
dimensions. The classifier will consider these data so far outside from any trained distribution that
it will respond with a completely arbitrary class label. As a consequence, the classifier will not be
better than random guessing, the error rate becomes usually as high as 1− 1/K.

6

0 50 100 150

−1

0

1

 y
1
(t) on training set

index

y 1(t
)

0 50 100 150
−2

−1

0

1

2

 y
1
(t) on test set

index
y 1(t

)

(a) Sufficient training data (159 records)

0 20 40 60

−1

0

1

2

 y
1
(t) on training set

index

y 1(t
)

0 20 40 60

−2

0

2

4

 y
1
(t) on test set

index

y 1(t
)

(b) Too few training data (71 records)

Figure 4: Output of the slowest SFA signal y1 for Dx = 90 on the 5-class gesture classification
problem. The x-axis shows the training (test) record index. For better visualization
the records are ordered: first class-1 records (leftmost white area), then class-2 records
(grey area) and so on up to class 5 (rightmost white area). (a) Sufficient training data:
The SFA signals on training and test set (160 records) show a roughly similar behaviour,
only with a somewhat larger intra-class variation in the test set. (b) Too few training
data (at least Dx +K = 95 records are required): The output on the training data shows
severe overfitting. The SFA signal on the test set (72 records) is completely different,
and the test set error (77%) is not better than random guessing.

Two options can be considered to improve the situation, but they both do not really solve the
problem:

• Exclude all SFA output dimensions (eigenvectors of of C) where the ratio λ/λmax of the cor-
responding eigenvalue λ is below εc = 10−7. This does not solve anything, because this throws
away the important dimensions, which are somewhere in the subspace spanned by the eigenvec-
tors with zero eigenvalue. (Remember, the eigenvalues would not be zero, if sufficient training
data from the underlying distribution were available.)

• Regularize the covariance matrix Σ of the Gaussian classifier. If Σ has diagonal elements
smaller than εd = 0.01, replace them by 0.01 before calculating the inverse Σ−1. This improves
the situation somewhat, e. g. in a 5-class-problem the error rate may drop from 80% down to
30%-40%, but it is still not a good classifier.

Thus, the only way to deal successfully with marginal training data in SFA classification is to avoid
the rank deficiency of matrix C right from the beginning, and this is what we will discuss in the next
section.

4 Solving the Marginal Training Data Problem

While SFA works well in classification experiments with sufficient training data, where it achieves
results comparable to the well-known Random Forest classifier, it shows severe limitations on cases
with marginal training data. Are there possibilities to overcome these limitations? We have seen in
Sec. 3.2, Eq. (8), that the necessary condition to avoid overfitting is

N ≥ Dx +K

There are two options to cure a situation where Eq. (8) is initially violated:

1. Fewer features: Decrease Dx to a value below N −K.

7

2. Parametric bootstrap: Increase N by augmenting the training set with additional samples
drawn from an approximating distribution.

4.1 Fewer Features

For monomials of degree 2 the relation

Dx = npp +
npp(npp + 1)

2
(9)

holds. Therefore, one option is to decrease npp until the constraint of Eq. (8) is fulfilled. An example
is shown in Fig. 5, where the task was to classify the gestures of one person: For each cross validation
run we have 66 or 67 training data (90% of 74 gesture records in 10-fold cross validation). This
leads to the necessary condition Dx ≤ 66 − 5 = 59 or npp ≤ 9 acc. to Eq. (9), which is confirmed
by the steep incline of the red curve between npp = 9 and 10 in Fig. 5. Best results are obtained
with npp ∈ {5, 6}. – This option works, but it has the drawback that the amount of information
transferable to the classification algorithm is quite severely limited to 5 or 6 input dimensions.

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

input dimension n
pp

C
V

 te
st

 e
rr

or
 r

at
e

[%
]

SFA+Gauss
Gauss only
RF

0

20

40

60

80

100

D
x

Figure 5: SFA with marginal data: Too high npp yield unsatisfactory error rates. Experimental
settings: Cross validation with 10 folds, each fold ha 66 or 67 training data. Shown is
the average out of 5 runs with different seeds for the fold generation. The dashed blue
line shows the critical value for Dx: with Dx < 59 we get satisfactory error rates.

4.2 Parametric Bootstrap

Another option is to keep npp at its desired value, but to enrich the training data by parametric
bootstrap [HTF01, pp. 264]: This method increases the number of training instances by adding
Ncopies new records which are ’noisy copies’ of original training records ~x.

Given a classification problem with a training set S = {~x(n)| n = 1, . . . , N} of size N , where each
training pattern belongs to one of the classes m = 1, . . . ,K. The function c(n) = m denotes for each
pattern ~x(n) its class membership. Let

fm = Nm/N (10)

denote the relative frequency of class m in the training set where Nm is the absolute frequency of

class m. Each pattern vector ~x(n) has F components (features) x
(n)
i , i = 1, . . . , F , and we define the

8

following quantities:

µ
(m)
i = E

[
x
(n)
i

∣∣∣ c(n) = m
]

(11)

σ
(m)
i =

√
E

[(
x
(n)
i − µ(m)

i

)2∣∣∣∣ c(n) = m

]
(12)

which are the mean and the standarad deviation, resp., of the ith feature when averaging over all
patterns n with c(n) = m, i. e. when using all patterns of class m.

Then the parametric bootstrap algorithm can be formulated as follows:

Parametric bootstrap algo(S, Ncopies):

1: Initialization: Compute µ
(m)
i , σ

(m)
i and fm . Eqs. (10), (11) and (12).

2: for (c = 1, . . . , Ncopies) do . Loop over bootstrap samples.
3: Select class m from {1, . . . ,K} with probability fm
4: for (i = 1, . . . , F) do

5: Draw a random variable Z ≺ N(0, σ
(m)
i) and form X

(c)
i = µ

(m)
i + σncZ

6: end for
7: end for
8: Return the augmented training set S+ = S ∪ { ~X(c)|c = 1, . . . , Ncopies}

The augmented training set S+ will have the same basic statitistic properties (class frequency,
class centroids ~µ(m)) as the basic set S. This is true in the statistical sense, i. e. for sufficiently large
Ncopies or when averaging over multiple S+ productions. σnc is a free strength parameter, which is
usually choosen close to 1. For σnc = 1 the set S+ has on average the same class standard deviations

σ
(m)
i as the basic set S.

The number Ncopies of the bootstrap samples can either be given by the user or it is automatically
set by the following simple heuristic:

Automatic bootstrap heuristic(S):

1: if N <= 1.2 ∗ (Dx +K) then
2: Ncopies = αnc ∗ (Dx +K)−N
3: S = Parametric bootstrap algo(S, Ncopies)
4: end if
5: Return S

The parameter 1.2 in the above heuristic can be considered as rule of thumb. αnc = 1.5 is a usual
parameter value for the desired training set size ratio, but higher values might be also beneficial for
the overall accuracy. SFA is not very sensitive to the precise value as long as the number of training
records is well above the border Dx +K.

5 Results

Fig. 6 shows the resulting CV error rates as a function of augmented training set size |S+|. We expect
to need at least |S+| = Dx + K = 90 + 5 records and we find from Fig. 6 that the steepest decline
of the red curve is near this value. However, to get a low error rate, |S+| should be higher, between
200 and 350. Note that the parametric bootstrap affects only the training data, and no changes to
the test data are made. Therefore the CV test error rate remains realistic. – The option parametric
bootstrap allows to put more of the original training information into the SFA model since we can
work with npp =12 or higher and are not restricted to npp =6. We name this enhanced algorithm
SFA+PB.

9

100 200 300 400
0

20

40

60

80

|S+| = N + N
copies

C
V

 te
st

 e
rr

or
 r

at
e

σ
nc

=1

SFA+Gauss
Gauss only
RF

Figure 6: Bootstrapping SFA in the case of marginal data: SFA with too few training data
(N = 66, Ncopies = 0) gets very high test set errors (approx. 80%). By applying a
parametric bootstrap, which augments the training data to the new size |S+| = N +
Ncopies, we decrease the SFA test set error dramatically to values around 2% (thick
line ”SFA+Gauss”). This is by a factor of 3 smaller than the test set error from
a Gaussian classifier (thin line ”Gauss only”) and comparable to the state-of-the-art
classification algorithm Random Forest (RF, 2.1%). Dotted vertical line: the critical
value |S+| = Dx+K = 90+5. Experimental settings: Same as Fig. 5, additionally npp = 12
(hence Dx = 90) and σnc = 1.0.

Parameter sensitivity We ran several tests with other values of parameter σnc. The algorithm is
not very sensitive to this parameter, since we get nearly identical results if we halve or double the
value. But the right order of maginitude is important: With too small values, e.g. σnc = 0.1, the
convergence as a function of Ncopies is very slow, while with too large values, e.g. σnc = 3.2, the error
rates rise after a small dip quickly to unsatisfactory high error rates of 25% and above.

Strategies to handle marginal data Fig. 7 compares different strategies to cope with marginal
data. SFA with parametric bootstrap (SFA200) is always better than using fewer features (FF5).
Random Forest (RF0, RF200) is comparable to SFA200. RF200 is the test whether RF will benefit
from parametric bootstrap samples although it does not have a critical marginal training data set
size. The results from our experiments show that RF200 is slightly better than RF0, but further
experiments on other data would be needed to verify whether this slight performance increase is
significant.

6 Conclusion and Outlook

In this paper we have studied the effect of small training set size (marginal data) on the SFA
classification algorithm. We identified the reason why SFA has to fail with too few training data,
gave in Eq. (8) a quantitative condition for too few training data and offered several strategies to
overcome this problem (regularization of the Gaussian classifier, fewer feature dimensions, parametric
bootstrap).

Among these strategies, parametric bootstrap (PB) is most versatile (applicable to differently
sized problems) and gives the best results in terms of classification errors on independent test sets.
It has been shown that parametric bootstrap is also beneficial for other classification algorithms like
Random Forest.

10

● ●

FF5 SFA200 RF0 RF200

0
5

10
15

C
la

ss
ifi

ca
tio

n
er

ro
r

[%
]

(a) Person 121 (63 training patterns)

●●

FF5 SFA200 RF0 RF200

0
2

4
6

8
10

C
la

ss
ifi

ca
tio

n
er

ro
r

[%
]

(b) Person 122 (67 training patterns)

Figure 7: Comparision of different strategies to handle marginal training data: FF5: fewer fea-
tures, i.e. set npp = 5 and do not use parametric bootstrap. SFA200: use npp = 12 and
augment each training set with 200 parametric bootstrap patterns. FF5 and SFA200
are the SFA-related strategies. For comparision we process the same cross-validation
data with random forest (RF) as well. RF0: plain RF with 500 trees and mtry=3;
RF200: augment each training set with 200 parametric bootstrap patterns. Each box
plot shows the results from 10 cross-validation experiments, each with 10 random folds
and each fold using different random parametric bootstrap samples.

11

What is the reason that parametric bootstrap has a beneficial effect on most classification tasks?
Without PB and with too few training data, certain dimensions in the expanded space will be over-
emphasized. These dimensions might obscure the important dimensions. With PB no dimension will
have a zero eigenvalue in C (at least if each input dimension in the expanded space has a non-zero
standard deviation). The removal of the zero eigenvalue directions makes it possible for SFA to ’find’
in the data those directions with slow variations originating from the data itself (and not from a
meaningless consequence of the training record selection process).

But even in the case of non-marginal data it can be beneficial to augment the training set with PB
patterns. In [KKH10] it was shown that the difficult task of gesture classification on unseen persons
has originally a test set error of 17.7%. With PB on the training set, the test set error improved
by 10% to 15.3%. It is our opinion that with PB the distribution of the training data is explored
more thoroughly. This lets SFA concentrate on those dimensions which show small variation in the
training data and as a consequence it allows SFA to generalize better on new gestures of persons not
seen during training.

We used here a very simple – however broadly applicable – parametric model for the bootstrap,
namely a model based on a Gaussian noise distribution. For the gesture classification task we plan
to investigate as future work a more specific parametric model where the creation of virtual patterns
is based on gesture-specific geometric operators, e.g. random rotations of real class patterns, or
timeline operators like shift of start and stop point. We expect that with such virtual patterns the
generalization capabilities, especially towards unseen persons, can be enhanced.

In summary, the neuro-inspired algorithm SFA has shown to be fast and precise on classification
tasks and it needs only few parameters. Due to its simple projection approach, the application of
the trained model is 3–6 times faster than the already fast RF method [KKH10]. With SFA+PB,
our new parametric-bootstrap extension (see Appendix for details), the algorithm can deal also with
few training data, which was not possible for plain SFA.

Acknowledgement

This work has been supported by the Bundesministerium für Bildung und Forschung (BMBF) under
the grant SOMA (AIF FKZ 17N1009, ”Ingenieurnachwuchs”) and by the Cologne University of
Applied Sciences under the research focus grant COSA.

Appendix: Implementation Details sfa-tk (MATLAB)

The parametric bootstrap algorithm is part of the MATLAB toolkit sfa-tk, version V2.8 and higher,
which is available for download from http://gociop.de/downloads/. sfa-tk V2.8 is an extension
of Pietro Berkes’ sfa-tk V1.0 [Ber03].

The parametric bootstrap algorithm is implemented in file sfa/add noisy copies.m in three
slightly different versions:

pars.ncmethod description

1 Each training pattern in turn is centroid; for each feature only one standard
deviation (over all classes)

2 One centroid per class (see Eq. (11)); same standard deviation as in case 1
3 One centroid per class (see Eq. (11)); one standard deviation per class and

feature (see Eq. (12));

Case 3 is exactly the algorithm described in Sec. 4.2 and it is the recommended case, because

12

http://gociop.de/downloads/

it models the approximating distribution most accurately. (Case 1 and 2 are predecessors which
approximate the underlying distribution with less accuracy. However, in our experiments undertaken
so far, all three cases gave very similar results.)
sfa/sfa classify.m checks with sfa/sfaPBootstrap.m whether the number of training patterns

is too small. If so, it automatically generates a sufficient amount of parametric bootstrap patterns
and works with the union of all patterns as augmented trainig set. Use pars.ncalpha = αnc to set
the training set size ratio (see Sec. 4.2) to values different from the default value 1.5.

The automatic augmentation with parametric bootstrap patterns can be disabled if the user sets
pars.doPB=0.

The Gaussian classifier can be regularized by a parameter opts.CL.epsD = εd in order to suppress
too small diagonal elements (see Sec. 3.2.4). If omitted, gaussClassifier.m will set the default
opts.CL.epsD=0.01.
opts.epsC = εc is an optional parameter to exclude eigenvector dimensions with eigenvalue ratio

λ/λmax ≤ εc. As described in Sec. 3.2.4 it is recommended for classification to leave this option
inactive by setting opts.epsC = 0 (the default).

A simple example script for SFA classification may look like this (see also demo/class demo2.m):

pars = parsDefault();

opts = optsDefault();

[x,realclass,xtst,realc_tst,opts] = dataLoad(opts,pars);

res = sfa_classify(x,realclass,xtst,realc_tst,opts,pars);

[confmat,classerr] = mk_confmat(realc_tst,res.predT,opts.nclass,opts.classes);

fprintf(’Confusion matrix & class errors on test set\n --- true class ---\n’)

disp(confmat);

disp(num2str(classerr,’%7.3f’));

References

[Ber03] P. Berkes. sfa-tk: Slow Feature Analysis Toolkit for Matlab (v.1.0.1). http://people.
brandeis.edu/~berkes/software/sfa-tk, 2003. 2, 12

[Ber05] P. Berkes. Pattern recognition with slow feature analysis. Cognitive Sciences EPrint Archive
(CogPrint) 4104, http://cogprints.org/4104/, 2005. 2, 3

[Bre01] L. Breiman. Random forests. In Machine Learning, pages 5–32, 2001. 2

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001. 8

[KKH10] P. Koch, W. Konen, and K. Hein. Gesture recognition on few training data using slow
feature analysis and parametric bootstrap. In Proceedings of IEEE World Congress on
Computational Intelligence 2010, Barcelona, page to appear, July 2010. 2, 3, 6, 12

[Kon09] W. Konen. On the numeric stability of the SFA implementation sfa-tk. arXiv.org e-Print
archive, http://arxiv.org/abs/0912.1064, December 2009. 2

[Wis98] L. Wiskott. Learning invariance manifolds. In Proc. of the 5th Joint Symp. on Neural
Computation, volume 8, pages 196–203, San Diego, CA, 1998. Univ. of California. 2

[Wis03] L. Wiskott. Estimating driving forces of nonstationary time series with slow feature anal-
ysis. arXiv.org e-Print archive, http://arxiv.org/abs/cond-mat/0312317/, December
2003. 2

13

http://people.brandeis.edu/~berkes/software/sfa-tk
http://people.brandeis.edu/~berkes/software/sfa-tk
http://cogprints.org/4104/
http://arxiv.org/abs/0912.1064
http://arxiv.org/abs/cond-mat/0312317/

[WS02] L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances.
Neural Computation, 14(4):715–770, 2002. 2

14

	Introduction
	SFA
	Marginal Training Data
	Observation
	Explanation
	A Simple Example
	The General Case
	Real Data Example
	Effect on the Gaussian Classifier

	Solving the Marginal Training Data Problem
	Fewer Features
	Parametric Bootstrap

	Results
	Conclusion and Outlook

