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Abstract In this paper we present an unsupervised time series anomaly de-
tection algorithm, which is based on the discrete wavelet transform (DWT)
operating fully online. Given streaming data or time series, the algorithm iter-
atively computes the (causal and decimating) discrete wavelet transform. For
individual frequency scales of the current DWT, the algorithm estimates the pa-
rameters of a multivariate Gaussian distribution. These parameters are adapted
in an online fashion. Based on the multivariate Gaussian distributions, unusual
patterns can then be detected across frequency scales, which in certain con-
stellations indicate anomalous behavior. The algorithm is tested on a diverse
set of 425 time series. A comparison to several other state-of-the-art online
anomaly detectors shows that our algorithm can mostly produce results similar
to the best algorithm on each dataset. It produces the highest average F1-score
with one standard parameter setting. That is, it works more stable on high- and
low-frequency-anomalies than all other algorithms. We believe that the wavelet
transform is an important ingredient to achieve this.
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1 Introduction

Up till today, anomaly detection in general and especially for time series re-
mains a challenging task. A successful anomaly detector should fulfill the fol-
lowing requirements to be useful in practice: (i) detect anomalies in an unsu-
pervised manner, (ii) operate online and adaptively, and (iii) work robustly on
quite different time series data.

Requirement (i) arises from the fact that it is usually not possible to collect
enough anomalous data in a training phase and that it is cumbersome in practice
to even separate in training and operational phase. Instead it is desirable to have
an algorithm observing and learning from the 'normal’ data stream and detect-
ing significant deviations as anomalies. Requirement (ii) comes from the fact
that time series data in practice need not to be stationary and/or can be too big
for batch processing. The most notable advantage of online algorithms might be
their adaptive capabilities, which allow them to learn in non-stationary environ-
ments and to adapt to concept drifts or concept changes. Most state-of-the-art
anomaly detectors (see Sec. will usually fulfill (i) and (ii). Requirement (iii)
is less obvious, nevertheless of great practical relevance: It is desirable to have
one algorithm for diverse data: sometimes the data are high-frequent (spiky,
e. g. network traffic data), sometimes the data are medium- or low-frequent
(e. g. sensor signals). In our recent work (Thill et al, 2017) it was found to our
surprise that most state-of-the-art algorithms are either good in one domain
or the other. This stirred the work presented in this paper which uses wavelet
transforms to generate features in diverse frequency ranges. The underlying
research question is: Is it possible to propose one online anomaly detection
algorithm which works robustly on a diverse set of benchmarks?

In the following sections we extend our recent work (Thill et al, [2017) and
introduce an unsupervised anomaly detection algorithm based on the discrete
wavelet transform (DWT) which operates fully online and shows robust perfor-
mance on several benchmarks, using only one parameter setting.

1.1 Related Work

Although many anomaly detection techniques have been developed over the
past years, as for example surveyed in (Chandola et al, [2009) and (Patcha
and Park| 2007), not many approaches utilize wavelet transforms for detecting
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anomalies in time series signals. From those techniques found in the literature,
most are designed for high-frequency anomaly detection (e.g. in network traf-
fic data), such as (Kim et al, [2004; Kwon et al, [2006)) and (Lu and Ghorbanil,
2009). The early work of |Alarcon-Aquino and Barria (2001)); /Alarcon Aquino
(2003)) describes anomaly detection based on non-decimating wavelet trans-
forms. Kanarachos et al. (Kanarachos et al, 2015) developed an anomaly detec-
tion algorithm for time series, based on wavelets, neural networks and Hilbert
transforms. The algorithm was tested on a relatively simple benchmark, includ-
ing two synthetic time series.

In this work we will compare the results of our proposed online anomaly
detection method to the state-of-the-art algorithms NuPic (George and Hawkins),
2009) and ADVec (Vallis et al, 2014}, which both are open-source available.
As benchmark data we use the Numenta Anomaly Benchmark (Lavin and
S. Ahmad, 2015) and Yahoo’s Webscope S5 benchmark (Laptev and Amizadeh),
2015).

2 Methods

In this section we describe an online version of an algorithm based on Discrete
Wavelet Transforms with Maximum Likelihood Estimation for Anomaly
Detection in time series, in short DWT-MLEAD.

2.1 Discrete Wavelet Transforms

Wavelet transforms (Meyer and Salinger, |1995) are used to construct a fre-
quency representation for a signal by finding a representation of the signal in
terms of a wavelet function (a so called mother wavelet, e.g. a Haar wavelet),
which is scaled (stretched and shrinked) in order to capture different frequency
information and shifted along the time axis. Wavelet transforms allow to re-
trieve a time series signal representation which is accurate in both the time and
frequency domain. In this sense wavelet transforms are an interesting alterna-
tive to classical approaches such as (short-time) Fourier transforms, where one
can either achieve a high resolution in the time domain or frequency domain,
but not in both at the same time. For sampled time series data, often the so
called discrete wavelet transform (DWT) is applied, which has linear time com-
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plexity. Usually a decimating DWT is performed, in which the filtered series
are downsampled. The DWT decomposes the original time series into so called
approximation and detail coefficients which are arranged in different levels.
Due to the decimating (downsampling) property of the DWT one can represent
both coefficient sets in two binary tree structures. In this work we apply a dec-
imating DWT to the time series using Haar wavelets. Other wavelets are also
applicable, but require some additional considerations. Since lower levels of the
DWT usually do not contain patterns which are useful for anomaly detection,
only the L highest levels (L is a parameter of the algorithm) are considered,
where ¢ = L — 1 describes to lowest considered level and ¢ = 0 addresses the
highest possible level, which is the original time series and which only contains
the detail coefficients. The DWT-MLEAD algorithm utilizes both the detail
coefficients d, ¢ and approximation coefficients ¢, 4.

For the online implementation of the algorithm, a strictly causal computa-
tion scheme is adhered to: For example, two data points in the original time
series have to be collected first before the next coefficient in level ¢ = 1 can be
computed. Similarly, 2¢ data points from the original time series are necessary
to compute the next coefficient in level £.

2.2 Sliding Windows

Sliding windows are often used in practice to model local temporal relationships
within time series. Our algorithm employs a sliding window for each level of
the DWT tree. The length w; of the window is level-dependent and is computed
as wy = max{1, [b°~¢|} where b,0 € R are two parameters of the algorithm. As
soon as a new coefficient in level £ is available (c, ¢ or d,, ¢), the corresponding
window is slid one further and the new window embedding is collected and
passed to a model, which estimates the likelihood of observing such a vector (as
described in the following sections). Unlikely vectors would indicate unusual
behavior on the corresponding DWT level. As already mentioned before, the
sliding windows at lower levels are moved with a slower rate than those on
higher levels, since new coefficients are only generated after every 2¢ time steps
in the original time series. Anomaly detection starts after an initial transient
phase, when the sliding windows can be completely filled.
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2.3 Online Estimation of Gaussian Distributions

In order to distinguish between normal and unusual patterns in the individual
levels of the DWT, our algorithm estimates a multivariate Gaussian distribu-
tion for each considered level. This is done separately for the approximation
and detail coefficients (¢, and d, ). The dimension of the Gaussian distri-
bution depends on the length of the sliding window used in each level of the
DWT. Each Gaussian distribution is parameterized by a mean vector fl € R"
and a covariance matrix £ € R¥*" which can be found by using maximum
likelihood estimation (MLE) (Thill et al, 2017). Since the DWT-MLEAD al-
gorithm operates in an online fashion, the parameter estimations also have to
be updated incrementally for each new data point. For this purpose we use an
exponentially decaying weighted estimator with an forgetting factor A € (0, 1].
The forgetting factor controls at which rate past observations fade out over
time. A value of A close to 1 results in an algorithm with a very long memory,
whereas small values (usually not smaller than 0.9) can significantly limit the
memory of the estimator. By allowing the estimator to gradually forget his-
toric information, the algorithm can adapt to new concepts in the data stream.
Furthermore, with A < 1 we can prevent (under most conditions) a numeric
overflow of the required accumulator (the sum of squares of differences from
the current mean). However, forgetting can also lead to a higher variance in the
parameter estimates. The pseudo-code of the estimator can be found in Alg. 2]
lines [T] - [8] Note that it is not actually necessary to compute the covariance
matrix, since only its matrix inverse is required in later steps. Therefore, we di-
rectly estimate the inverse of the sum of squares of differences from the current
mean M, !. Since the inverse M, ! has to be re-computed for every new data
point, which can be computationally expensive for larger dimensions, we use
the Sherman-Morrison formula (Sherman and Morrison, |1950) — a special case
of the Woodbury matrix identity (Woodbury, [1950) — to incrementally update

_ . . e &1 _
M, !. The inverse of the covariance matrix is given by £, = W,M, .

2.4 Detecting Events in the DWT Tree and Anomaly Detection

Since DWT-MLEAD estimates a multivariate Gaussian distribution for every
set of DWT-coefficients on the levels £ € [0,1,...,L], it is possible to examine
each newly observed value ¢, and d, ¢ in the context of its current sliding
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Fig. 1 Detecting anomalies with leaf counters. All coefficients (except on the leafs) are always com-
puted bottom-up, based on two child nodes (connected with one dashed and one solid edge). Along
the vertical axis are the DWT levels ¢, along the horizontal axis are the time indices n of the coeffi-
cients of the DWT. E. g., the leftmost event e comes from either an unusual ¢, » or d,,>. Each event
is passed down the tree only along the solid edges (causal computation) and increases the right-most
leaf counter (blue rectangle) connected with the e node.

window, in order to detect unusual patterns. For each new data point the cur-
rent window embed vector is determined and the squared Mahalanobis distance
my, to the center of the Gaussian is computed for this vector. Subsequently,
this distance is compared to a threshold m,. Since a Gaussian random variable
has a squared Mahalanobis distance to its mean, which is Chi-squared (x2) dis-
tributed with w, degrees of freedom, we can determine m, by simply computing
the (1 — €)-quantile of the y>-distribution (function PREDICT in Algorithm
lines [TOHI3). If the Mahalanobis distance my, exceeds the threshold m, the
current instance ¢, ¢ or d, ¢ is flagged as unusual and an event e is passed down
the DWT tree, as illustrated in Fig. |1} Events arriving at the leaf nodes are
summed up in a global, exponentially decaying event counter E; (Algorithm T}
line @ If the activity in a subtree of the DWT exceeds a certain limit, hence,
if many events are produced in a short time, E; will increase fast. As soon as E;
is larger than a specified threshold B, an anomaly will be fired and the instance
i in the time series will be flagged. In order to avoid many detections in a short
time, a new anomaly cannot be fired again until E; has faded away and falls
below a threshold.

In order to capture extreme outliers, a simple heuristic is used after i > 500,
which tracks the maximum and minimum value observed in the time series and
flags a point as anomalous, if it exceeds the current maximum/minimum by
more than 20% of the min-max range.
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Algorithm 1 An online version of DWT-MLEAD, an anomaly detection algo-
rithm using the Discrete Wavelet Transform.

1: Define parameters:
2: L: maximum number of levels considered in the DWT

3 b, o: for the computation of the sliding window sizes wy

4 A forgetting factor for the estimation of the Gaussian distributions

5: €: quantile of y2-distribution

6: B: threshold for global event counter that triggers an anomaly

7

8: Initialize:

9: Set window sizes for each level: wy = max{1, |»°~*]}

10: Global event counter: Eg = 0

11: Discount factor: ¥ = ”“1

12: Allow to trigger anomaly with: A = true

13: Initialize all P(g ) and Pé ") with the tuple (Wo,ﬂO,Mal,Mo), where:
14 Wo € R, iy € R and, My, My € R¥0*"

15: Wo=0,00=0M;' =My =1

16:

17: function DWTMLEADC, y;) > where y = (y1,y2,...) is a streaming time series

18: Determine £ = min(L — 1, max{¢* € No | i mod 2" =0})
19:  forall£€{0,....¢'} do

20: n=i/2"

21: Compute DWT coefficients ¢, ¢ and d,, ¢ > if not already present
22: szC) (Cn —wet1,0 - Cn f)T > xgtd> = (dn s AR oo dy, Z)T > sliding windows
23: P = UPDATE(P f ,x,, T2y, P = UPDATE(P 0 XD 2

24 e = PREDICT(P_H ,x,, ,s)+ PREDICT(P_H ,x,, ,s)

25: Ej=7vE;_+Y! j:o e; > Adjust global event counter

true, if ANE; > B

false, otherwise

27: if a; then A = false

28: if E; < B then

29: A= true > Allow new anomaly, if event-counter value falls below threshold
30: return a;

26: a; = > Flag anomaly at time step 7, if threshold is exceeded

3 Experimental Setup
3.1 The Benchmarks

In order to evaluate the performance of the DWT-MLEAD algorithm and com-
pare the results to other algorithms, we use a very diverse benchmark consisting
of in total 425 time series. The benchmark is composed of the Yahoo Webscope
S5 data (Laptev and Amizadeh||2015) and the Numenta Anomaly Benchmark
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Algorithm 2 Helper functions for Algorithm

1: function UPDATE(P,_1,X,,A) > x, € R"¢, where wy is the size of the window at scale ¢
2: (Waoi, 1,4 7M;_11 M, 1) =P > Matrix M,,_; is optional (debugging purposes)
3 W, =AW, +1

4: A, :xn_ﬂnfl

5 ﬁn:ﬁnfl'l_WLnAn

6: M,=AM,_+A,(x,— 1,7 > Optional, since only inverse M, ! is required later
7 M, = % Mnill — %m > Inverse using the Sherman-Morrison Formula
8: return (W, i1, M, ', M) > Return updated parameters
9:
10: function PREDICT(P,,X,, €) > x, € R, where wy is the size of the window at scale ¢
1 (W, b, M, M) =P,
12: my, = Wy (x, — ﬂn)TM;l (20— f1,) > Mahalanobis distance of x,, to i,
13: me = x3_.(wp) & Threshold: upper &-quantile of y2-distribution
14: e, = { 1, if my, > e > Binary event flag

0, otherwise

15: return e, > Unusual data points will cause an event in the DWT-tree

(NAB) (Lavin and S. Ahmad, 2015)), which are both publicly available. The
Webscope S5 benchmark (with overall 572,966 data points) is split again into
the 4 datasets A1, A2, A3 and A4 containing 67, 100, 100 and 100 time series.
While the Al data consists of real data, mostly from computational services,
A2 to A4 contain synthetic time series with increasing complexity. On average,
each time series has approximately 1,500 instances.

The NAB data contains 58 time series (with in total 365,558 data points),
with the majority (47 time series) coming from real world applications such
as server monitoring, network utilization, sensor readings from industry and
social media statistics. The longest time series contains 22,695 and the series
contain approximately 6,300 instances on average. The ground truth anomaly
labels are available for all considered time series, however, it is important to
note that they are not passed to the anomaly detection algorithms at any time
and only used to assess the algorithm’s performance afterwards. Examples for
each dataset are shown in Fig.[2]

3.2 Algorithmic Setup

In this work, we compare DWT-MLEAD to two other online anomaly detection
algorithms. For each algorithm one standard parameter setting is chosen which
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Fig. 2 Example time series taken from the Yahoo Webscope S5 data and the Numenta Anomaly
Benchmark (NAB). In each graph the real anomalies are indicated by the light-red shaded areas. Three
algorithms are tested on this data and the individual detections are shown with different symbols. The
color of the symbol indicates if the detections were correct (green) or false (red).

Top two rows: One example each from the A1-A4 data. The dashed vertical lines in the A4 data
indicate concept changes, which should also be detected by the anomaly detectors.

Bottom: Example time series taken from the NAB data. The graph shows the temperature sensor
data of an internal component of a large industrial machine over its last months before a catastrophic
failure occurs end of February. The second anomaly (mid of December) is a planned shutdown of the
machine.
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is then used for all experiments across all datasets. Only an anomaly threshold
parameter is varied for each algorithm and dataset, in order to balance precision
and recall in a way that the F}-score is maximized.

DWT-MLEAD As described in Sec. [2| in total 6 parameters have to be se-
lected by the user. In order to find an appropriate setting, we did not systemat-
ically tune the parameters. Instead, we generated 60 design points using latin
hypercube sampling (LHS) and evaluated the algorithm for these points. The
setting B=2.20,b=2.27,0=6, L =5, A = 0.972 achieved the highest aver-
age Fi-score and will be used throughout the rest of this paper. The parameter
€ is used as anomaly threshold and is adjusted in the range £ € [107%,107].

NuPic Numenta’s online anomaly detection algorithm (George and Hawkins|,
2009) has a large set of parameters. The parameters can be tuned using an
inbuilt swarming (Ahmad, 2017) algorithm. However, we found that swarming
does not improve the results significantly compared to a standard configuration,
asused in (Lavin and S. Ahmad,[2015)). Similarly to DWT-MLEAD, an anomaly
threshold can be varied in the interval [0, 1] to control the sensitivity of the
algorithm.

ADVec This algorithm was developed by Twitter (Vallis et al, 2014) and is
based on the generalized ESD test, combined with robust statistical approaches
and piecewise approximation. Mainly, three parameters are required, which we
tuned to achieve the highest average Fi-score. The first parameter is the period-
length, which is set to the value 40. The second parameter, max ;,o;ms = 0.003,
specifies the maximum number of anomalies that the algorithm will detect as
a percentage of the data. The last parameter o describes the level of statistical
significance with which to accept or reject anomalies. We use this parameter as
anomaly threshold for ADVec and adjust it in the range & € [10~%,320] for our
experiments.

3.3 Algorithm Evaluation

In order to compare the performance of the different algorithms on the de-
scribed benchmarks, suitable performance metrics are required. Similarly to
binary classification tasks, every instance in the time series can be classified ei-
ther as normal or as anomalous. A correctly identified anomaly will be counted
as a true positive (TP), whereas a point incorrectly flagged as anomalous will
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be considered as a false positive (FP) and a missed anomaly as a false negative
(FN). The number of data points in a time series which is correctly predicted
as normal (true negatives or TN) is usually not meaningful and will therefore
not be used for evaluation purposes. Furthermore, since most anomalies in time
series are not point-anomalies but span over longer time-intervals, a time frame
of appropriate length, the so called anomaly window, is used to describe each
anomaly. Consequently, several detections within an anomaly window will only
be counted as one TP and a missed anomaly window will only be counted as
one FN. From the aforementioned quantities, the well known metrics precision,
recall and Fj-score are derived, whereby the latter is the harmonic mean of
precision and recall. The average metrics in column Avg of Table [1| are the
metrics’ mean over the five datasets A1-A4 and NAB.

4 Results

The main results of our experiments are summarized in Tab.[I| DWT-MLEAD
achieves on all datasets the highest F;-score. NuPic has a slightly better preci-
sion on Al, but on A2, A3 and A4 the difference in all three metrics is large in
favor of DWT-MLEAD. One reason, among others, for the weak performance
of NuPic and ADVec could be that the time series in both datasets contain many
anomalies, occurring in part at the very beginning of each time series. Hence,
the algorithms have to be up-and-running much faster and have to be able to
detect anomalies in short time intervals. Furthermore, the A4 time series con-
tain many concept changes, where amplitudes, seasonalities and noise abruptly
change. In order to handle such concept changes, a strong online adaptability
is required. For the NAB data, the difference in Fj-score between NuPic and
DWT-MLEAD is not that apparent, although there is a slight advantage for our
algorithm. Overall, we can observe in column Avg that DWT-MLEAD achieves
the highest average values for all three metrics.

Since Tab. [T] only captures the results for one specific setting of the algo-
rithms anomaly thresholds, we also measured precision and recall for a wide
range of thresholds and plotted them against each other, as shown in Fig. 3] The
overall picture mostly corresponds to the results shown in Tab. |1} Only for the
NAB data we can observe, that for recall values in the range [0.5,0.75] NuPic
achieves a higher precision and outperforms DWT-MLEAD.
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Fig. 3 Multiobjective plot for Yahoo’s Webscope S5 benchmark and the Numenta Anomaly bench-
mark. The graph for the A2 data is not shown here since the results are very similar to the A3 data.

Table 1 Results for various algorithms on the datasets A1-A4 and NAB. Shown are the metrics
precision (how many percent of the detected events are true anomalies), recall (how many percent of
the true anomalies are detected) and F;. All algorithms have their threshold for each dataset chosen
such that F is maximized. Each algorithm uses otherwise one standard parameter set on all data sets.

Precision, Recall
F1-Score

Algorithm Al | A2 | A3 | A4 | NAB | Aw
DWIMLEAD 0.6,0.65| 1,0.98 [0.96,0.97({0.92,0.75(0.66,0.45| 0.8, 0.76

0.62 0.99 0.97 0.83 0.54 0.79
NuPic 0.62,0.45(0.59, 0.42] 0.39,0.2 |0.41, 0.11| 0.4, 0.66 |0.32, 0.37

u

0.52 0.49 0.27 0.18 0.5 0.39

0.51, 0.56| 0.66, 0.6 | 0.54,0.2 |0.29, 0.15]0.11, 0.72{0.32, 0.45
ADVec
0.54 0.63 0.29 0.2 0.2 0.37
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5 Discussion

Although algorithm DWT-MLEAD could produce good results on the investi-
gated benchmarks, it still has several limitations which leave room for improve-
ment: (1) For our experiments we only used the relatively simple Haar wavelet.
In practice, it could be helpful to use more complex wavelets. (2) Due to the
strictly causal design of the algorithm, events occurring in the DWT-tree might
be asymmetrically distributed along the leaf counters (Fig.[I). More events will
tend to arrive at the leaf nodes on the right side of each sub-tree, which might
lead to undesired effectsE] (3) One might object that the Gaussian distribution
may not be the best choice to model the data. Other (perhaps multimodal) distri-
butions might be more effective. To test this, we made some runs with Gaussian
mixture models (GMM) which are capable to model more complex distribu-
tions. So far, however, these runs resulted in only marginal improvements. This
supports that Gaussian distributions are well usable in our case.

It is worth mentioning that DWT-MLEAD proved to perform robustly on
all time series, without ever showing numerical instabilities from the matrix
updates (function UPDATE in Algorithm [2).

6 Conclusion & Future Work

In this paper we introduced the relatively simple but effective DWT-MLEAD
algorithm for online anomaly detection in time series. We found that especially
the discrete wavelet transform (DWT) can be an important tool to generate
meaningful features across many different frequency scales. Empirical results
on a large dataset with 425 time series containing both long-term and short-term
anomalies, show that DWT-MLEAD is more robust than other state-of-the-art
anomaly detectors: Using only one fixed parameter setting, DWT-MLEAD
achieved an average Fj twice as large as for the other two algorithms (Table I)).
Furthermore, the online adaptability of the DWT-MLEAD algorithm appears
to be beneficial in the presence of concept drifts and/or changes, as the results
on the A4 data of Yahoo’s Webscope S5 benchmark suggest. Our anomaly

! We note in passing that we performed runs with an algorithmic variant where we treated each leaf
symmetrical: We wait until an L-subtree is complete, then we collect all events (along the dashed lines
in Fig.|l|as well) and process them. The price to pay is a certain delay for some leafs and a deviation
from the strict online scheme. The results in terms of precision-recall-metrics are a bit better for NAB
and a bit worse for A4. Overall, the difference is only marginal.
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detection algorithm does not require labeled training data, it infers from the
unlabeled data of each time series what is normal and what is anomalous.

As future work we are planning to improve several aspects of our algorithm:
Currently, only simple Haar wavelets are used for the algorithm; experiments
with other wavelets might lead to an significantly increased performance. An-
other interesting direction of work could be — although we could achieve good
results with simple multivariate Gaussian distributions — to investigate other
unsupervised learning approaches in order to learn more accurate models of the
underlying distribution of the time series data. Furthermore, we are planning
to further reduce the sensitivity of DWT-MLEAD towards its parameters, for
example with automatic parameter tuning methods.

Finally, a look on Table [I| shows that the NAB dataset is a tough benchmark:
All tested algorithms are far from being perfect on that dataset, having F; <
0.55, i. e. there is still room for improvement.
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