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Abstract

In real-world optimization often constraints must be respected, restric-
ting the number of feasible solutions. Therefore algorithms and strategies
have been proposed to repair constraint-violating solutions or to avoid ex-
tensive search in infeasible regions. Such constraint handling methods are
well-known from the literature, but most algorithms have the drawback that
they require a large number of function evaluations. This can be especial-
ly problematic for real-world optimization tasks, which often incorporate
expensive simulations. Up to now, only little work has been devoted to
efficient constraint-based optimization (severely reduced number of func-
tion evaluations). A possible solution in that regard is to use surrogate
models for the objective and constraint functions respectively. While the
real function might be expensive to evaluate the surrogate functions are
often much faster. Recently, as an example for this approach, the solver
COBRA was proposed and outperforms most other algorithms in terms of
required function evaluations on a large number of benchmark functions.
In this paper we propose a new implementation of COBRA and compare
it with other constraint-based optimization algorithms. We discuss the in-
ternal components of the algorithm and find that by adding new strategies,
the algorithm can be significantly improved. We also report on negative re-
sults where COBRA still shows a bad behaviour and gives indications for
possible improvements.

1 Introduction

Real-world optimization problems are often subject to constraints, restric-
ting the feasible region to a smaller subset of the search space. It is the
goal of most optimizers to avoid infeasible solutions and to stay in the fea-
sible region, in order to converge in the optimum. However, the search in



constraint black-box optimization can be difficult, since knowledge about
the size of the feasible region and the location of the optima is usually
unknown. This problem even turns out to be much harder, when only a li-
mited number of function evaluations is allowed for the search. However,
this is often the case in real-world optimization, where good solutions are
requested in very restricted timeframes. In this paper we present a state-
of-the-art solver for constraint-based optimization and discuss advantages
and common pifalls of the method.

1.1 Related work

For constrained problems several repair methods have been proposed [1,
2], that aim to repair infeasible solutions. Another common approach is
to incorporate static or dynamic penalty terms to stay in the feasible regi-
on [3, 4, 5]. Other techniques handle constraints by optimizing objective
function and constraint functions separately in a lexical order [6, 7]. [8]
is another example of this approach with stochastic ranking. Also multi-
objective optimization algorithms have been designed for constraint-based
optimization, considering the constraint functions as additional objecti-
ves [8, 9]. Beyer and Finck [10] propose an extension of CMA-ES which
allows to handle special types of constraints successfully.

In the field of model-assisted optimization algorithms for constrained pro-
blems, Support Vector Machines (SVMs) have been used by Poloczek and
Kramer [11]. They make use of SVMs as a surrogate of the objective func-
tion, but achieve only slight improvements. Powell [12] proposes COBY-
LA, a direct search method which models the objective and the constraints
by linear functions. Recently, Regis [13] developed COBRA, an efficient
solver that makes use of Radial Basis Function (RBF) interpolation, and
outperforms most algorithms in terms of required function evaluations on
a large number of benchmark functions.

In this paper we analyze a new implementation of COBRA in R, which
allows easy adaptation of certain components of the algorithm. In Sec. 2
we present the problem and the algorithm in more detail. In Sec. 3 we per-
form a thorough experimental study on analytical test functions and on a
real-world benchmark function. The results are discussed with regard to
specific parameter settings of the algorithm in Sec. 4 and we give conclu-
sive remarks in Sec. 5.



2 Methods

2.1 Constrained-based optimization

A constrained optimization problem can be defined by the minimizati-
on of a real-valued objective function f subject to constraint functions
s1, . . . , sm:

Minimize f(~x), ~x ∈ Rd

subject to
si(~x) ≤ 0, i = 1, 2, . . . ,m

In this paper we always consider minimization problems. Maximization
problems can be transformed to minimization problems without loss of
generality.

2.2 Radial Basis Functions

The COBRA algorithm incorporates optimization on auxiliary functions,
e.g., a regression model of the search space. Although numerous regressi-
on models are available therefore, we employ interpolating RBF [14, 15],
since they outperformed other models. In this paper we use the same no-
tation like Regis [16]. The RBF model requires a set of design points (a
training set) as input: n points ~u(1), . . . , ~u(n) ∈ Rd are evaluated on the real
function f(~u(1)), . . . , f(~u(n)). We use an interpolating radial basis function
as approximation:

f̂(~x) =
n∑
i=1

λiϕ(||~x− ~x(i)||) + p(~x), ~x ∈ Rd (1)

Here, || · || is the Euclidean norm, λi ∈ R for i = 1, . . . , n, p(~x) is a linear
polynomial in d variables, and ϕ is of cubic form ϕ(r) = r3. Although
other choices for ϕ are possible and have been tested in related work, cubic
RBF have been shown to be superior in [17].

Fitting of the model can be done by defining a distance matrix Φ ∈ Rn:
Φi,j = ϕ(||~u(i) − ~uj||), i, j = 1, . . . , n. The cubic RBF model is obtained
by solving the linear system of equations:[

Φ P
P T 0(d+1)×(d+1)

]
=

[
λ
~c

]
×
[

F
0d+1

]
(2)



where 0(d+1)×(d+1) ∈ R(d+1)×(d+1) is a zero matrix,F = (f(~u(1)), . . . , f(~u(n))),
0d+1 is a vector of zeros, λ = (λ1, . . . , λn)

T ∈ Rn and~c = (c1, . . . , cd+1)
T ∈

Rd+1 are the coefficients of the linear polynomial p(~x). The matrix in
Eq. (2) is invertible if it has full rank. This is usually the case, if d + 1
linearly independent points are provided. The matrix inversion can be effi-
ciently calculated by using singular value decomposition (SVD) or similar
algorithms.

RBF models are very fast to train, even in high dimensions. They of-
ten provide good approximation accuracy even when only few training
points are given. This makes them ideally suited as surrogate models high-
dimensional optimization problems with a large number of constraints.

2.3 Constrained Optimization by Radial Basis Function Approxima-
tion

Constrained Optimization by Radial Basis Function Approximation (CO-
BRA) is an optimization algorithm proposed by Regis [13]. The main idea
of this method is to use approximations of both the objective function and
constraint functions, in order to save evaluations of the real function and
constraints. Internally COBRA uses RBF interpolation for the modeling
of the objective and constraints. Each iterate is a result of an optimization
on a subproblem, which is defined by the RBF interpolation models of the
objective and the constraint functions.

Fig. 1 presents a flowchart of the algorithm. In the beginning an initial po-
pulation or design is generated to make it possible to create the first RBF
model. This can be done by using various strategies which are described
in more detail in Sec. 3.3. The resulting RBF models from the initial de-
sign are used to find the next iterate to be evaluated on the real function.
Therefore, a sequential search is performed on the surrogate functions. The
best point obtained from this search is referred to as infill point in the re-
mainder of this paper. Note that the infill point is the only point that is also
evaluated on the real function. This makes the algorithm efficient in terms
of real function evaluations required. If the infill point is better than the
current best solution, the best solution is replaced by the infill point. In any
case the RBF models are updated using the new information. In the next
round again a sequential search is performed until the number of function
evaluations exceeds the maximum number of allowed evaluations given by
the user (the budget for the optimization).
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Figure 1: Flowchart of the COBRA algorithm.

Model-assisted optimization In each iteration COBRA performs an op-
timization on the RBF models. This can be done by either using a special
constraint solver, or by using a method for unconstrained optimization with
a penalty function to avoid infeasible solutions. In this paper we incorpora-
te two constraint solvers, COBYLA [12] and ISRES [8], and also make use
of unconstrained optimization methods in form of classical Hooke & Jee-
ves pattern search [18] and the simplex algorithm by Nelder & Mead [19].
The selection of the internal optimization strategy in COBRA is arbitrary
and must be defined by the user. In Sec. 3.4 we compare different optimi-
zation strategies on a real-world problem.

Distance requirement cycle COBRA applies a distance requirement fac-
tor which determines how close the next solution ~xinfill ∈ Rd is allowed
to be to all previous ones. The idea is to avoid frequent updates in the
neighbourhood of the actual best solution. The distance requirement can
be passed by the user as external parameter vector Ξ = 〈ξ(1), ξ(2), . . . , ξ(κ)〉
with ξ(i) ∈ R≥0. In each iteration, COBRA selects the next element ξ(i)

of Ξ and adds the constraints ||~xinfill − ~xj|| ≥ ξ(i), j = 1, ..., n to the
set of constraints. This measures the distance between the proposed infill
solution and all n previous infill points. The distance requirement cycle is



a clever idea, since small elements in Ξ lead to more exploitation of the
search space, while larger elements lead to more exploration. If the last
element of Ξ is reached, the selection starts with the first element again
and so on. The size of the vector and the single components of the distance
requirement vector can be arbitrarily chosen.

Uncertainty of constraint predictions COBRA aims at finding feasi-
ble solutions by extensive search on the surrogate functions. However, as
the RBF models are probably not exact especially in the initial phase of
the search, a factor ε is used to handle wrong predictions of the constraint
surrogates. In the beginning we set εinit = 0.005 · l, where l is the dia-
meter of the search space. In each iteration n we only claim the point to
be feasible if the following Eq. holds for all constraint surrogates s(n)i with
i = 1, . . . ,m:

s
(n)
i + ε

(n)
i ≤ 0 (3)

That is, we tighten the constraints by adding the factor ε which is adapted
during the search. The ε-adaptation is done by counting the feasible and
infeasible infill points Cfeas and Cinfeas over the last iterations. When the
number of these counters reaches the threshold for feasible or infeasible
solutions, Tfeas or Tinfeas, respectively, we divide or double ε by 2 (up to
a given maximum). When ε is decreased, solutions are allowed to move
closer to the constraint boundaries (the imaginary boundary is relaxed),
since the last Tfeas infill points were feasible. Otherwise, when no feasible
infill point is found for a while (Tinfeas), the ε factor is increased in order
to keep the points further away from the constraint boundary.

3 Experimental analysis

3.1 Benchmark functions

For evaluation we use popular benchmark functions, e.g., the G functions
described in [20]. In Tab. 1 we present characteristics of these functions. It
can be seen from the table that the functions differ in dimension, objective
and number and type of constraints. Since these functions are often used in
the scientific literature for analyzing constrained-based solvers, they pro-
vide a good analytical testbed for our algorithm.

Additionally we evaluate the algorithm on a high-dimensional real-world
problem from the automotive industry: the MOPTA 2008 benchmark by



Table 1: Characteristics of G functions: d: dimension, ρ: percent feasible, R: range of
objective function, LI: the number of linear inequalities, NI: number of nonlinear inequa-
lities, NE: the number of nonlinear equalities

Fct. d type ρ R LI NI NE

G01 13 quadratic 0.0003% 293.87 9 0 0
G02 20 nonlinear 99.9973% 0.69 1 1 0
G03 10 nonlinear 0.0026% 1 0 0 1
G04 5 quadratic 27.0079% 9725.83 0 6 0
G05 4 nonlinear 0.0000% 8850.43 2 0 3
G06 2 nonlinear 0.0057% 1247439.40 0 2 0
G07 10 quadratic 0.0001% 5660.62 3 5 0
G08 2 nonlinear 0.8581% 1691.26 0 2 0

Jones [21] is a 124-dimensional problem with 68 constraints. All input
parameters have been normalized to [0, 1]. The constraint values are mea-
ningfully scaled, e.g., if a constraint value si of 0.05 is returned, this means
that the constraint boundary is violated by a percentage of 5%. The pro-
blem should be solved within 1860 = 15 · d function evaluations which
in reality refers to one month of computation time on a high-performance
computer.

3.2 Results on benchmark functions

We compare our COBRA implementation in R1 with the results from other
research articles. Tab. 2 shows the results of 30 independent runs on the
G functions introduced in Sec. 3.1. For comparison we present the results
from COBRA by Regis [13], the stochastic ranking evolution strategy (IS-
RES) by Runarsson and Yao [8] and the Repair Genetic Algorithm (RGA)
by Chootinan and Chen [2]. The results from COBRA by Regis [13], IS-
RES [8] and RGA [2] have been taken from the original articles of the
authors, for COBYLA we ran experiments using the nloptr package in R.2

The results of our COBRA implementation can achieve accuracies simi-
lar or close to the results of the evolutionary algorithms (EA) ISRES and
RGA. This already can be seen as a success, since it was not clear, if the
surrogate models in COBRA are able to find very good approximations
of the real function and constraints. However, with exception of function
G02, where our COBRA implementation performed poorly, the results are

1http://cran.r-project.org/
2 http://cran.r-project.org/web/packages/nloptr/nloptr.pdf



Table 2: Best (b), median (m) and worst (w) results and their standard deviation (sd)
determined in 30 independent runs with different approaches.
Fct. Optimum COBRA-R COBRA [13] ISRES [8] RGA 10% [2] COBYLA [12]

G01 -15.00

b -15.00 NA -15.0 -15.0 -15.0
m -15.00 NA -15.0 -15.0 -13.83
w -13.00 NA -15.0 -15.0 -0.27
sd 0.58 NA 5.8e-14 0.0 1.30

G02 -0.80355

b -0.409403 NA -0.803619 -0.801119 -0.272
m -0.346592 NA -0.793082 -0.7857 -0.199
w -0.281917 NA -0.723591 -0.745329 -0.164
sd 0.028 NA 2.2e-02 -0.0137 0.023

G03 -1.0

b -0.9899 -0.8965 -1.001 -0.9999 -1.0
m -0.9753 0.00 -1.001 -0.9999 -0.2289
w 0.000 0.00 -1.001 -0.9997 0.0
sd 0.19 NA 0.0 0.0 0.45

G04 -30665.539

b -30665.5386 -30665.49 -30665.539 -30665.5386 -30665.539
m -30665.5386 -30665.15 -30665.539 -30665.5386 -30665.539
w -30665.5386 -30664.58 -30665.539 -30665.5386 -30665.539
sd 7.5e-05 0.04 1.1e-11 0.0 8.3e-09

G05 5126.498

b 5126.4981 5126.5 5126.497 5126.498 5126.498
m 5126.4981 5126.51 5126.497 5126.498 5126.498
w 5126.4989 5126.53 5126.497 5126.498 5126.498
sd 2.4e-04 0.0 7.2e-13 0.0 0.0

G06 -6961.8138

b -6961.8134 -6944.54 -6961.81 -6961.81 -6961.81
m -6961.8116 -6795.6 -6961.81 -6961.81 -6961.81
w -6961.8044 -6460.53 -6961.81 -6961.81 91.05
sd 1.5e-2 24.6 1.9e-12 0.0 1782.09

G07 24.306

b 24.306 24.48 24.306 24.329 24.306
m 24.306 24.306 24.306 24.472 24.306
w 24.309 29.33 24.306 24.835 1440.87
sd 6.6e-04 0.15 6.3e-05 0.13 343.91

G08 -0.0958250

b -0.0958250 -0.10 -0.0958 -0.0958 -0.0958
m -0.0957808 -0.09 -0.0958 -0.0958 -0.0272
w -0.0945741 -0.06 -0.0958 -0.0958 0.0
sd 2e-04 0.0 2.7e-17 0.0 0.02



in line with the EA and also outperform the original COBRA algorithm in
Matlab published by Regis [13] on some functions. While in general the
implementations are similar to each other, the following differences can be
made responsible for this:

• internal optimizer in COBRA (Regis uses fmincon in Matlab, we
use COBYLA, ISRES, NMKB or HJKB in R)

• size of the initial design. Regis always uses d+1 points, whereas we
also set higher values up to 3 · d+ 1

• initial design type: Regis proposes random initial design, we allow
LHS, optimized and biased designs (Sec. 3.3)

• usage of repair infeasible method (Sec. 3.5), for repairing slightly
infeasible solutions

As Tab. 2 only reports the objective values, we want to indicate that CO-
BRA has been designed for complex real-world optimization, and one of
its main advantages is that optimization can be performed spending on-
ly very few function evaluations. Because COBRA makes use of internal
surrogate models, it usually requires only a fraction of the function evalua-
tions needed by other strategies such as the EA. In Tab. 3 we present the
number of real function evaluations required by the methods to achieve the
objective values in Tab. 2. It is clearly visible that both our COBRA imple-
mentation in R and the original COBRA implementation in Matlab need
only very few function evaluations, while algorithms like ISRES or RGA
sometimes require 1000 times more evaluations to yield similar results.

Comparing COBRA and COBYLA, it can be seen from the result ta-
bles that COBRA requires less function evaluations. One reason therefore
might be that COBYLA does not incorporate any additional heuristics as
the distance requirement and only uses linear models which might be wor-
se for nonlinear functions. Another disadvantage of COBYLA can be the
dependency of the delivered starting point. While COBRA uses a set of
points, COBYLA is prone to early convergence in local optima when the
problem is multimodal and the starting point is far from the optimum. As
a consequence the final solutions of COBYLA are not as precise as the
solutions delivered by COBRA and COBYLA needs substantially more
function evaluations until convergence (cf. Tab. 3).



Table 3: Average number of function evaluations used to reach results shown in Tab. 2 for
different algorithms.

COBRA-R COBRA [13] ISRES RGA 10% COBYLA

G01 59 NA 350 000 95 512 986.4
G02 500 NA 350 000 331 972 5 000.0
G03 500 100 350 000 399 804 3 402.2
G04 100 100 350 000 26 981 441.3
G05 100 100 350 000 39 459 745.0
G06 100 100 350 000 13 577 276.6
G07 150 100 350 000 428 314 2 740.0
G08 150 100 350 000 6 217 430.0

3.3 Initial design

The initial design strategy in COBRA (Sec. 2.3) can be responsible for
obtaining good or bad results. Especially for multimodal problems a good
selection of the initial design can lead to meaniningful better results. In the
R implementation of COBRA the user can select between three different
initialization strategies:

LHS: Latin Hypercube Sampling of size n

Biased: The points are randomly sampled around the provided starting
solution with given standard deviation sd.

Optimized:An initial optimization is performed without model-assisted
optimization. In this paper we used Hooke & Jeeves [18] with a static
penalty function for this.

In Fig. 2 we provide the results of 20 runs with COBRA on the G07 test
function, first with a LHS random initialization and second with an op-
timized initialization. As can be seen from the plot the random LHS in-
itialization leads to a premature convergence with no improvement after
some early iterations. Instead the optimized initialization, where a Hoo-
ke & Jeeves search is performed using a simple penalty function, leads to
much better progress and no stagnating behaviour. As a consequence, the
selection of the initial design has a direct effect on the performance. A ve-
ry bad selection of initial design points seems to completely deteriorate the
algorithm’s progress.
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Figure 2: The plot shows the mean results of 30 independent runs on G07 for the LHS
and optimized initialization strategies. The upper and lower ribbons depict best and worst
solutions of the 30 runs.

3.4 Internal optimization strategy

We ran COBRA on the MOPTA benchmark problem with different optimi-
zers for the optimization on the surrogate functions. E.g., in our COBRA
R implementation we can select between the following optimization stra-
tegies:

• Hooke & Jeeves (HJKB) search [18]

• Nelder & Mead simplex algorithm (NMKB) [19],

• Constrained-based optimization by linear approximation (COBYLA)
by Powell [12]

We assumed to get the best results with COBYLA, since it builds an in-
ternal model of the objective and constraints and usually outperforms the
classical direct search strategies which are sometimes even not designed
for high-dimensional problems (e.g., Nelder & Mead tends to get lost in
large search spaces). In the left plot of Fig. 3 the mean out of ten runs
of the best feasible solution visited over the optimization loop so far is
depicted. In the initialization one feasible starting solution was given by
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Figure 3: Average optimization progress for COBRA-R on the MOPTA 2008 benchmark.
Left: best feasible solution up to the current iteration, right: best solution with 5% cons-
traint violation (tolerance) allowed. The known optimum is shown as a straight grey line
at 222.74.

Jones [21]. The rest of the 249 initial design points was generated by the
optimized initialization strategy (cf. Sec. 3.3) using a size of 249 design
points. It can be seen from the plot that surprisingly HJKB outperforms
NMKB and COBYLA.

Interestingly, the situation changes if we allow for small constraint viola-
tions of up to 5%. Although infeasible solutions can be generated by this,
it is possible that small constraint violations can be resolved afterwards,
e.g., by applying a method similar to the repair infeasible algorithm we
are presenting in Sec. 3.5.

In the right plot of Fig. 3 we again started the algorithms HJKB, NMKB
and COBYLA on the MOPTA benchmark, but now allowing constraint
violations of up to 5%. As can be seen from the plot the result of the CO-
BYLA algorithm has been improved significantly. While COBYLA per-
formed rather poor before with the hard constraint, it can now reach the
optimum of the MOPTA benchmark in several runs. While the classical
HJKB and NMKB did not yield any benefits from this small change, CO-
BYLA could clearly improve its result and is close to the desired optimum.



Figure 4: Repairing infeasible solutions with a gradient step. A slightly infeasible solution
~x is repaired with the help of the surrogate function v(~x) of a constraint (i. e. we do not
need any expensive evaluations of the true function): We estimate the gradient g(~x) of the
constraint surrogate. If the linear approximation near ~x holds, an appropriate step from ~x
to a feasible solution ~z can be easily calculated.

3.5 Repairing infeasible solutions

Sometimes very small constraint violations occur for infill points, because
the internal optimization method could not determine a feasible solution,
or the solution returned by the optimizer was assumed to be feasible on
the surrogates, but turns out to be infeasible after evaluation on the real
function. As a consequence this can lead to a unwanted discarding of good
but slightly infeasible solutions.

The repair infeasible method has been especially designed for internal op-
timization strategies inside COBRA like COBYLA. In most of our runs
with COBYLA, it turned out that the infill points often have very small
constraint violations. For COBYLA, it took a relatively long time to resol-
ve such small constraint violations. To circumvent this issue we integrated
a very simple gradient descent strategy for resolving small constraint vio-
lations. In Fig. 4 we describe the general sketch of the repair infeasible
algorithm. The repair infeasible technique in our approach and [2] are both
based on utilizing the gradient information from constraints. In [2], the re-
pairing operation is embedded into a Genetic Algorithm and the infeasible
results are repaired with a defined probability by deriving the gradient of
the real constraint functions to direct the infeasible point towards the feasi-
ble region. Our approach only relies on constraint surrogates and does not
impose any extra real function evaluations.

In Fig. 5 we show the performance of COBRA on function G06 with and
without repair infeasible. It can be seen from the plot that after a first pha-
se with similar progress of both variants the variant with activated repair
infeasible can approximate the optimum much better. The progress is ve-
ry fast with neat improvements during iterations 40 to 50. In contrast the
variant without repair infeasible stagnates at an inferior level.
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Figure 5: Impact of using the repair infeasible technique within COBRA(NMKB) on the
G06 problem.

4 Discussion

In this section we discuss the components of the COBRA algorithm and
want to draw the attention on common pitfalls and drawbacks of the me-
thod.

4.1 Initial design

The RBF models used internally in COBRA need at least d+1 points (whe-
re d is the dimension of the search space) to fit an interpolating model. In
the COBRA algorithm an initial population is created as a first step (see
Fig. 1). The method used for this can be designed by the user, but usually
methods from statistics are chosen therefore. We have integrated the strate-
gies described in Sec. 3.3, but depending on the problem also other designs
are possible. Although with d+1 a lower bound exists for the initial design
points and can be used by the algorithm, it can be advantageous to incre-
ase this number and to not rely on the minimum number of initial design
points.

In our experimental study it was crucial to find a good strategy for the
initial design generation and number of design points. We found these set-
tings to be important for the later performance of the whole optimization
run. Both settings can be very problem-dependent, but we showed several
examples, where the selection of the right strategy makes a difference. A



general rule-of-thumb for the number of initial design points can be given
with 3d, where d is the dimension of the problem.

4.2 Internal optimization strategy

The selection of the internal optimization strategy in COBRA can be cru-
cial to find good solutions for some problems. E.g., in highly multimo-
dal landscapes, local optimization methods such as COBYLA, HJKB or
NMKB are not well-suited. In fact these methods are designed for local
optimization and will probably fail on multimodal landscapes. A possible
solution to this problem can be to implement a restarting strategy, which
from time to time makes random restarts and does not spent the whole bud-
get for the optimization of the starting solution. Other solutions can be to
select global optimization strategies like ISRES, which are also available
in our R implementation of COBRA.

4.3 Distance requirement

In the literature a lot of work has been devoted to balancing exploration
and exploitation of the search space. In COBRA, the user controls explo-
ration and exploitation by setting the distance requirement parameter Ξ.
Large values in Ξ lead to explorative steps, while smaller values enable
closer approximations of the optima. However, too many large values can
lead to uncontrolled jumping through the search space, whereas too ma-
ny small values can lead to a stagnating behaviour in suboptimal regions
of the search space. For this reason good settings of Ξ are necessary and
must be defined anew for each test case. As a rule of thumb, Regis [13]
proposes Ξlocal = 〈0.01, 0.001, 0.0005〉 for a locally-biased distance re-
quirement, and Ξglobal = 〈0.1, 0.05, 0.01, 0.005, 0.001, 0.0005〉 for a more
globally biased distance requirement. Note that these settings are only sug-
gestions, specific properties of other problems might require to define other
settings.

In our experiments we sometimes discovered, that a large element (i.e.
ξi = 0.03) or a very small element (ξi = 0.0) in the set can have a beneficial
effect. The large element can support the algorithm to make larger steps in
the search space, which can be advantageous for highly multimodal func-
tions. The small element instead can help to find better approximations of
the target. Fig. 6 shows the infill solutions obtained in a run on function
G06 with a small ξi of 0.0 included. Stepwise the points move closer to the



Table 4: Challenges of G-problems and MOPTA (MO) and their possible solutions in
COBRA

Challenge(s) Solution(s)

G01 Small feasible region. Often solutions
with slightly violated constraints.

Add 0.3 to DRC (explo-
ration). Use repairInfea-
sible.

G02 Multimodal: Many local optima, espe-
cially in 20d

none!

G03 Nonlinear and non-separable objective
→ surrogate model not accurate. High
dimension and large range R.

Logarithmic transform

G04 Fitness function and constraints with
mixed terms x1x2 → difficult for cons-
traint surrogates.

Use optimizer COBYLA
(others fail: NMKB, IS-
RES)

G05 Extremely thin feasible region. Three
nonlinear active constraints. Highly va-
rying input ranges.

Add 0.0 to DRC, use op-
timizer COBYLA. Res-
cale inputs to [0, 1]d.

G06 Very thin feasible region, optimum at
„tip of needle“. Steep objective functi-
on, large range R.

Add 0.0 to DRC (avo-
id „blocking“ the opti-
mum)

G07 Constraints with mixed terms x1x2 →
difficult for constraint surrogates. Very
small ρ = 0.0001%.

Use optimizer COBYLA
(others fail: NMKB, IS-
RES)

G08 Shallow optimum in feasible region is
masked by high (+/−) infeasible peaks

Use optimizer ISRES
(others fail: NMKB,
COBYLA)

MO Very high d=124 andm=68. Often solu-
tions with slightly violated constraints.

DRC: distance requirement cycle
R: min-max spread of objective function over search space (see Table 1)
ρ: percentage of feasible volume in search space volume (see Table 1)
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Figure 6: Optimization with COBRA-R on function G06 with ξi = 0.0 in the set. Tri-
angles and circles are representing feasible and infeasible points. The big black circle is
the true optimum, resp. The hatched area is the approximation of feasible region.
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Figure 7: Optimization with COBRA-R on function G06 without ξi = 0.0 in the set.



optimum along the shaded area, which is located at the needle point of this
area. Outside the shaded area the points are infeasible which makes this
problem very hard for any optimizer, because the feasible region around
the optimum becomes very small. With larger values for the Ξ parameter,
it would not be possible to exploit solutions in the optimal region. By swit-
ching off the distance requirement method from time to time, the algorithm
allows solutions in the direct neighbourhood of the known points and can
move closer to the real optimum.

In Table 4 we summarize this discussion by showing the quite different
challenges posed by each optimization problem and indicate possible so-
lutions found in the framework of COBRA-R to cope with this challenges.

5 Conclusion and outlook

In this paper we presented a comparative study on constrained optimiza-
tion problems under limited budgets. Therefore we developed a new im-
plementation of the model-assisted algorithm COBRA in R. With our new
implementation of COBRA we give users full flexibility for changing or
adapting single components of the algorithm. In an experimental study on
common benchmark functions we give evidence that our COBRA imple-
mentation can reach very good accuracies on most of the functions dis-
cussed in this paper (G01, G04, G05, G06, G07 and G08). The experi-
ments showed, that the obtained results of COBRA-R are similar or close
to the results of other constrained optimization algorithms including IS-
RES, RGA and COBYLA. We want to emphasize that the other strategies
require a much higher number of function evaluations. Thus, as one of the
main contributions of this paper, COBRA can achieve much faster con-
vergence rates with almost similar accuracies on most functions. As only
drawback we found negative results on the functions G02 and G03, pre-
sumably due to the dimensionality and complexity of these functions (20d
and multimodality in the case of G02, highly nonlinear in the case of G03).

Few questions remain open, e.g., the generation of a good initial design, the
optimal settings for the distance requirement, or the choice of the best per-
forming optimization strategy on the surrogate functions. In future work
we want to elaborate on that and strengthen the advantages of model-
assisted optimization under heavily restricted budgets. We are looking for-
ward to improve our promising initial results on the MOPTA real-world
problem by providing a deeper analysis of the hyperparameters of the al-
gorithm.
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