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ABSTRACT
Nowadays, constraints play an important role in industry,
because most industrial optimization tasks underly several
restrictions. Finding good solutions for a particular problem
with respect to all constraint functions can be expensive, es-
pecially when the dimensionality of the search space is large
and many constraint functions are involved. Unfortunately
function evaluations in industrial optimization are heavily
limited, because often expensive simulations must be con-
ducted. For such high-dimensional optimization tasks, the
constraint optimization algorithm COBRA was proposed,
making use of surrogate modeling for both the objective and
the constraint functions.

In this paper we present a new mechanism for COBRA
to repair infill solutions with slightly violated constraints.
The repair mechanism is based on gradient descent on surro-
gates of the constraint functions and aims at finding nearby
feasible solutions. We test the repair mechanism on a real-
world problem from the automotive industry and on other
synthetic test cases. It is shown in this paper that with
the integration of the repair method, the percentage of in-
feasible solutions is significantly reduced, leading to faster
convergence and better final results.

Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained optimization
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1. INTRODUCTION
Real-world optimization problems are often subject to con-

straints, restricting the feasible region to a smaller subset of
the search space. It is the goal of constraint optimizers to
avoid infeasible solutions and to stay in the feasible region,
in order to converge to the optimum. However, the search
in constraint black-box optimization can be difficult, since
knowledge about the size of the feasible region and the fit-
ness landscape is usually unknown. This problem even turns
out to be harder, when only a limited number of function
evaluations is allowed for the search. However, in industry
good solutions are requested in very restricted timeframes.
An example is the well-known benchmark MOPTA 2008 [1].

In the past different strategies have been proposed to han-
dle constraints. E. g., repair methods try to guide infeasi-
ble solutions into the feasible area. Penalty functions give
a negative bias to the objective function value, when con-
straints are violated. Many constraint handling methods
are available in the scientific literature, but often demand
for a large number of function evaluations (e. g., results in
[2, 3]). Up to now, only little work has been devoted to
efficient constraint optimization (severely reduced number
of function evaluations). A possible solution in that regard
is to use surrogate models for the objective and constraint
functions respectively. While the real function might be ex-
pensive to evaluate, evaluations on the surrogate functions
are often much faster. As an example for this approach, the
solver Constrained Optimization by Radial Basis Function
Approximation (COBRA) was proposed by Regis [4] and
outperforms many other algorithms on a large number of
benchmark functions.

In this paper we analyze the COBRA algorithm and reveal
its strengths and weaknesses. We extend the algorithm by a
specific new repair method. Therefore we have defined the
following research questions:

(H1) Can a repair mechanism for infeasible solutions help
to achieve a faster convergence and smaller standard
deviations as compared to the original COBRA algo-
rithm proposed by Regis [4] without repair?

(H2) Does the proposed repair mechanism perform better



than other state-of-the-art repair mechanisms like the
one proposed by Chootinan and Chen [5]?

(H3) How often is the repair successful?

1.1 Related work
Following the surveys about constraint handling given by

Michalewicz and Schoenauer [6], Eiben and Smith [7], Coello
Coello [8] and Kramer [9] several approaches are available
to handle constraints:

i) unconstrained optimization with a penalty added to
the fitness value for infeasible solutions

ii) repair algorithms to resolve constraint violations dur-
ing the search

iii) multi-objective optimization, where the constraint func-
tions are defined as additional objectives

iv) stochastic ranking, where solutions are lexically ranked
according to their performance in constraint or fitness
values in a comparison with other offspring in a certain
number of sweeps.

A frequently used approach to handle constraints is to incor-
porate static or dynamic penalty terms in order to stay in the
feasible region [8, 9, 10]. Penalty functions can be very help-
ful for solving constrained problems, but their main draw-
back is that they often require additional parameters for
balancing the fitness and penalty terms. Repair algorithms
have been mainly proposed in the context of combinato-
rial optimization problems (see e. g., Xiao et al. [11], Müh-
lenbein [12], Orvosh and Davis [13], Tate and Smith [14]),
where special-purpose repair heuristics are designed anew
for each problem. For continuous problems Chootinan and
Chen [5] use numerically derived gradient information of the
constraint evaluations for repairing infeasible solutions.

Other techniques handle constraints by optimizing con-
straint functions and objective function separately in a lex-
ical order [15, 16]. Stochastic ranking [17] is another exam-
ple of this approach. Also multi-objective optimization al-
gorithms have been designed for constraint-based optimiza-
tion, considering the constraint functions as additional ob-
jectives [17, 18]. Beyer and Finck [19] propose an extension
of CMA-ES which allows to handle special types of con-
straints successfully.

In the field of model-assisted optimization algorithms for
constrained problems, Support Vector Machines (SVMs) have
been used by Poloczek and Kramer [20]. They make use
of SVMs as a classifier for predicting the feasibility of so-
lutions, but achieve only slight improvements. Powell [21]
proposes COBYLA, a direct search method which models
the objective and the constraints by linear functions. Re-
cently, Regis [4] developed COBRA, an efficient solver that
makes use of Radial Basis Function (RBF) interpolation,
and outperforms most algorithms in terms of required func-
tion evaluations on a large number of benchmark functions.

In this paper we analyze a new implementation of CO-
BRA in R [22], which allows easy adaptation of certain com-
ponents of the algorithm. In Sec. 2 we present the problem
and the algorithm in more detail. In Sec. 3 we perform
a thorough experimental study on analytical test functions
and on a real-world benchmark function MOPTA 2008 [1].
The results are discussed in Sec. 4 and we give conclusive
remarks in Sec. 5.
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Figure 1: Flowchart of the COBRA algorithm.

2. METHODS

2.1 Constrained Optimization by Radial Ba-
sis Function Approximation

A constrained optimization problem can be defined by the
minimization of a real-valued objective function f subject to
constraint functions s1, . . . , sm:

Minimize f(~x), ~x ∈ Rd

subject to si(~x) ≤ 0, i = 1, 2, . . . ,m

In this paper we always consider minimization problems.
Maximization problems can be transformed to minimization
problems without loss of generality.

Constrained Optimization by Radial Basis Function Ap-
proximation (COBRA) was proposed by Regis [4]. The main
idea of this method is to use approximations of the objective
function and the constraint functions for saving real func-
tion evaluations. This can be especially beneficial for indus-
trial optimization problems where function evaluations are
expensive. Internally, COBRA uses radial basis function in-
terpolation for modeling the objective and constraints. In
each iteration k the solution ~x(k) to be evaluated on the real
function f is the result of an optimization performed on the
RBF surrogates consisting of surrogates of the objective and
the constraint functions.

Fig. 1 presents a flowchart of the algorithm. In the begin-
ning an initial population or design is generated for building
the initial RBF models. The initial solutions can be selected,
e. g., by classical design of experiments (DoE) [23]. Another
option is to perform an initial local search with a limited
number of function evaluations using an unconstrained op-
timizer (e. g., Hooke & Jeeves pattern search [24]). The
sequence of points in this local search is then used as the
initial design. During this local search, we penalize infeasi-
ble solutions with a simple penalty function.

The resulting RBF surrogates from the initial design are
used to find the next iterate to be evaluated on the real



function. Therefore, a sequential search is performed on
the surrogate functions. The best point obtained from this
search is referred to as infill point in the remainder of this
paper. Note that only the infill points are evaluated on the
real function. This makes the algorithm efficient in terms of
saving real function evaluations. If the infill point is better
than the current best solution, the best solution is replaced
by the infill point. In any case the RBF models are updated
using the new information. In the next round a new search
on the updated surrogate functions is performed. These
steps are repeated, until the the budget for the optimization
exceeds a given limit.

Distance requirement cycle.
A distance requirement is integrated in COBRA which

defines how closely a new infill solution may approach the
previous ones. The idea is to avoid frequent updates in the
direct neighbourhood of the best solution at present. The
distance requirement can be passed by the user as external
parameter. This parameter is a vector of distance require-
ments whose elements are cyclically reused. In each iteration
COBRA checks as additional constraint the distance of the
proposed infill solution to all previous infill points. If this
constraint is not fulfilled, COBRA handles this as a normal
constraint violation, e. g., the solution becomes infeasible.
The distance requirement cycle is a clever idea, since the user
can allow for switching between exploration and exploitation
of the search space.

Uncertainty of constraint predictions.
COBRA aims at finding feasible solutions by extensive

search on the surrogate functions. However, as the RBF
models are probably not exact especially in the initial phase
of the search, a regularization factor is added to the pre-
dicted constraint values. As a consequence, solutions eval-
uated on the RBF models are only feasible, if they are not
too close to the constraint boundary. In other words, the
regularization factor would correct small errors of too opti-
mistic constraint models, and thereby forces the algorithm
to more likely create feasible infill solutions.

2.2 Repairing infeasible solutions
In this paper we propose a new repair mechanism RI-2 for

reducing the constraint violation of infill solutions obtained
from the internal optimization algorithm. We compare the
method with the algorithm of Chootinan and Chen [5].

2.2.1 RI-2
A repair mechanism for real-valued constraints can ben-

efit from using gradient information of the constraint func-
tions. If the gradient is not available analytically – as in the
case of black-box constraints – it can be calculated numeri-
cally. This can be however too costly in the case of expen-
sive black-box functions. Within the COBRA framework we
take advantage of the surrogate functions and calculate the
gradient on the constraint surrogates at no extra cost.

Before we describe our repair algorithm RI-2 in formal
details, we have a look at two instructive examples:

A typical situation as it may arise with multiple con-
straints is shown in Figure 2. For simplicity we show only
two violated constraints here, but the same idea applies for
multiple violated constraints as well. The green and blue
arrow show the negative gradient direction for the green

Figure 2: Repair strategy in the case of two con-
straints (blue-solid and green-dashed). The white
area is the feasible region.

Figure 3: Repair strategy in the case of one violated
constraint (blue-solid) and one constraint (green-
dashed) being ε-infeasible.

and blue constraint, resp. The length of each arrow is q
times larger than the estimated distance to the constraint
boundary, where q > 1 is a parameter of the algorithm.
Two or more such arrows form a parallelepiped. Our repair
algorithm RI-2 draws mmax random points from this par-
allelepiped (red points) and tests whether they are feasible
on the constraint surrogates. One of these surrogate-feasible
points is selected (according to some quality measures de-
tailed below) and returned.

A second typical situation is shown in Fig. 3: Here the
current infill point violates only the blue constraint. But a
correction along the direction of the blue arrow would make
the new point infeasible in the second constraint (green).
We define a point ~x to be ε-feasible in constraint si if

si(x) + ε ≤ 0.

Otherwise it is said to be ε-infeasible. As a solution to the
problem in Fig. 3 we propose to treat all constraints which
are ε-infeasible as violated constraints. Then we have again



a blue and a green arrow forming a parallelepiped. Among
the random realizations in this parallelepiped (red points) a
feasible point can be found.

Algorithm 1 Repair algorithm RI-2. Input: an infeasible
point ~x ∈ Rd and its true constraint vector ~s(~x) ∈ Rm.

Output: a suggestion ~x+ ~∆ of a nearby feasible point.

1: function RI-2(~x,~s(~x))
2: Set E to the d× d identity matrix
3: ~g(k): gradient at ~x of the k’th surrogate
4: I: set of ε-infeasible constraints for ~x.
5: Calculate for each constraint k ∈ I:

~∆(k) = −sk(~x) + ε

‖E~g(k)‖2
E~g(k) (1)

6: ~∆ = BestRandomRealization(~∆(k))

7: Check if ~x+ ~∆ is outside the search region in any di-
mension D. If so, then set the D’th diagonal element(s)
of E to zero and repeat from Step 5.

8: return (~x+ ~∆)
9: end function

10:
11: function BestRandomRealization(~∆(k))
12: R = {}
13: for m = 1, . . . ,mmax do
14: Draw |I| random coefficients αk ∈ [0, q]

15: R = R ∪ {
∑

k∈I αk
~∆(k)}

16: end for
17: S = {~r ∈ R | ~x+ ~r is ε-feasible on all surrogates}
18: if S 6= {} then

19: ~r (bst) = member of S with minimal length
20: else
21: nv = minimum number of violated constraints
22: T = {~r ∈ R | ~x+ ~r has nv violated constraints}
23: ~r (bst) = member of T with lowest max(violation)
24: end if
25: return ~r (bst)

26: end function

The complete description of our repair algorithm RI-2 is
given in Algorithm 1. The algorithm has three parameters
ε, q and mmax. Note that all constraint calculations are done
on the surrogate models, so no extra evaluations of the true
constraint functions are needed inside RI-2.

The step ~∆(k) in Eq. (1) is designed as follows: If sk were
the only violated constraint and if it were a linear function,
then ~∆(k) would bring us directly to the border of ε-feasibilty
in sk. If the nearest border point is outside the search region,
then we move with the help of matrix E to another border
point which is just inside the search region (Fig. 4).

Among the random realizations the best point is selected
according to these rules: (a) If ε-feasible solutions exist, then
select the one closest to ~x. This should change the objective
value as little as possible. (b) If not, select among the so-
lutions with the mimumum number of violated constraints
the one with lowest maximum violation.

2.2.2 Chootinan Repair
A repair method based on derivatives of the constraint

functions has been also proposed by Chootinan and Chen [5].
They calculate the gradients of all violated constraints sim-
ilar to RI-2 and put them into a matrix ∇xV . Then the

Figure 4: Strategy for staying in the search region:
The current point (grey) is infeasible and on the
boundary of the search space (black rectangle).
Thus, a move in the negative gradient direction
(thin arrow) is forbidden. The solution: project out
the forbidden dimension(s) (matrix E) and make
a larger move in the allowed direction (thick arrow).

Moore-Penrose inverse or pseudoinverse (∇xV )+ is taken.
In each time step t the infeasible solution is updated by
adding the pseudoinverse (∇xV )+ at infill point ~x(t) times

the constraint violations ∆~V at ~x(t):

~x(t+1) = ~x(t) + (∇xV )+ ·∆~V (2)

This is iterated until ~x(t+1) becomes feasible or until its
change drops below a predefined threshold η.

The main difference between Chootinan and Chen’s re-
pair method and RI-2 is the different update of the search
point. While RI-2 tries to explore new points in the feasible
parallelepiped, Chootinan and Chen’s update procedure can
result in larger steps in the search space. Although this can
lead to quick fixes of constraint violations, it can also induce
possible new violations of constraint functions. In this paper
we undertake a comparison between Chootinan and Chen’s
repair and RI-2.

3. EXPERIMENTAL ANALYSIS

3.1 Test functions

3.1.1 MOPTA 2008
The MOPTA 2008 benchmark (MOPTA08) by Jones [1]

is a substitute for high-dimensional real-world problems en-
countered in the automotive industry: It is a problem with
d = 124 dimensions and with 68 constraints. The problem
should be solved within 1860 = 15 · d function evaluations
which in reality refers to one month of computation time on
a high-performance computer.

3.1.2 G-problem test suite
For further evaluation we use popular benchmark func-

tions, namely the G-problem test suite described in [6]. The
underlying functions differ in dimension (d = 2, . . . , 20),



type of objective function (linear, quadratic, nonlinear) and
number and type of constraints (m = 1, . . . , 9). Since these
functions are often used in the scientific literature for analyz-
ing constrained-based solvers, they provide a good analytical
testbed for our algorithms.

3.1.3 Experimental setup
Each experiment was repeated 10 times in the case of

MOPTA08 and 30 times in the case of the G-problems, each
time with a different random seed.

The initial design was either obtained from sampling LHS
random points for the G-functions or from an initial op-
timization run using Hooke & Jeeves pattern search with
additional penalty term for the MOPTA08 benchmark. The
other parameters for COBRA (distance requirement cycle
and others) were taken from the best setting COBRA-LOCAL
in Regis’ original work [4].

We compare three repair options: our algorithm RI-2, the
method of Chootinan (CHO) [5] and no repair. The RI-2
algorithm was used with parameters q = 3, ε = 10−4 and
mmax = 1000. The CHO algorithm was used with parame-
ter η = 10−5.

In our experiments we used the COBYLA [21] implemen-
tation from the nloptr R package version version 1.0.4. 1

With this implementation, some of our runs resulted in oc-
casional “freezes” of the COBYLA-optimizer, making it nec-
essary to implement a stopping mechanism in case of this
undesirable behaviour. For statistical convenience we did
not include these incomplete runs, but set up new runs until
10 or 30 runs for MOPTA08 or the G-problems, resp., were
completed.

3.2 Results

3.2.1 MOPTA 2008
COBRA-R with the new initial design method (taking the

iterates from local search with Hooke & Jeeves, cf. Sec. 2.1)
shows in Fig. 5 a clear benefit for the first 500 iterations
as compared to the initial design from Regis’ COBRA (dia-
mond symbols in Fig. 5, COBRA-LOCAL from [4]).

But after the initial design, our first solution (Fig. 5, red
curve COBRA-R w/o repair) got stuck and only after 1500
iterations there was some progress to a mediocre mean objec-
tive function value 236. We noticed however that COBYLA
was making steady progress on the objective function, but
always with slightly infeasible solutions. This can be seen
in Fig. 6 where we plot the best objective value when allow-
ing each constraint to be violated up to 0.5%. Now the red
curve comes much closer to the optimum.

This led us to the development of the repair algorithm
RI-2. The repair algorithm improves the performance of
COBRA-R a lot, as the curve COBRA-R with repair [RI-2]
in Fig. 5 shows. This curve is remarkable for two reasons:
(a) The best feasible solution improves dramatically fast in
the first 1000 iterations, leading to objective value 226 at
iteration 1000, significantly better than Regis’ result. (b)
The results are pretty stable with respect to random initial
conditions of 10 runs: In Fig. 5 both the standard deviations
and the spans between best and worst solution are much
smaller than for the other COBRA-R curves.

We look now with more detail into the repair results: An
inspection of the iterates shows that the repair algorithm

1http://cran.r-project.org/web/packages/nloptr/index.html
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Figure 5: COBRA-R optimization performance for
MOPTA08 problem. Every point represents the
mean of ten independent runs. The ribbons around
the curves indicate the best and the worst run. Er-
ror bars indicate standard deviations.

●

●

●
●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●
225

230

235

240

245

250

500 1000 1500 2000

 number of function evaluations

be
st

 fe
as

ib
le

 o
bj

ec
tiv

e 

●

 COBRA−R w/o repair

 COBRA−R with repair [CHO]

 COBRA−R with repair [RI−2]

COBRA−R Optimization for MOPTA08 Problem 

Figure 6: COBRA-R optimization performance if
we allow an infeasibility tolerance of 0.5%.
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Figure 7: Number of violated constraints for
MOPTA08 benchmark with 68 constraints. For each
infill point entering and leaving the repair method
we count its number of violated constraints. The
bars are stacked.

is called roughly every second iteration. This means that
COBYLA produces mostly infeasible solutions.

How can these infeasible solutions be characterized? It
is seen in Fig. 7 that the number of violated constraints is
pretty large: 8-9 violated constraints on average and some
extreme cases with up to 18 violated constraints. (The num-
ber of ε-infeasible constraints may be even higher.) This
means that each repair algorithm faces a tough constraint
satisfaction problem to be solved. Algorithm RI-2 very often
reduces the number of violated constraints to zero or to a
small number, while the method of Chootinan (CHO) only
seldomly succeeds in doing this.

Figure 8 shows the success of repair on MOPTA08: While
both methods, RI-2 and CHO, only rarely increase the max-
imum violation, RI-2 is much better in producing feasible
solutions (successfully repaired > 30%) than CHO (< 1%).

3.2.2 G-problem test suite
In our previous work [25] we have studied the G-problem

test suite in detail and compared COBRA-R on this test
suite with other state-of-the-art constraint optimization al-
gorithms [5],[17],[21]. The main result was that COBRA-R
could achieve on all G-problems a performance similar to the
other algorithms, but needed only a fraction of true function
evaluations (fe) grace to the surrogate models: 50–360 fe for
COBRA-R as compared to 6 000–350 000 fe for [5],[17]). The
only exception was problem G02 where COBRA-R did not
achieve good results, because the objective function in 20
dimensions has many local peaks and is not modelled well
by the surrogate functions. We therefore exclude G02 from
the following comparison.

Here we concentrate on the comparison of the different
repair options on the G-problem test suite. Table 1 shows
the results: Three problems are significantly better solved
with repair, three are better solved without repair and three
problems are indifferent. Among the two repair algorithms
RI-2 is always equal or better than CHO.
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Figure 8: Comparing the performance of differ-
ent repair methods on maximum violation for
MOPTA08 problem. More than 30% of RI-2 repair
calls contribute a fully feasible point. The success
rate of CHO is less than 1%.

The significance was tested with the Wilcoxon signed rank
sum test (Table 2), which is a paired test on the 30 pairs
with different seeds. In Table 3 we count the significant wins
and losses and find slight advantages for RI-2 over no repair
over Chootinan.

Table 1 shows in addition the repair success probability
psuccess, i. e. the probability that an infeasible solution
becomes feasible on all true constraints after repair. On
most G-problems the method RI-2 has a significantly larger
psuccess than CHO (with the exception of problem G06).

4. DISCUSSION

4.1 Repairing infeasible solutions

4.1.1 MOPTA 2008
The results in Sec. 3.2.1 on MOPTA08 show that a re-

pair mechanism is urgently needed in the case of COBRA-R
with COBYLA as internal optimizer. The reason can be
traced back to COBYLA (in combination with COBRA-
surrogates): COBYLA produces mostly solutions which are
very good in objective value, but slightly infeasible. It has to
be noted that the Regis’ original COBRA implementation [4]
does not need a repair mechanism on the same benchmark
because it uses another optimizer (MATLAB’s fmincon, an
interior point optimizer).

But the extra repair effort needed for COBYLA has a pay-
off: In conjunction with repair method RI-2 we see a faster
convergence in Fig. 5, i. e. after 1000 true function eval-
uations RI-2 reaches a better feasible objective value than
Regis’ COBRA [4].

The repair method CHO fails on the MOPTA08 bench-
mark. Why is this the case? – A closer inspection of the
results in Fig. 9 shows that CHO often reduces the maximum



Table 1: Comparison of different repair options (RI-
2: our algorithm, CHO: Chootinan [5], none) on
the G-problem test suite. median(dev): median of
the deviation from the optimal objective value in
30 runs, psuccess: probability that a repair attempt
results in a feasible solution. Numbers in bold face:
significantly better than other options in same row.

repair RI-2 CHO none RI-2 CHO

median(dev) psuccess

G01 7.5E-05 7.5E-05 7.5E-05 1.000 0.000
G03 8.5E-02 6.8E-02 4.1E-02 1.000 0.483
G04 2.3E-07 1.4E-05 2.3E-06 0.976 0.281
G05 3.0E-04 2.9E-04 3.0E-04 0.452 0.296
G06 2.1E-03 2.7E-03 2.1E-03 0.006 0.103
G07 2.4E-06 2.4E-06 5.4E-07 0.391 0.195
G08 7.1E-07 1.3E-06 2.3E-06 0.774 0.418
G09 4.0E-05 2.1E-05 6.8E-06 0.873 0.395
G10 8.7E-02 8.7E-02 3.5E-01 0.196 0.172

Table 2: Wilcoxon rank sum test, paired, one sided,
significance level 5%. Repair methods: RI-2, CHO:
Chootinan [5], RN: no repair.

test for problem

RI-2 significantly better than CHO G04, G08
CHO significantly better than RI-2 G03, G09
RN significantly better than RI-2 G07, G09
RN significantly better than CHO G04, G07, G09
RI-2 significantly better than RN G04, G08, G10
CHO significantly better than RN G08, G10

violation largely, but either it leaves a small reminiscent in
some of the initially violated constraints or it repairs the vi-
olated constraints, but has in the end some other constraints
violated which were feasible initially. It may be that method
CHO would benefit from the concept of ε-feasibility as well,
but we did not test this.

As a consequence of the lower probability of successful
repair for method CHO, the span between best and worst
solution is larger in this case than it is for method RI-2
(Fig. 5).

4.1.2 G-problem test suite
On most G-problems we get with repair method RI-2 a

significantly higher success rate psuccess than with CHO (Ta-
ble 1). But the overall effect of the repair is not that im-

Table 3: Significant wins and losses on the 5%-level
for the G-problem test suite.

method significant wins significant losses delta

RI-2 5 4 1
none 5 5 0
CHO 4 5 -1
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Figure 9: Reduction of maximum constraint viola-
tion

portant for the final deviation from the optimum as in the
MOPTA08 benchmark: We see cases where the final devia-
tion is nearly the same in all three cases (e. g. G05, G06)
and cases where we see higher deviation despite a higher suc-
cess rate (G09). Sometimes the reason is that in contrast to
MOPTA08 only few iterations of the G-problems require a
repair. On the other hand, there are also cases where the
repair gives a significant improvement (G04, G08, G10).

Why is it that in some cases the no repair method is
better than RI-2 or CHO (G03, G07, G09)? – This result,
surprising at first sight, is due to the fact that we allow only
very few true function evaluations (50–360). If repair does
not help to find better feasible objective values, then the
fact that a considerable amount of function evaluations is
devoted to repair can lead to a deterioration of the overall
result. If we increase the number of function evaluations, the
winning margin of no repair would decrease or even vanish.

A final note: The results on the G-problems with repair
method CHO may differ from the results in Chootinan’s
original work [5]. This is because we use method CHO in
the context of COBRA, while [5] has embedded it in a GA
optimization scheme using more evaluations on the real func-
tion.

5. CONCLUSION
In this contribution we have studied various solvers for

constrained optimization problems under severely limited
budgets. Regis’ COBRA method [4] based on surrogate
models was re-implemented in R with a new internal op-
timizer COBYLA. We could confirm that COBRA leads to
good results within few function evaluations on a variety
of constrained optimization problems. In contrast to [4],
we needed a repair method for infeasible solutions in the
MOPTA08 benchmark. We proposed a new repair method
(RI-2), which performed well on MOPTA08. It led in con-
junction with COBYLA to the same asymptotic result as in
[4], but with a faster rate of convergence. At the same time,
RI-2 reduces the standard deviation as compared to the runs
without repair. Thus we can give a positive answer to our
research question (H1) on the MOPTA08 benchmark.

In a direct comparison of our new repair mechanism RI-
2 with another gradient-based strategy CHO [5], we found



both repair methods to perform similarly on the G-problem
test-suite, where the number of constraints is relatively small.
But on the MOPTA08 benchmark with its large number of
constraints, the situation changes: RI-2 has a significantly
higher success rate for solving constraint violations (Fig. 8),
so that we can give a positive answer to research question
(H2). It was shown that both repair operators RI-2 and
CHO often decrease the intensity of constraint violations
(Fig. 7 and 8). However, RI-2 is capable to transfer an in-
feasible solution into a feasible solution in more than 30%
of the operator calls, whereas CHO has a very low success
rate of less than 1% (cf. research question (H3)). Our dis-
cussion came to the conclusion that probably the notion of
ε-feasibility is responsible for this beneficial effect. Since RI-
2 performs all calculations on the surrogate models, it does
not cost any extra function evaluations. The repair method
RI-2 is not restricted to COBRA, it can be applied to any
optimization algorithm with surrogate models.
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