
Using Randomization in the Teaching of Data Structures and Algorithms

Michael T� Goodrich� Roberto Tamassiay

Dept� of Computer Science Dept� of Computer Science
Johns Hopkins University Brown University
Baltimore� MD ����� Providence� RI �����
goodrich�cs�jhu�edu rt�cs�brown�edu

Abstract

We describe an approach for incorporating randomiza�
tion in the teaching of data structures and algorithms�
The proofs we include are quite simple and can easily
be made a part of a Freshman�Sophomore Introduction
to Data Structures �CS�	 course and a Junior�Senior
level course on the design and analysis of data structures
and algorithms �CS
�DS�A	� The main idea of this ap�
proach is to show that using randomization in data struc�
tures and algorithms is safe and can be used to signif�
icantly simplify ecient solutions to various computa�
tional problems� We illustrate this approach by giving
examples of the use of randomization in some traditional
topics from CS� and DS�A�

� Introduction

We live with probabilities all the time� and we easily dis�
miss as �impossible� events with very low probabilities�
For example� the probability of a U�S� presidential elec�
tion being decided by a single vote is estimated at � in ��
million�� The probability of being killed by a bolt of lightning in
any given year is estimated at � in ��� million�� And� in spite of
Hollywood�s preoccupation with it� the probability that
a large meteorite will impact the earth in any given year
is about � in ��� thousand�� Because the probabilities of these
events are so low� we can safely assume they will not
occur in our lifetime�

Why is it then that computer scientists have histori�
cally preferred deterministic computations over random�
ized computations� Deterministic algorithms certainly

�The work of this author is supported by the U�S� Army Re�
search O�ce under grant DAAH�����������	
 and by the Na�
tional Science Foundation under grant CCR��������

yThe work of this author is supported by the U�S� Army Re�
search O�ce under grant DAAH�����������	
 and by the Na�
tional Science Foundation under grant CCR���	�	���

have the bene�t of provable correctness claims and of�
ten have good time bounds that hold even for worst�case
inputs� But as soon as an algorithm is actually imple�
mented in a program P � we must again deal with prob�
abilistic events� such as the following�

� P contains a bug�
� we provide an input to P in an unexpected form�
� our computer crashes for no apparent reason�
� P �s environment assumptions are no longer valid�

Since we are already living with bad computer events
such as these� whose probabilities are arguably much
higher than the bad �real�world� events listed in the pre�
vious paragraph� we should be willing to accept proba�
bilistic algorithms as well� In fact� fast randomized al�
gorithms are typically easier to program than fast de�
terministic algorithms� Thus� using a randomized algo�
rithm may actually be safer than using a deterministic
algorithm� for it is likely to reduce the probability that
a program solving a given problem contains a bug�

��� Teaching Randomization

In this paper we describe several places in the standard
curriculum for CS�� Data Structures� and CS
�DS�A�
Data Structures and Algorithms� where randomized al�
gorithms can be introduced� We argue that these solu�
tions are simple and fast� Moreover� we provide time
bound analyses for these data structures and algorithms
that are arguably simpler than those that have previ�
ously appeared in the algorithms literature� In fact�
our proofs use only the most elementary of probabilis�
tic facts� We contrast this approach with traditional
�average�case� analyses by showing that the analyses for
randomized algorithms need not make any restrictive as�
sumptions about the forms of possible inputs� Speci��
cally� we describe how randomization can easily be incor�
porated into discussions of each of the following standard
algorithmic topics�

� dictionaries�
� sorting�
� selection�

We discuss each of these topics in the following sections�

�wizard�ucr�edu�polmeth�working papers���gelma��b�html
�www�nassauredcross�org�sumstorm�thunder��htm
�newton�dep�anl�gov�newton�askasci������astron�AST�	�HTM



� Dictionaries

An interesting alternative to balanced binary search
trees for eciently realizing the ordered dictionary ab�
stract data type �ADT	 is the skip list ���
�� This struc�
ture makes random choices in arranging items in such
a way that searches and updates take O�logn	 time on

average� where n is the number of items in the dictio�
nary� Interestingly� the notion of average time used here
does not depend on any probability distribution de�ned
on the keys in the input� Instead� the running time is
averaged over all possible outcomes of random choices
used when inserting items in the dictionary�

��� Skip Lists

A skip list S for dictionary D consists of a series of
sequences fS�� S�� � � � � Shg� Each sequence Si stores a
subset of the items of D sorted by nondecreasing key
plus items with two special keys� denoted �� and ���
where �� is smaller than every possible key that can be
inserted in D and �� is larger than every possible key
that can be inserted in D� In addition� the sequences in
S satisfy the following�

� Sequence S� contains every item of dictionary D
�plus the special items with keys �� and ��	�

� For i � �� � � � � h� �� sequence Si contains �in addi�
tion to �� and ��	 a randomly generated subset
of the items in sequence Si���

� Sequence Sh contains only �� and ���

An example of a skip list is shown in Figure �� It is
customary to visualize a skip list S with sequence S� at
the bottom and sequences S�� � � � � Sh�� above it� Also�
we refer to h as the height of skip list S�

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S6

S5

S4

S3

S2

S1

find(50)

8-

8-

8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

Figure �� Example of a skip list� The dashed lines show
the traversal of the structure performed when searching for
key ���

Intuitively� the sequences are set up so that Si�� con�
tains more or less every other item in Si� As we shall see
in the details of the insertion method� the items in Si��
are chosen at random from the items in Si by picking
each item from Si to also be in Si�� with probability
���� That is� in essence� we ��ip a coin� for each item
in Si and place that item in Si�� if the coin comes up

�heads�� Thus� we expect S� to have about n�� items�
S� to have about n�� items� and� in general� Si to have
about n��i items� In other words� we expect the height
h of S to be about logn�

Using the position abstraction used previously by the
authors ��� for nodes in sequences and trees� we view a
skip list as a two�dimensional collection of positions ar�
ranged horizontally into levels and vertically into tow�

ers� Each level corresponds to a sequence Si and each
tower contains positions storing the same item across
consecutive sequences� The positions in a skip list can
be traversed using the following operations�

after�p	� the position following p on the same level�

before�p	� the position preceding p on the same level�

below�p	� the position below p in the same tower�

above�p	� the position above p in the same tower�

Without going into the details� we note that we can eas�
ily implement a skip list by means of a linked structure
such that the above traversal methods each take O��	
time� given a skip�list position p�

��� Searching

The skip list structure allows for simple dictionary search
algorithms� In fact� all of the skip list search algorithms
are based on an elegant SkipSearch method that takes a
key k and �nds the item in a skip list S with the largest
key �which is possibly ��	 that is less than or equal
to k � Suppose we are given such a key k� We begin the
SkipSearch method by setting a position variable p to the
top�most� left position in the skip list S� That is� p is set
to the position of the special item with key �� in Sh�
We give a pseudo�code description of the skip�list search
algorithm in Code Fragment � �see also Figure �	�

Algorithm SkipSearch�k	�

Input� A search key k

Output� Position p in S such that the item at p has the
largest key less than or equal to k

Let p be the topmost�left position of S �which should
have at least � levels	�
while below�p	 �� null do

p� below�p	 fdrop downg
while key�after�p		 � k do

Let p� after�p	 fscan forwardg
end while

end while

return p�

Code Fragment �� A generic search in a skip list S�



��� Update Operations

Another feature of the skip list data structure is that� be�
sides having an elegant search algorithm� it also provides
simple algorithms for dictionary updates�

Insertion

The insertion algorithm for skip lists uses randomization
to decide how many references to the new item �k� e	
should be added to the skip list� We begin the inser�
tion of a new item �k� e	 into a skip list by performing
a SkipSearch�k	 operation� This gives us the position p
of the bottom�level item with the largest key less than
or equal to k �note that p may be the position of the
special item with key ��	� We then insert �k� e	 in this
bottom�level list immediately after position p� After in�
serting the new item at this level we ��ip� a coin� That
is� we call a method random�	 that returns a number be�
tween � and �� and if that number is less than ���� then
we consider the �ip to have come up �heads�� otherwise�
we consider the �ip to have come up �tails�� If the �ip
comes up tails� then we stop here� If the �ip comes up
heads� on the other hand� then we backtrack to the pre�
vious �next higher	 level and insert �k� e	 in this level
at the appropriate position� We again �ip a coin� if it
comes up heads� we go to the next higher level and re�
peat� Thus� we continue to insert the new item �k� e	 in
lists until we �nally get a �ip that comes up tails� We link
together all the references to the new item �k� e	 created
in this process to create the tower for �k� e	� We give
the pseudo�code for this insertion algorithm for a skip
list S in Code Fragment �� Our insertion algorithm uses
an operation insertAfterAbove�p� q� �k� e		 that inserts a
position storing the item �k� e	 after position p �on the
same level as p	 and above position q� returning the po�
sition r of the new item �and setting internal references
so that after� before� above� and below methods will work
correctly for p� q� and r	�

Algorithm SkipInsert�k� e	�

p� SkipSearch�k	
q � insertAfterAbove�p� null� �k� e		
while random�	 � ��� do
while above�p	 � null do
p� before�p	 fscan backwardg

end while

p� above�p	 fjump up to higher levelg
q � insertAfterAbove�p� q� �k� e		

end while

Code Fragment �� Insertion in a skip list� assuming
random�� returns a random number between � and �� and
we never insert past the top level�

Removal

Like the search and insertion algorithms� the removal
algorithm for a skip list S is quite simple� In fact� it
is even easier than the insertion algorithm� Namely� to
perform a remove�k	 operation� we begin by performing
a search for the given key k� If a position p with key k is
not found� then we indicate an error condition� Other�
wise� if a position p with key k is found �on the bottom
level	� then we remove all the positions above p� which
are easily accessed by using above operations to climb
up the tower of this item in S starting at position p �see
Figure �	�

38

555012 17 38 39 44

4412

17 55

17

55

55

S6

S5

S4

S3

S2

S1 42

42

42

42

p

31

31

31

25

25

25

2520

17

8-

8-

8-

8-

8-

8-

17

8+

8+

8+

8+

8+

8+

Figure �� Removal of the item with key �� from a skip list�
The positions visited are in the tower for key ���

��� A Simple Analysis of Skip Lists

Our probabilistic analysis of skip lists� which is a sim�
pli�ed version of an analysis of Motwani and Ragha�
van ���� requires only elementary probability concepts�
and it does not need any assumptions about input dis�
tributions� We begin this analysis by studying the height
h of S�

The probability that a given item is stored in a po�
sition at level i is equal to the probability of getting i
consecutive heads when �ipping a coin� that is� this prob�
ability is ���i� Thus� the probability Pi that level i has
at least one item is at most

Pi �
n

�i
�

for the probability that any one of n di�erent events
occurs is at most the sum of the probabilities that each
occurs�

The probability that the height h of S is larger than
i is equal to the probability that level i has at least one
item� that is� it is no more than Pi� This means that h
is larger than� say� � logn with probability at most

P� log n �
n

�� log n
�

n

n�
�

�

n�
�

More generally� given a constant c � �� h is larger than
c logn with probability at most ��nc��� Thus� with high
probability� the height h of S is O�logn	�

Consider the running time of a search in skip list S�
and recall that such a search involves two nested while



loops� The inner loop performs a scan forward on a level
of S as long as the next key is no greater than the search
key k� and the outer loop drops down to the next level
and repeats the scan forward iteration� Since the height
h of S is O�log n	 with high probability� the number of
drop�down steps is O�log n	 with high probability�

So we have yet to bound the number of scan�forward
steps we make� Let ni be the number of keys examined
while scanning forward at level i� Observe that� after
the key at the starting position� each additional key ex�
amined in a scan�forward at level i cannot also belong
to level i��� If any of these items were on the previous
level� we would have encountered them in the previous
scan�forward step� Thus� the probability that any key
is counted in ni is ���� Therefore� the expected value
of ni is exactly equal to the expected number of times
we must �ip a fair coin before it comes up heads� This
expected value is �� Hence� the expected amount of time
spent scanning forward at any level i is O��	� Since S
has O�logn	 levels with high probability� a search in S
takes the expected time O�log n	� By a similar analy�
sis� we can show that the expected running time of an
insertion or a removal is O�logn	�

Finally� let us turn to the space requirement of a skip
list S� As we observed above� the expected number of
items at level i is n��i� which means that the expected
total number of items in S is

hX

i��

n

�i
� n

hX

i��

�

�i
� �n�

Hence� the expected space requirement of S is O�n	�

� Sorting

One of the most popular sorting algorithms is the quick�
sort algorithm� which uses a pivot element to split a
sequence and then it recursively sorts the subsequences�
One common method for analyzing quick�sort is to as�
sume that the pivot will always divide the sequence al�
most equally� We feel such an assumption would pre�
suppose knowledge about the input distribution that is
typically not available� however� Since the intuitive goal
of the partition step of the quick�sort method is to divide
the sequence S almost equally� let us introduce random�
ization into the algorithm and pick as the pivot a random

element of the input sequence� This variation of quick�
sort is called randomized quick�sort� and is provided in
Code Fragment ��

There are several analyses showing that the expected
running time of randomized quicksort is O�n logn	 �e�g��
see ��� �� ��	� independent of any input distribution as�
sumptions� The analysis we give here simpli�es these
analyses considerably�

Our analysis uses a simple fact from elementary prob�
ability theory� namely� that the expected number of

Algorithm quickSort�S	�

Input� Sequence S of n comparable elements

Output� A sorted copy of S

if n � � then
return S�

end if

pick a random integer r in the range ��� n� ��
let x be the element of S at rank r�
put the elements of S into three sequences�

� L� storing the elements in S less than x
� E� storing the elements in S equal to x
� G� storing the elements in S greater than x�

let L� � quickSort�L	
let G� � quickSort�G	
return L� �E �G��

Code Fragment �� Randomized quick�sort algorithm�

times that a fair coin must be �ipped until it shows
�heads� k times is �k� Consider now a single recursive
invocation of randomized quick�sort� and let m denote
the size of the input sequence for this invocation� Say
that this invocation is �good� if the pivot chosen is such
that subsequences L and G have size at least m�� and
at most �m�� each� Thus� since the pivot is chosen uni�
formly at random and there arem�� pivots for which this
invocation is good� the probability that an invocation is
good is ����

Consider now the recursion tree T associated with an
instance of the quick�sort algorithm� If a node v of T of
size m is associated with a �good� recursive call� then
the input sizes of the children of v are each at most �m��
�which is the same as m�����		� If we take any path in
T from the root to an external node� then the length
of this path is at most the number of invocations that
have to be made �at each node on this path	 until achiev�
ing log��� n good invocations� Applying the probabilistic
fact reviewed above� the expected number of invocations
we must make until this occurs is at most � log��� n�
Thus� the expected length of any path from the root to
an external node in T is O�logn	� Observing that the
time spent at each level of T is O�n	� the expected run�
ning time of randomized quick�sort is O�n logn	�

� Selection

The selection problem we asks that we return the kth
smallest element in an unordered sequence S� Again
using randomization� we can design a simple algorithm
for this problem� We describe in Code Fragment � a
simple and practical method� called randomized quick�

select� for solving this problem�



Algorithm quickSelect�S� k	�

Input� Sequence S of n comparable elements� and an
integer k � ��� n�

Output� The kth smallest element of S

if n � � then
return the ��rst	 element of S�

end if

pick a random integer r in the range ��� n� ��
let x be the element of S at rank r�
put the elements of S into three sequences�

� L� storing the elements in S less than x
� E� storing the elements in S equal to x
� G� storing the elements in S greater than x�

if k � jLj then
quickSelect�L� k�

else if k � jLj� jEj then
return x feach element in E is equal to xg

else

quickSelect�G� k � jLj � jEj�
end if

Code Fragment �� Randomized quick�select algorithm�

We note that randomized quick�select runs in O�n�	
worst�case time� Nevertheless� it runs in O�n	 expected

time� and is much simpler than the well�known deter�

ministic selection algorithm that runs in O�n	 worst�case
time �e�g�� see ���	� As was the case with our quick�sort
analysis� our analysis of randomized quick�select is sim�
pler than existing analyses� such as that in ����

Let t�n	 denote the running time of randomized
quick�select on a sequence of size n� Since the random�
ized quick�select algorithm depends on the outcome of
random events� its running time� t�n	� is a random vari�
able� We are interested in bounding E�t�n		� the ex�
pected value of t�n	� Say that a recursive invocation of
randomized quick�select is �good� if it partitions S� so
that the size of L and G is at most �n��� Clearly� a re�
cursive call is good with probability ���� Let g�n	 denote
the number of consecutive recursive invocations �includ�
ing the present one	 before getting a good invocation�
Then

t�n	 � bn � g�n	 � t��n��	�

where b � � is a constant �to account for the overhead
of each call	� We are� of course� focusing in on the case
where n is larger than �� for we can easily characterize
in a closed form that t��	 � b� Applying the linearity of
expectation property to the general case� then� we get

E �t�n�� � E �bn � g�n� 	 t�
n���� � bn�E �g�n��	E �t�
n���� �

Since a recursive call is good with probability ���� and
whether a recursive call is good or not is independent

of its parent call being good� the expected value of g�n	
is the same as the expected number of times we must
�ip a fair coin before it comes up �heads�� This implies
that E�g�n		 � �� Thus� if we let T �n	 be a shorthand
notation for E�t�n		 �the expected running time of the
randomized quick�select algorithm	� then we can write
the case for n � � as T �n	 � T ��n��	��bn� Converting
this recurrence relation to a closed form� we get that

T �n	 � �bn �

dlog
��� neX

i��

����	i�

Thus� the expected running time of quick�select is O�n	�

� Conclusion

We have discussed the use of randomization in teaching
several key concepts on data structures and algorithms�
In particular� we have presented simpli�ed analyses for
skip lists and randomized quick�sort� suitable for a CS�
course� and for randomized quick�select suitable for a
DS�A course�

These simpli�ed analyses� as well as some additional
ones� can also be found in the recent book on data struc�
tures and algorithms by the authors ���� The reader
interested in further study of randomization in data
structures and algorithms is also encouraged to examine
the excellent book on Randomized Algorithms by Mot�
wani and Raghavan ��� or the interesting book chapter
by Seidel on �backwards analysis� of randomized algo�
rithms ����

References

�� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� In�
troduction to Algorithms� MIT Press� Cambridge� MA�
�����

�� M� T� Goodrich and R� Tamassia� Data Structures and
Algorithms in Java� John Wiley and Sons� New York�
�����


� P� Kirschenhofer and H� Prodinger� The path length of
random skip lists� Acta Informatica� 
���������� �����

�� R� Motwani and P� Raghavan� Randomized Algorithms�
Cambridge University Press� New York� NY� �����

�� T� Papadakis� J� I� Munro� and P� V� Poblete� Average
search and update costs in skip lists� BIT� 
��
���

��
�����

�� P� V� Poblete� J� I� Munro� and T� Papadakis� The bi�
nomial transform and its application to the analysis of
skip lists� In Proceedings of the European Symposium on
Algorithms �ESA�� pages �������� �����

�� W� Pugh� Skip lists� a probabilistic alternative to bal�
anced trees� Commun� ACM� 

������������ �����

�� R� Seidel� Backwards analysis of randomized geometric
algorithms� In J� Pach� editor� New Trends in Discrete
and Computational Geometry� volume �� of Algorithms
and Combinatorics� pages 
����� Springer�Verlag� ���
�


