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Abstract—Real-world optimization problems are often subject
to many constraints. Often, as the volume of the feasible
space gets smaller, the problems become more complex. The
zero volume of feasible spaces for optimization problems with
equality constraints makes them challenging. In this paper, we
present an equality constraint handling approach embedded
for the first time in a surrogate-assisted optimizer (SACOBRA).
The proposed technique starts with an expanded feasible area
which gradually shrinks to a volume close to zero. Several well-
studied constrained test problems are used as benchmarks and
the promising results in terms of efficiency and accuracy are
compared with other state-of-the-art algorithms.

1. Introduction

An optimization problem can be defined as the mini-
mization of an objective function (fitness function) f subject
to inequality constraint function(s) g1, ..., g,, and equality

constraint function(s) hq, ..., h;:
Minimize  f(&), Zeldb cR? (1)
subject to  ¢;(¥) <0, i=1,2,...,m
hj(@)=0, 7=1,2,...,r

where @ and b define the lower and upper bounds of the
search space (a hypercube). By negating the fitness func-
tion f a minimization problem can be transformed into a
maximization problem without loss of generality.

Since most of the engineering optimization problems
belong to the constrained optimization class, in the last years
many efforts were devoted to design algorithms to handle
this type of problems. The difficulty of solving a constrained
optimization problem depends on the type of the fitness
function, the number of variables, the number of constraints
and the feasibility ratio p (ratio between feasible volume
and search space volume). In the presence of equality con-
straints the feasibility ratio p is exactly zero. Therefore, it
is difficult for numerical techniques to find a fully feasible
solution for this class of problems. In general, most of the
existing constraint handling algorithms need to modify the
equality constraints in order to be able to address them.

Figure 1. A simple 2-d optimization problem with one equality constraint.
The shaded (green) contours depict the fitness function f (darker = smaller).
The black curve shows the equality constraint. Feasible solutions are
restricted to this line. The black point shows the global optimum of the
fitness function which is different from the two optima of the constrained
problem shown as the gold stars. If we transform the equality constraint to
an inequality by selecting the area below the constraint line as the feasible
region, we can expect to converge to one of the correct solutions.

The different modifications used for equality constraints
can be divided into five categories of transforming equality
constraints h;(Z) = 0 to:

(a) a pair of inequality constraints

{Z (@ >0, o

i(&) <0,

(b) one inequality constraint (manually chosen),

(c) atube-shaped region |h;(Z)|—po < 0 in order to expand
the feasible space, where i is a small positive constant,

(d) a shrinking tube-shaped region |h;(Z)| — p(™ < 0,
where (") is decaying in time,

(e) a repair mutation.



h(x) =0

Figure 2. A 2-d optimization problem with a multimodal fitness function
and one equality constraint (thick black line). Feasible solutions are re-
stricted to this line. The shaded (green) contours depict the fitness function
f (darker = smaller). The black points show the unconstrained optima of
the fitness function which are different from the optimal solution of the
constrained problem shown as the gold star. If we select for a category-
(b)-type transformation the area below the constraint line as the feasible
region, the optimal choice is the black dot and if we select the upper side
of the equality constraint, the optimal solution is the black triangle. In both
cases there is no chance to converge to the correct solution on the equality
constraint line (gold star).

The first category does not enlarge the feasible volume.
Therefore, the problem remains as challenging as before.
This category is used in [1] for several constrained prob-
lems with inequalities and equalities. The approach fails on
problems with equality constraints.

Category (b) is used by Regis [2] and in our previous
work [3], [4], [5]. It chooses manually one side of the equal-
ity constraint(s) as the feasible region. This approach may
work for simple problems (see Fig. 1) but it is problematic
for two reasons: For each new problem the user has to find
manually the correct transformations which can be difficult
in the case of multiple equality constraints. Even worse, it is
bound to fail in cases where the fitness function has several
local optima on both sides of the equality constraint(s), as
Fig. 2 shows for a concrete 2-d example.

The third category (c) is widely used in different studies
and embedded in various algorithms e.g. [6], [7]. In this ap-
proach, a tube around each equality constraint is considered
as the feasible space. The size of this tube is controlled by
a (usually very small) parameter ;5. However, a very small
1o makes it difficult to find feasible solutions at all and a
larger choice of py makes it likely to return solutions which
violate the equality constraints by a large amount.

Therefore, a fourth category (d) is suggested in different
studies [8], [9] which recommends to start with a large
tube-shaped margin around each equality constraint which
gradually shrinks and converges to the actual equality con-
straint. The adaptive relaxing rule proposed in [8] intro-

duces six new parameters to control the changing scheme
of the margin. Later, Zhang [9] proposed a parameter-
free adaptation rule for equality handling which decays the
margin proportional to the fraction of feasible solutions in
every iteration. Although the mentioned study reports good
results for solving well-studied G-problems, the success is
only achieved after many function evaluations (thousands of
evaluations).

Category (e) does not modify the equality constraints,
but it deduces repair mutations from them. As an example,
RGA proposed by Chootinan [10] uses a gradient-based
repair method to adapt a genetic algorithm (GA) for con-
strained problems. Also, Beyer and Finck [11] propose a
CMA-ES algorithm which uses a problem-specific repair
mutation to assure that the solutions always fulfill the equal-
ity constraint(s). This works well for equality constraints
where one variable can be expressed as a function of the
others.

In this work, we propose for the first time an equality
handling (EH) scheme coupled with surrogate-assisted opti-
mization techniques. We use several well-known benchmark
problems (G-problem suite) to assess our algorithm in the
context of the following research questions:

(H1) Can we advice an efficient surrogate-assisted tech-
nique which can address problems with equality
constraints?

(H2) Does our proposed equality handling technique ben-

efit from the dynamic shrinking feasible region?

In Section 2.1, the general idea of the efficient surrogate-
assisted optimizer SACOBRA [5] is briefly described. In
Section 2.2, the proposed algorithm for handling equality
constraints is described in detail. We describe in Section 3
the experimental setup and the test functions. In the same
section we report the results achieved by our proposed algo-
rithm. In Section 4, the results are discussed and compared
with the state of the art. Finally, Section 5 contains our
conclusions and our answers to the research questions.

2. Methods

2.1. COBRA and SACOBRA

Regis proposed with COBRA [2] an algorithm which
can solve high-dimensional constrained optimization prob-
lems very efficiently, i. e. with 100 — 2000 evaluations
depending on the dimensionality of the problem. The main
idea of COBRA is to use radial basis functions (RBF) as
cheap surrogate models for objective and constraint func-
tions. This greatly reduces the number of expensive real
function evaluations. Although COBRA performs efficiently,
it suffers from having numerous parameters which require
to be tuned to the problem at hand. In our recent work [3],
[4], [5], [12] we proposed several extensions to COBRA
which culminated in our algorithm SACOBRA [5], [12].
SACOBRA performs on-line adaptations to the problem
at hand and eliminates the need to tune any parameters.



SACOBRA performs well on several black-box constraint
optimization problems. For details the reader is referred
to [12].!

In the n-th iteration COBRA and SACOBRA solve the
following internal optimization problem:

Minimize  s{" (&), ieldb cRY (3)
subject to sgn)(f) + €™ <o, i=1,2,....m 4
p™ — |7~ || <0, k=1,2,...,n (5

where s(()") is the fitness function surrogate model based on

n points and sl(-n) stands for the model of the ¢-th inequality

constraint in the n-th iteration. €™ and p(™) are internal
variables of the COBRA algorithm. For details the reader
is referred to [2]. In a nutshell, Eq. (5) forces the internal
optimizer to stay a distance p(™ away from all previous
solutions. The idea is to avoid too frequent similar solutions.
p™ is selected cyclically from a distance requirement cycle
(DRC) Z = {¢W ..., ¢®)} chosen by the user.

A drawback of COBRA and SACOBRA is that they can
only handle inequality constraints. If problems with equality
constraints are to be addressed, the user has to replace each
equality constraint by the appropriate inequality constraint
(category (b) in Sec. 1).

2.2. Proposed Equality Constraint Handling Ap-
proach

In this study, SACOBRA is extended to handle equality
constraints. The zero-volume feasible space attributed to the
j-th equality constraint h;(Z¥) = 0 is expanded to a tube-
shaped region around it: |h;(#)| — u(™ < 0. By gradually
reducing the margin (") the solutions are smoothly guided
towards the real feasible area. It is difficult to model with
RBFs accurately the triangular shaped | - |-function. There-
fore we translate every equality constraint to two inequality
constraints as follows:

hj(Z) —p™ <0, j=1,2,....r
—h;(Z) —p™ <0, j=1,2,...,r

To find an appropriate initial value for the margin (™)
we use the following procedure: We calculate for each
initial design point the sum of its constraint violations.
1™ is set to be the median of these constraint violations.
In this way we can expect to start with an initial design
population containing roughly 50% artificially feasible and
50% infeasible points.

Algorithm 1 shows our complete algorithm in pseudo
code. In every iteration RBFs are trained to model the objec-
tive function f and all constraint functions g and h. Finding
the next iterate is done by solving an internal optimization
problem which minimizes the objective function (3) and tries
to fulfill the constraints (4) — (5). Additionally, the expanded
equality constraints, Egs. (6) — (7), should be satisfied:

1. SACOBRA is available as open-source R-package from CRAN via
this URL: https://cran.r-project.org/web/packages/SACOBRA.

Figure 3. Refine Step. The shaded (green) contours, golden star and solid
(black) line have the same meaning as in Fig. 1 and 2. In iteration n
the dotted lines mark the current feasible tube. The optimization step will
result in a point on the tube margin (rightmost blue triangle). The refine
step moves this point to the closest point on the equality line (lower red
square). In iteration n + 1 the tube shrinks to the feasible region marked
by the dashed lines. Now the optimization step will result in a point on
the dashed line (leftmost blue triangle), and so on. If the refine steps were
missing, we would lose the best feasible point when shrinking the margin.

—s (@) ™ <0, j=12..,r (D
Here, sﬁ,’j)ﬂ. is the n-point surrogate model for the j-th

equality constraint h;. Before conducting the expensive real
function evaluation of the new iterate (" *t1), we try to refine
the suggested solution: We eliminate the infeasibility caused
by the current margin (™ by moving Z"t1) towards the
equality line.?> This refine step is done by minimizing with
a conjugate-gradient (CG) method the squared sum of all
equality constraint violations:

T
Minimize Y (s (@)%, € [a,b] c R (8)
j=1
The refine step moves the returned solution towards the
equality constraints. This is done to prevent losing it in the
next iteration when the equality margin p is reduced (Fig. 3).
The refined point is evaluated and the so-far best solution
is updated. The best solution is the one with the best fitness
value which satisfies the inequality constraints and lies in the

2. More precisely: towards the intersection of the constraint model

hypersurfaces s 7: 4 in the case of multiple equality constraints.



Algorithm 1 Constrained optimization with equality han-
dling (EH). Parameters: u inai, 5.

1: Choose initial population P by drawing n = 3d points
randomly from the search space, evaluate them on the
real functions and select best point #(*)

2: Initialize EH margin p(")

3: Adapt SACOBRA parameters according to P

4: while n < budget do

5. Build surrogates s\, s\, ... 50 for f,g1, ...,
9m, h17 R hr

6: Perform SACOBRA optimization step: Minimize
Eq. (3) subject to Egs. (4) — (7), starting from the current
best solution Z(®). Result: Z("+1)

#H+D) « REFINE(Z("H1))

8: Evaluate Z("*1) on real functions

9 P+« PuU{znth}

10: Z®) + Select the best solution so far from P
11 ,u’(n+1) < max {N(n)ﬂv,ufinal}

12: n+<n-+1

13: end while
14: return (£, the best solution)

15: function REFINE(Z),¢q)

16: Starting from &,,¢,,, minimize Eq. (8), the squared
sum of all equality constraint violations.
17: return (7,., the minimization result)

18: end function

intersection of the tube-shaped margins around the equality
constraints.

Our proposed method benefits from having both feasible
and infeasible solutions in the population, by gradually
reducing the equality margin p. The equality margin p can
be reduced in different fashions. Zhang [9] proposes an
adaptive scheme: in every iteration the equality margin is
multiplied by a factor 8z € [0, 1] which is proportional to
the ratio of current infeasible solutions F;,; within the set
of all solutions P:

| Pinyl
|P|

p =y g, = ). 9)

That is, if there are no feasible solutions, no reduction of
the margin takes place. On the other hand, if 50% of the
population is feasible, the margin is halved in every iteration,
i. e. a very rapid decrease. This scheme may work well for
algorithms having a population of solutions and infrequent
updates at the end of each generation as in [9]. But for
our algorithm with only one new solution in each iteration
this scheme may decay too rapidly. Therefore, we use an
exponential decay scheme shown in Step 11 of Algorithm 1

M(n+1) — M(")ﬁ (10)

with decay factor 8 > 0.5. The decay factor [ is constant
for all problems, independent of the problem dimension d.

Table 1. CHARACTERISTICS OF G FUNCTIONS WITH EQUALITY
CONSTRAINTS: d: DIMENSION, LI: THE NUMBER OF LINEAR
INEQUALITIES, NI: NUMBER OF NONLINEAR INEQUALITIES, LE: THE
NUMBER OF LINEAR EQUALITIES, NE: THE NUMBER OF NONLINEAR
EQUALITIES, o: NUMBER OF ACTIVE CONSTRAINTS.

| Fet. d type LI NI LE NE «
=0 | GO3 20 nonlinear 0 0 0 1 1
£ ] Go5 4 nonlinear 2 0 0 3 3
= | G11 2 nonlinear 0 0 0 1 1
= | G13 5 quadratic 0 0 0 3 3
G14 10  nonlinear 0 0 3 0 3
% Gl15 3 quadratic 0 0 1 1 2
& G17 6  nonlinear 0 0 0 4 4
G21 7  nonlinear 0 1 0 5 6
-y Sk - i "
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Figure 4. Impact of varying parameter 3 (Eq. (10)). Shown is the median
of the final optimization error for all training G-problems. The black
horizontal line depicts the threshold 1073, For 3 € [0.90,0.94] all
problems have a significantly smaller error than this threshold.

3. Experiments

3.1. Benchmark Functions and Experimental Setup

The G-problem suite, described in [13], is a set of well-
known constrained optimization problems. In this study, 8
G-problems with equality constraints are considered. The
characteristics of these G-problems are listed in Table 1.
These problems have very diverse characteristics. Therefore,
they provide a suitable testbed for constrained optimization
algorithms.

Just the first four of the eight G-problems (named
,2training‘ in Table 1) were used during EH algorithmic
development and for tuning the only free parameters 3, the
decay factor, and fifinqei. Only after fixing all algorithmic
details and parameters, SACOBRA-EH was run on the other
four G-problems (named ,test’ in Table 1) and the results
were taken ’as-is’. This provides a first indication of the
algorithm’s performance on unseen problems.
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Figure 5. Optimization progress for G03, GOS, G11, and G13. The dashed
(red) curve is the absolute optimization error | f(Z())— f(Z(°PY))] in every
iteration. The dotted (blue) curve is the maximum constraint violation V'
of the the so-far best solution. The solid (black) line is the combined sum
[F(@®)) — f(Z(°PY)| + V of absolute optimization error and maximum
constraint violation V. Each of the three curves shows the median value
from 30 independent runs. The gray bands around the black curves show
the worst and the best runs for Combined.

Fig. 4 shows initial runs on the training problems to find
a good choice for the decay factor 5. Two of the training
G-problems (G03 and G11) show good performance for
all values of 3. The other two problems (GO5 and G13)
show good performance for 8 € [0.90,0.94]. Larger values
result in slower convergence, they would converge if the
number of iterations were increased, but we allow here only
a maximum of 300 iterations. For all subsequent results we
fix the decay factor to 8 = 0.94.

We run the optimization process for every problem
with 30 independent randomly initialized populations (using
LHS) to have statistically sound results.

The equality margin u(”) has the lower bound p fipa =
10~°. The DRC parameter is set to = = {0.3,0.0}.

3.2. Results

Visualizing the optimization process for optimization
problems with equality constraints is not always straight-
forward because early or intermediate solutions are usually
never strictly feasible. If we artificially increase the feasible
volume with the help of a (shrinking) margin y, two things
will happen: (a) There can be intermediate solutions which
are apparently better than the optimum.® To avoid ,negative*

3. They are on the side of the tube where f is lower than the constrained
optimum.
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Figure 6. Same as Fig. 5 for problems G14, G15, G17, and G21 (,test’
problems).

errors we use the absolute value
Eabs = |f(f(b)) - f(f(opf)” (1 1)

as a measure to evaluate our algorithm where Z(°PY) is
the location of the true optimum in input space. (b) Sec-
ondly, when the margin p shrinks, former feasible solutions
become infeasible and new feasible solutions often have
larger optimization errors. To make the former and the new
solutions comparable we form the sum

Ecombined = |f(f(b)) - f(j(opt)” + \%4 (12)

where V' is the maximum violation. This sum is shown as
Combined curve in the plots of Fig. 5 and 6.

Fig. 5 shows the optimization process for G03, GOS5,
Gl11 and GI13. It is clearly seen that the median of the
optimization error as well as the median of the maximum
violation reaches very small values for all four problems
within less than 300 function evaluations. The final maxi-
mum violation is less than 10~* for these problems, i. e.
the infeasibility level is negligible. The optimization error
converges to 1073 for GO5 and to 10~% or smaller for
the three other problems. This means that the algorithm is
efficient in locating solutions very close to the true optimum
after only a few function evaluations.

Fig. 6 shows the optimization process on our four ,test’
G-problems (G14, G15, G17, and G21) which were not
taken into account during algorithmic development and
tuning. We choose a maximum budget of 500 function
evaluations. The decreasing trend for the Optim error and
Combined curves is clearly seen in Fig. 6 for all four



problems. G14 is the only problem with an increasing
maximum violation over iterations. In Fig. 6, left-top, the
solutions in early iterations are often almost feasible (max.
violation =108, due to the refine step) but they have large
objective values. The maximum violation increases in later
iterations. At the same time the objective value is reduced
by a factor of more than 100 and the final solution has
a reasonable low objective value and also a very small
level of infeasibility. Our algorithm can find almost feasible
solutions (max. violation < 107%) for all four ,test* G-
problems with reasonably small optimization error < 1072
except for G17 where the error is 0.26. Note that G17 has
a quite high optimum value and we can infer from Table 2
that G17 is solved in 50% of the cases with a relative error
better than 3-10~°. It has to be remarked that, however, the
worst-case error for the two ,test® problems G17 and G21
is a little bit worse than for the four training problems. This
has to be expected since the parameters were not explicitly
tuned to the ,test’ problems.

In Table 2 we compare our algorithm with other state-of-
the-art constrained optimization solvers. We show the results
from the efficient differential evolutionary algorithm by
Zhang [9], an evolutionary algorithm with a novel selection
scheme by Jiao [14], the repair genetic algorithm (RGA)
by Chootinan [10] and the improved stochastic ranking
evolutionary strategy (ISRES) by Runarsson [6]. The results
shown in column 2-5 of Table 2 are taken from the original
papers. We present in the last column results for differential
evolution (DE) [16] with automatic parameter adjustment
as proposed by Brest [15] This was done by running own
experiments using the DEOPTIMR package in R [17]. DE
does not perform well on GO3 and G13. It has to be noted
that 25 of the 30 runs for G13 did not terminate by reaching
a tolerance threshold but reached the maximum of allowed
iterations. Note that DE has on G17 after 37500 function
evaluations an error larger than ours after 500 function
evaluations.

Zhang [9] uses an adaptive equality margin to tackle
equality constraints. RGA [10] applies a gradient based re-
pair technique to handle equality and inequality constraints.
All other methods make use of a constant and small equality
margin ig.

Our proposed algorithm can achieve results with better
(G03) or similar accuracy as compared to the evolutionary
algorithms (ES, GA, DE) with a significantly lower number
of function evaluations.

4. Discussion

Although the refine step is an algorithmically very sim-
ple step, it is essential for our EH algorithm. This is because
only one new point will be added to the population in each
iteration. Usually this point will sit at the border of the
artificial feasible region after the optimization step. If we
now shrink the artificial feasible region without a refine step,
we would lose this point and jump to another feasible point,
if any, probably with a much larger objective value. The
refine step has two advantages: It often produces a solution
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Figure 7. Impact of different update schemes for the equality margin
w.The circle points (red) are the median of E,,s and the triangle points
(blue) are the median of the final maximum constraint violations V' for 30
independent runs. The box-plots depict the combined sum E.ompined acc.
to Eq. (12) for different margin update schemes: (I) our algorithm (EH),
(II) Zhang update scheme described in Eq. (9), and (III) constant margin
i = 1075, In case of G13, both other cases (II) and (III) have more than
a quarter of runs worse than the threshold 103 (black horizontal line).

which fulfills all equality constraints to machine accuracy.
Even more important, it brings the new point into the inner
part of the artificial feasible region, so that it will remain
feasible after shrinking has taken place.

The results in Sec. 3 show that our extended algorithm
SACOBRA+EH with a dynamic equality margin (category
(d)) can provide reasonable solutions for 8 of the G-
problems, while most of these problems were not solv-
able with the older version of SACOBRA which used the
equality-to-inequality transformation scheme (category (b)).
Additionally, SACOBRA+EH boosts up the results for the
GO03 problem. As the worst-case behavior in Fig. 5 shows,
the current algorithm can solve 100% of the runs for the GO3
problem within only 100 iterations. The older SACOBRA
algorithm required 3 times more function evaluations and
could solve only 77% of the runs [3], [12]. The GO3 problem
benefits from the gradually shrinking tube-shaped margin of
SACOBRA+EH in two ways: (i) Infeasible points with good
fitness values are included in the population since they are
the best solutions in early iterations. This helps to improve
the surrogate model of the fitness function in the interesting
region. (ii) The feasible region is a tube around the equality
hypersurface. This is in contrast to the former category-
(b)-type solution where the considerably larger region on
one side of the hypersurface was feasible. The tube-shaped
region helps the optimizer to concentrate on the interesting



Table 2. DIFFERENT OPTIMIZERS: MEDIAN (M) OF BEST FEASIBLE RESULTS AND (FE) AVERAGE NUMBER OF FUNCTION EVALUATIONS. RESULTS
FROM 30 INDEPENDENT RUNS WITH DIFFERENT RANDOM NUMBER SEEDS. NUMBERS IN BOLDFACE (BLUE): DISTANCE TO THE OPTIMUM < 0.001.
NUMBERS IN ifalic (red): REPORTEDLY BETTER THAN THE TRUE OPTIMUM.

et Ontimum SACOBRA+EH  Zhang  ISRES RGA 10% Jiao DE
- Op [this work] [9] 6] [10] [14] [15]
03 o™ 10 10005  -L.001 09999  -L.0005 08414
L0 g 100 25493 349200 399804 19534 13325

m 5126497 5126497 5126497 5126498 5126497 5126498

GO5 5126497 | ¢ 300 21363 195600 39459 2050 8108
on oo | m 0750 0.749 0750 0750 0.749 0.750
: fe 100 6609 137200 715 135 2099

m 00539 00539 0.0539 ~ 00539 0.068

GI3 00539 | ¢ 300 19180 223600 - 3103 23637
m 47750 -47.765 - T 7765 47761

Gl4 47765 | ¢ 500 34825 - - 6093 72015
m 961715 961715 - — 961715 961715

GI5 961715 | ¢ 500 11706 - - 757 5666
m 8853794 8868539 - 8853534 8367.606

GI7 8853534 | ¢ 500 43369 - - 3203 37532
m 193725 193.735 - ~ 93724 193790

G2l 193724 | 500 23631 - 4612 35559
average Te 350 23272 226400 143826 10200 24742

area, regardless of the initial population.

In order to study the impact of the update scheme for
the equality margin u, we have embedded for comparison
the Zhang update scheme, Eq. (9), and a constant scheme
with a small equality margin z = 10~ in our algorithm. In
Fig. 7 the final optimization results achieved by the different
schemes are compared.

Fig. 7 shows that the adaptive update scheme proposed
by Zhang [9] appears to have a similar behavior as the
constant scheme on 3 G-problems. This is because the
Zhang decay factor in Eq. (9) usually results in a fast decay
(B = 0.5), i. e. the margin p gets small in early iterations.
Therefore, infeasible solutions with good objective values
have a smaller chance to be found. This may result in less
accurate surrogate models, especially for problems with a
nonlinear objective function and several local optima. G13
is such an example with several local optima. Here, Zhang’s
fast shrinking equality margin or a constant small margin
are problematic and more than 25% of the runs would not
converge to the optimum (Fig. 7).

Table 2 shows that sometimes the other algorithms find
solutions which are slightly infeasible and have a better
objective value than the real optimum. The level of permitted
infeasibility is controlled by margin parameters for the
algorithms ISRES, Jiao and Zhang. Therefore, the quality
of the results is dependent on the final value ;4 of the
equality margin. In contrast to that, our algorithm is — due to
the refine step — much less sensitive to the parameter fifinqi.

5. Conclusion

We developed an equality constraint handling tech-
nique coupled with a surrogate-assisted optimization algo-
rithm [12] which benefits from a gradual shrinking of the
expanded feasible region. The gradual shrinking smoothly
guides the infeasible solutions toward the feasible hyper-
surfaces. Our algorithm requires less than 500 function

evaluations to provide high-quality optimization results on
both sets of training and test G-problems with equality
constraints. The state-of-the-art solutions reach similar ac-
curacy, but they require on average 250 times more function
evaluations. Therefore, our answer to the first posed research
question (H1) is positive.

Our results have shown that a gradually shrinking equal-
ity margin p is essential for an effective algorithm working
on a diverse set of problems. Although a small constant
equality margin may work well for very simple problems,
we found that for other cases, where the objective function
is nonlinear or multimodal, a constant equality margin often
causes early stagnation of the optimization process. On the
other hand, if we use a dynamic shrinking feasible region
(considered in our research question (H2)), we observe a
much more robust behavior on a variety of challenging
equality constraint problems.
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