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Abstract

Modern real-world optimization problems are often high dimensional and
subject to many constraints. These problems are typically expensive in
terms of cost and computational time. Conventional constraint-based solvers
often require a high number of function evaluations which are not affordable
for such problems in practice. Employment of fast surrogate models to
approximate objective and constraint functions is a known approach for
efficient optimization. In this paper we present a new algorithm called
Self-Adjusting COBRA (SACOBRA) based on Regis’ COBRA [1].
We evaluate our approach by using 11 G-problems. We get very good results
on 10 of the 11 G-problems with a severely limited budget of only 300
evaluations.
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Introduction

Constrained optimization is often much harder than unconstrained optimi-
zation since the multitude of functions (one objective, numerous constraints)
may constitute highly conflicting goals. If these functions are in addition
expensive to evaluate, most algorithms make use of surrogate models.

The strength of surrogate-assisted techniques relies on the correct choice of
modeling technique. In contrast to many surrogate modeling techniques
like Kriging and support vector machines [2, 3], the performance of radial
basis function (RBF) is only weakly dependent on the dimensionality
of the optimization tasks or number of design points [4]. Therefore, in the
area of efficient surrogate-assisted optimization a lot of attention is devoted
to RBF modeling [1, 5, 6, 7]. COBRA [1] – an efficient constrained-based
optimizer which uses RBF surrogates – outperforms many other algorithms
on a large number of benchmarks. COBRA-R [6, 7] is a variant of COBRA
implemented in R [8] with extended initialization methods and a novel
repair technique for infeasible solutions [7].

Although both extensions gained remarkable success, the achievement was
reached only after careful selection of the parameters and preprocessing
transformations for each problem [6]. In the case of black-box optimization
manual parameter tuning is not a valid approach since it requires some
information about each single problem. Furthermore, automatic exploration
of the parameter space is expensive. Therefore, some recent studies focused
on automatic parameter tuning based on some measurable features of the
problem [9].

In this extended abstract, we outline the goal to develop one algorithm which
decides on its own about the best parameter setting and transformation
functions. The new algorithm, which we call Self-Adjusting COBRA
(SACOBRA), is able to adjust those parameters automatically after
the initialization phase. Additionally, SACOBRA incorporates a random
restart algorithm to avoid occasional early stagnation and bad solutions
due to an unfortunate initial design.
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Figure 1: SAOCBRA algorithm proposed in this paper. The SACOBRA
extensions are the grey boxes. Using only the white boxes results in

the former COBRA-R algorithm.

Methods

Constrained optimization

A constrained optimization problem can be defined by the minimization of
an objective function 𝑓 subject to constraint function(s) 𝑔1, . . . , 𝑔𝑚:

Minimize 𝑓(𝑥⃗), 𝑥⃗ ∈ R𝑑

subject to
𝑔𝑖(𝑥⃗) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚

In this paper we always consider minimization problems. Maximization
problems are transformed to minimization without loss of generality.
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COBRA: Constrained Optimization by Radial Basis Function
Approximation

Constrained Optimization by Radial Basis Function Approximation (CO-
BRA) (Figure 1, only white boxes) is an efficient optimization algorithm
proposed by Regis [1]. This method relies on modeling the objective function
and constraint function(s) by means of radial basis functions (surrogates)
in order to minimize evaluations of the real objective and constraint functi-
ons. Each iterate is a result of an optimization on the surrogates. Only at
the end of each iteration the real functions are evaluated once and a new
solution is added to the population. COBRA-R [6] is a re-implementation
of COBRA [1] in R [8] with some extensions which are described in detail
in [6].

An important element of COBRA and COBRA-R is the Distance Require-
ment Cycle (DRC): In order to facilitate exploration, Regis [1] proposes
to add in each iteration 𝑖 additional constraints enforcing that the current
solution 𝑥⃗ is at least a distance 𝜌𝑖 away from all previous iterates. The
distance 𝜌𝑖 is taken cyclically from a small set of distances, the so-called
DRC. Large 𝜌𝑖 enforce exploration, small 𝜌𝑖 exploitation. It turns out that
different problems are quite sensitive to the right choice of DRC.

Repair algorithm RI-2

Sometimes the infill points returned by the internal optimizer are infeasible.
A repair algorithm is embedded in the COBRA-R optimization framework
which intends to repair infill points with a slight infeasibility by guiding
them to the feasible region. The repair algorithm RI-2 used in COBRA-R is
described and discussed in detail in [7]. It is worthwhile to mention that the
repair algorithm is performed on the surrogate models, so no real function
evaluations are necessary for this repair.

SACOBRA: Self-Adjusting COBRA

SACOBRA, the self-adjusting COBRA-R algorithm, includes five extensions
(Figure 1, with grey boxes) in comparison to the COBRA-R optimization
framework [7]:
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∙ Rescale the input space: The input vector 𝑥⃗ is element-wise res-
caled to [−1, +1]. This helps to have a better exploration all over the
search space because all dimensions are treated the same and also
avoids numerical instabilities caused by high values of 𝑥⃗.

∙ Random Start algorithm (RS): Normally COBRA starts optimi-
zation from the best point found so far. With RS the optimization
starts with a certain probability from a random point in the search
space. RS is especially beneficial when the search gets stuck in local
optima.

∙ Adjusting DRC parameter (aDRC) is done after the initializa-
tion phase. Our experimental analysis showed that large DRC values
set can be harmful for problems with a very steep objective function,
while those large values are needed for other problems. Therefore,
we developed an automatic DRC adjustment which selects the ap-
propriate DRC set according to the information extracted after the
initialization phase.

∙ Adjusting fitness function (aFF) is developed to modify objective
functions which are challenging to model with RBF. Our experimental
analysis revealed that RBF often do not provide a proper model for
functions which are very steep. A logarithmic transformation of
the objective function can be helpful. SACOBRA internally decides
whether a logarithmic transformation of the objective function is
necessary.

∙ Adjusting constraint function(s) (aCF) is actually done by nor-
malizing the range of constraint functions for each problem. Embed-
ding this step boosts up the optimization performance because all
constraints have values in a similar range.

The details of the internal adjustment algorithms and the role of problem-
specific features like 𝐹𝑅 and 𝐺𝑅 (see Tab. 1 below) will be presented in a
forthcoming publication.

Proc. 25. Workshop Computational Intelligence, Dortmund, 26.-27.11.2015 5



Experimental Setup

We evaluate our proposed technique by using a well-studied test suite of
G-problems described in [10]. The diversity of the G-problem characteristics
makes them a very challenging benchmark for optimization techniques. In
Table 1 we show features of these functions. In this study we identified
two new features 𝐹𝑅 and 𝐺𝑅 (defined in Table 1) which constitute useful
elements for our self-adjusting procedures.

We apply the SACOBRA algorithm to 330 problems: G01-G11, initialized
with 30 different initial populations. The initial population of size 3 · 𝑑 is
generated by means of Latin hypercube sampling. The optimization on
surrogates is done by COBYLA [11]. Cubic RBFs are utilized to model the
functions. The DRC parameters are selected internally among 𝐷𝑅𝐶𝐿 =
⟨0.3, 0.05, 0.001, 0.0005, 0.0⟩ and 𝐷𝑅𝐶𝑆 = ⟨0.001, 0.0⟩. In order to measure
the strength of each extension we repeat all tests in absence of each extension.
The importance of each extension is measured with the Wilcoxon signed
rank sum test of the final optimization error (Table 2), which is a one sided,
paired test on the 30 pairs with different seeds.

Results and Discussion

In our previous work [6] we established good results with COBRA-R on most
G-problems, but we had to manually tune algorithmic configurations and
parameters for each G-problem anew, which is a tedious and time-consuming
procedure. Now we are in a position to present with SACOBRA an algorithm
which runs with the same settings on all G-problems and produces good
results with relatively few function evaluations (100–300). We will show
in the talk and in a forthcoming publication the performance profiles [12]
for SACOBRA and its variants, leading to a substantial improvement over
COBRA-R with fixed parameter settings. SACOBRA solves 85% of the
330 test problems while COBRA-R solves only 60%.

We can identify with our results the elements of the SACOBRA algorithm
with greatest impact: Most important are rescaling and random restart,
followed by automatic fitness function adjustment. Least important
are aDRC and aCF.
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Table 1: Characteristics of the G-functions: 𝑑: dimension, 𝜌*: feasibility rate (%)
after changing equality constraints to inequality constraints, 𝐹 𝑅: range
of the fitness values, 𝐺𝑅: ratio of largest to smallest constraint range,
LI: number of linear inequalities, NI: number of nonlinear inequalities,
NE: number of nonlinear equalities, 𝑎: number of constraints active at

the optimum.
Fct. 𝑑 type 𝜌* 𝐹𝑅 𝐺𝑅 LI NI NE 𝑎

G01 13 quadratic 0.0003% 298.14 1.969 9 0 0 6
G02 10 nonlinear 99.997% 0.57 2.632 1 1 0 1
G03 20 nonlinear 0.0000% 92684985979.23 1.000 0 0 1 1
G04 5 quadratic 26.9217% 9832.45 2.161 0 6 0 2
G05 4 nonlinear 0.0919% 8863.69 1788.74 2 0 3 3
G06 2 nonlinear 0.0072% 1246828.23 1.010 0 2 0 2
G07 10 quadratic 0.0000% 5928.19 12.671 3 5 0 6
G08 2 nonlinear 0.8751% 1821.61 2.393 0 2 0 0
G09 7 nonlinear 0.5207% 10013016.18 25.05 0 4 0 2
G10 8 linear 0.0008% 27610.89 3842702 3 3 0 3
G11 2 linear 66.7240% 4.99 1.000 0 0 1 1

Tab. 2 shows that each of these elements has its importance (is relevant) for
some of the G-problems: M1 is significantly better than M* at least for some
G-problems. And each G-problem benefits from one or more SACOBRA
extensions. The only exceptions from this rule are G02-10d and G11, but
for different reasons: G02-10d is a high-dimensional and highly multimodal
problem which is generally hard to solve by any of the SACOBRA- or
COBRA-variants (the reason is that surrogate models with a low number
of points cannot capture enough detail of this complicated fitness function).
G11 on the other hand is an easy problem which is solved by all SACOBRA
variants, so none is significantly better than the others.

Conclusion

We presented with SACOBRA a self-adjusting algorithm for expensive cons-
trained optimization which can successfully solve a variety of challenging
benchmark problems without any problem-specific parameter tuning. It
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Table 2: Wilcoxon rank sum test, paired, one sided, significance level 5%. Shown
is the p-value. Significant tests (𝑝 < 5%) are marked as gray cells.
Optimization methods: M1: SACOBRA, M2: SACOBRA∖rescale

(SACOBRA without rescaling the input space), M3: SACOBRA∖RS
(SACOBRA without random start), M4: SACOBRA∖aDRC, M5:

SACOBRA∖aFF, M6: SACOBRA∖aCF, M7: COBRA (𝑋𝑖 = 𝐷𝑅𝐶𝑆),
M8: COBRA (𝑋𝑖 = 𝐷𝑅𝐶𝐿).

func∖method M1M2 M1M3 M1M4 M1M5 M1M6 M1M7 M1M8
G01 0.177 4.8e-02 0.887 1.000 1.000 0.167 4.8e-02
G02-10d 0.144 0.664 0.743 0.789 0.757 0.074 0.985
G03 1.000 8.7e-03 1.000 1.4e-06 1.000 2.4e-05 1.4e-06
G04 0.230 0.121 1.000 0.909 0.909 0.121 9.1e-07
G05 1.4e-03 0.557 1.000 0.676 0.138 0.999 0.997
G06 9.1e-07 0.745 1.000 0.230 0.500 0.194 9.1e-07
G07 0.745 0.516 1.000 0.352 0.352 0.516 2.0e-06
G08 7.6e-03 0.112 3.7e-03 1.000 1.000 5.4e-04 0.112
G09 0.971 0.594 1.000 1.5e-05 0.884 1.5e-05 1.4e-06
G10 3.1e-03 2.7e-03 1.000 0.843 2.5e-02 1.1e-03 2.0e-03
G11 0.660 1.000 0.875 1.000 1.000 1.000 1.000

does so by self-adjusting its internal parameters to the characteristics of the
problem, either after the initialization phase or online during iterations.
SACOBRA solves 10 of the 11 G-problems. The only exception is G02-10d,
which is a highly multimodal problem. Such problems cannot be solved in
a few iterations with the current surrogate models. The investigation of
surrogate modeling for highly multimodal functions is a topic of our future
research.
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