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ABSTRACT
We apply CMA-ES, an evolution strategy with covariance matrix
adaptation, and TDL (Temporal Difference Learning) to reinforce-
ment learning tasks. In both cases these algorithms seek to op-
timize a neural network which provides the policy for playing a
simple game (TicTacToe). Our contribution is to study the effect of
varying learning conditions on learning speed and quality. Certain
initial failures with wrong fitness functions lead to the development
of new fitness functions, which allow fast learning. These new fit-
ness functions in combination with CMA-ES reduce the number of
required games needed for training to the same order of magnitude
as TDL.

The selection of suitable features is also of critical importance
for the learning success. It could be shown that using the raw board
position as an input feature is not very effective – and it is orders
of magnitudes slower than different feature sets which exploit the
symmetry of the game. We develop a measure “feature set utility”,
FU , which allows to characterize a given feature set in advance. We
show that the lower bound provided by FU is largely in accordance
with the results from our repeated experiments for very different
learning algorithms, CMA-ES and TDL.

1. INTRODUCTION
Our understanding of learning processes is still limited, espe-

cially in complex decision-making situations where the payoff for
a particular action occurs only later in time, probably long after the
time of the action’s execution. The fact that the payoff occurs only
after a number of actions leads to the well known credit assignment
problem: decide, which action should get which credit for a certain
payoff. The most advanced methods in machine learning to address
this problem are reinforcement learning (RL), e.g., the well-known
temporal difference learning (TDL), and evolutionary algorithms,
namely evolutionary strategies (ES), and co-evolution.

TDL was applied as early as 1957 by Samuel [12] to the game
of checkers and was made more popular through Sutton’s work [16,
17] in 1984 and 1988. It became very famous in 1994 with Tesauro’s
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TD-Gammon [19], which learned to play backgammon at expert
level.

Another approach to solve RL tasks is neuroevolution where evo-
lutionary algorithms are used to train a neural network. Several
algorithms like cellular encoding [1], SANE [11] and NEAT [14]
have been proposed which modify the topology and the parameters
of the neural networks at the same time. Hansen and Ostermeier
proposed in 1996 CMA-ES (Covariance Matrix Adaptation Evolu-
tion Strategy) [4] as an alternative neuroevolution approach which
optimizes only parameters (weights), not the structure of the net.
Igel [5] compares different neuroevolution algorithms on the pole-
balancing task and finds CMA-ES to converge faster than the other
algorithms.

Board games are a typical source of reinforcement learning prob-
lems. Learning game strategy is similar to learning any kind of
decision making or control strategy and, since the goal in board
games is well defined, they are a good test bed for the develop-
ment of learning algorithms in general. Although for most board
games like chess, checkers or Othello there exist computer pro-
grams for expert level play based on carefully designed algorithms,
large databases, sheer computing power (or all of this), the task
to learn such a behaviour in unsupervised form just by letting the
computer interact with an environment is only solved for special
cases, e.g. Tesauro’s TD-Gammon [19]. Currently, a theory on
how to design such learning algorithms for all kind of games is not
known.

Our game scenario in this paper is the game of TicTacToe which
has a rather small state space of 5890 states. Why do we use such a
simple game and not a more challenging one like chess, Othello or
go? – The reasons are similar to those given in [9]: The latter take
a significant amount of CPU time to play and the optimal value for
most of the states is not known. In contrast, TicTacToe has a small
state space, a known optimal policy (which can be easily calculated
with the minimax algorithm or value iteration algorithm) and this
can be used as a reliable measure of success for a learned agent. If
certain settings lead to reliable failure on such a simple game, it is
very likely that those settings also do not work for more complex
games. In other words, by identifying the terms for failure and
success in simple games, we may derive general rules for the design
of better learning algorithms on complex games.

The contribution of this paper is to study different approaches
to RL. In the scenario described above we search for ingredients
which discriminate failure from success in RL. As it is always the
case in system theory, the borderline between failure and success
is of special interest since the "breakdown" of a system tells the
researcher most about such a system. In our case the systems are
the reinforcement learning algorithms and we will show some in-



teresting failures and try to identify in most general terms which
elements of the algorithms can turn them into succeses. We demon-
strate that providing the right feature set as input to the learner is
of utmost importance for all investigated RL algorithms. We de-
rive an empirical formula based on a so-called feature divergence
to discriminate "good" and "bad" feature sets and show in our ex-
periments that it correctly predicts the rank order of our success
measure.

A second goal of this paper is to apply CMA-ES [3, 4] for the
first time (at least to our knowledge) to a board game scenario. For
game scenarios an optimal fitness function is not easy to define.
This is due to the fact that a single game normally covers only a tiny
fraction of the game’s state space so that success in a single game
does not mean that an individual has found the optimal policy. On
the other hand, testing an individual by checking its proper reaction
on any possible state (i) is prohibitive costly for any normal game,
(ii) often the best action for each state is not known and (iii) it can
be highly irrelevant if parts of the state space – although legal – are
never visited in normal games. We discuss several fitness functions
and show that some fitness functions hinder CMA-ES to learn any-
thing at all, at least within the tested number of generations. Others
fitness functions allow CMA-ES to learn rather quickly.

Recently, Lucas [9] has given interesting results on comparing
the learning rates of TDL and evolutionary algorithms both em-
pirically for a simple game and theoretically with upper bound in-
formation rate formulas. We investigate our scenario in a similar
direction, i. e. compare between TDL and CMA-ES the computing
effort needed for achieving a certain success level. We show results
that partly confirm the findings of Lucas and partly extend them
since the picture becomes somewhat richer as CMA-ES enters the
game.

The rest of this paper is organized as usual: Sec. 2 explains the
methods used, namely a short review of TDL and CMA-ES and
a comprehensive description of fitness functions, feature sets and
success measures used. Sec. 3 applies these method to our board
game learning task while Sec. 4 dsicusses these results and draws
some conclusions.

2. METHODS

2.1 RL algorithms for TicTacToe
TicTacToe (or Naughts and Crosses) is a simple board game. The

board contains 3×3 fields, each player in each move marks (with X
or O) a field and the winner is who gets “three in a row” (horizontal,
vertical or diagonal). The state space contains 5890 states, among
them only 4520 in-game states (the rest are final board positions).
This state space is small enough that a standard minimax algorithm
can easily perform exhaustive search for each state and find the best
move.

A state in strategic games is usually described by the current
board position and the player who made the last move (so-called
after state [18]). An example for TicTacToe is shown in Fig. 1.
Following the ideas of Tesauro [19], the RL agent learns the game’s
value function V (~st), which ideally gives for each after state the

Figure 1: Some after states for the game TicTacToe

probability that player p = +1, i.e., “X” will win. Given a certain
board position, the strategy for player p = +1 is to select the next
move which maximizes V (~st+1), while player p = −1 (“O”) tries
to minimize V (~st+1). A state can be encoded by collecting row-
by-row the board positions into a state vector with +1 for each “X”,
0 for each unoccupied field and −1 for each “O”. If we follow the
convention that “X” will always begin, the player who made the last
move can be inferred directly from the board position: if the piece
count is even it was an “O”-move, otherwise it was a “X”-move. We
get for example in Fig. 1 the following state representation for state
~s4, which is a safe win for player “X”:

~s4 = {00-1, 011, -100}, V (~s4) = 1.000 (1)

Not for TicTacToe but usually for most other games the state
space is too large to be represented as a table and it is impossi-
ble to visit every state sufficiently often during learning. To over-
come this problem, a function approximation scheme is used where
each state ~s is transformed into a feature state ~g(~s) and the function
f(~w;~g(~s)) with internal parameter vector ~w (the weight vector) ap-
proximates V (~s). We use the same scheme here to make our results
more general applicable. Typical approximation functions are

• a linear function f(~w;~g(~s)) = ~w · ~g(~s) (or the sigmoid of
this linear function)

• a feedforward net with weights ~w and input ~g(~s).

All results in Sec. 3 were obtained with a feedforward net with 15
hidden units and a sigmoidal transfer function.

2.1.1 TDL
The TD algorithm aims at learning the function f(~w;~g(~s)). It

does so by setting up an (initially inexperienced) RL agent who
plays a sequence of games against itself. It learns from the en-
vironment which gives a reward r ∈ {0.0, 0.5, 1.0} for { O-win,
tie, X-win } at the end of each game. The main ingredient is the
temporal difference (TD) error signal [18]

δt = R(~st+1)− V (~st) (2)

with R(~st+1) =

{
r(~st+1) if ~st+1 is final,
V (~st+1) else

which is used together with the usual gradient descent learning rule
to adjust the weights ~w. The TD agent is trained in a bootstrapping
manner by playing many games against itself. In the initial phase of
the training, random moves are added frequently to ensure explo-
ration of the state space. Further details concerning this TD algo-
rithm for games are the same as in Konen and Bartz-Beielstein [8].

2.1.2 CMA-ES
As pointed out by Whitley [20, 21] evolutionary algorithms are

especially useful for neural network training when the task at hand
is a reinforcement learning problem. We use in this work the well-
known CMA-ES (Covariance Matrix Adaptation Evolutionary Strat-
egy) based on the work of Hansen and Ostermeier [3, 4] as an evo-
lutionary approach to find optimal weights ~w in our reinforcement
learning task. CMA-ES, as Igel [5] points out, (i) allows for direct
search in the policy space, (ii) is more robust with respect to the
tuning of the algorithm parameters and (iii) has proven to be sub-
stantial faster due to small population sizes than other evolutionary
algorithms (see [5] for a comparision on the double pole balancing
task).

CMA-ES is a rank-based (µ, λ) evolution strategy where the µ
best of the λ offspring form the next parent generation. We use in



our experiments the default heuristic to determine the population
size from [3]

λ = 4 + b3 ln(n)c and µ = bλ/4c (3)

where n is the search space dimension (here: number of weights
~w). In CMA-ES each individual represents an n-dimensional real-
valued object variable vector. These variables are altered by recom-
bination and mutation. Mutation is realized by adding a normally
distributed random vector with zero mean, where the complete co-
variance matrix is adapted during evolution to improve the search
strategy. Recombination is performed globally by computing the
center of mass of the µ individuals in the parent generation.

For a more detailed description of CMA-ES the reader is referred
to Hansen and Ostermeier [3, 4].

2.1.3 Fitness Functions for CMA-ES
If one applies CMA-ES to a game learning task it is very likely

that the first attempts will result in failures. The problem is con-
nected with the proper definition of a fitness function in games.
The value function’s complete expectation value 〈V (~s)〉 (where 〈·〉
denotes averaging over states ~s) would be the ideal fitness in terms
of quality. But (i) it is too costly to calculate as fitness, (ii) it is
often not known for complex games (or many other decision tasks)
and (iii) it is unclear how to weight the different ~s in the expectation
value 〈V (~s)〉.

Several options can be considered to overcome these problems
which lead to different fitness functions, each of them replacing the
true expectation value by more or less drastic random sampling:

F (1) Make a fixed choice of of states ~s ∈ S and benchmark each
individual whether it proposes a correct next move (i.e. a
move which is as good as the Minimax move) for each el-
ement of S. Define the fitness as the percentage of correct
decisions. We choose a set S of 48 states which we believe
to be relevant, but it is clear that this is only a tiny fraction
(about 1%) of the state space. The fitness function is well de-
fined, but does this sample of the state space allow to evolve
good players?

F (2) If we do not want to prescribe states we can start with a ran-
dom population and define the fitness of each individual by
the success it has in playing against other individuals from
the actual population, either by randomly selecting oppo-
nents or by performing a round-robin-league. We choose the
first option and furthermore vary each game by starting from
one of the 73 possible start positions with 0, 1 or 2 pieces.
This fitness seems quite natural for an evolutionary algorithm
and it is an option often adopted in the neuroevolution game
literature [7], but it has some severe problems which are re-
lated to the fact that now the fitness function continuously
changes.

F (3) A constant fitness function can be defined as follows: Choose
a "good" player as opponent and define fitness as the success
rate when playing from one of the randomly selected 73 start
positions against this fixed opponent. In the case of TicTac-
Toe we use the Minimax player as the perfect opponent. The
randomness in start positions helps to explore the state space
so that the evolved player plays strong also against other op-
ponents. Like F (1) the fitness function F (3) is constant dur-
ing evolution.
Kantschik [6] proposes for the game of chess similarly a
constant fitness function which consists however of several
human-designed levels with increasingly strong opponents.

Moriarty and Miikkulainen [10] use a similar strategy for the
game Othello.

F (4) While F (3) turns out to work well in our TicTacToe case,
it is not satisfactory because in more complex games a per-
fect opponent is often not known.1 Therefore we propose
with F (4) a synthesis of F (2) and F (3): Start an evolution
(here: CMA-ES) for a first run with a random but fixed op-
ponent, using it in the same way as in F (3). Then replace
the opponent with the best individual found so far and restart
CMA-ES with the new fitness for the next run. Repeat this
procedure until a prescribed number R of runs has been per-
formed. During runs the fitness function remains a constant
target, but the mechanism can bootstrap itself to increasingly
strong opponents, as we hope, without having such oppo-
nents to be prescribed by the user.

2.2 Feature sets
Humans learn complex games by pattern recognition, i.e. by de-

veloping specialized feature detectors. Evidently, machine learning
algorithms should also make use of features. Some work on game
learning [15] incorporates features only indirectly by using only
the raw board positions as input and hoping that the neural network
in its hidden layer(s) derives the right features. But this might be
too difficult in complex games. It is our point that even for simple
games, the learning task without features can be orders of magni-
tudes slower than the one with features, if not being insoluble at
all.

Finding valuable features for a learning task is of course not easy.
But some aspects are easy to incorporate and can greatly alleviate
the learning process. For example the game of TicTacToe has an
eightfold symmetry (4 rotations + 4 mirror-rotations). Evidently,
it is a waste of computing effort if we present states which are
equivalent under this eightfold symmetry as different inputs to the
learning algorithm. Features which are invariant under the eight-
fold symmetry are:
• singlet (one in a row): a line (horizontal, vertical, diagonal)

with one piece of either player, the remaining fields being
empty;
• doublet (two in a row): the same with two pieces of either

player;
• crosspoint: an empty field belonging to at least two singlets

of the same player;
• diversity count: the number of different singlet directions for

either player;
• corner count: number of corners each player possesses;
• center occupation: -1,0,+1 depending on wheter the center

field belongs to O, none, X.
A crosspoint is of strategic importance: if a player has a crosspoint
and can place a piece there, he creates a ’fork’, i. e. an opportunity
where he can win in two ways. A triplet (three in a row) – although
being the goal of the game – is of no importance as feature input
since the game is finished as soon as a triplet arises.

Based on these features we form different feature sets as de-
scribed in Table 1. The features for each set were picked largely
at random from the list above. T1, T2 and T4 are invariant under
the eightfold symmetry while T0 and T3 are not. T3 is an attempt
to enrich the features of T2 with the full state information (symme-
try lost), while T4 is an enrichment which preserves the symmetry.

1Likewise, if a "good" opponent were known, it prescribes in an
unwanted manner to some extent what the learning algorithm is
going to learn.



Table 1: Feature sets for TicTacToe. Each feature vector is an
M -dimensional vector: (t0, . . . , tM−1). T0 is not really a fea-
ture set but the raw board position given by state ~s as in Eq. (1).
It is used as the ’no-feature’-baseline comparision.

Name Description dim M

T0 t0...9 : raw board position 9
T1 t0,1 : number of singlets, doublets for O;

t2,3 : number of singlets, doublets for X;
4

T2 same as T1 plus:
t4,5 : diversity O/X if p = −1; 0 else;
t6,7 : diversity O/X if p = +1; 0 else;
t8,9 : crosspoint count for O/X;

10

T3 = T2 ∪ T0 19
T4 same as T2 plus:

t10 : center occupation;
t11,12 : corner count for O/X;

13

2.2.1 Characterization of Feature Sets: Divergence
and Utility

How can we characterize whether a certain feature set is "good"
or "bad" for a given task? Usually, the feature space (number of dif-
ferent feature vectors occuring in game play) will be smaller than
the state space to make the task somewhat easier for the learning
algorithm. But on the other hand the feature space should not over-
simplify the situation: It is undesirable that states with different
value functions (different final rewards r = 0, 0.5, 1.0 assuming
perfect play of both sides from that state on) are mapped to the
same feature vector. We define a feature vector to be divergent if it
has this attribute. For a given feature set we define the divergence
measure ∆ as

∆ = 1−
∑

i∈D Ni

N
(4)

where D is the set of all divergent feature vectors i, Ni is the num-
ber of states mapped to the ith feature vector and N is the total
number of states. Thus ∆ is the probability that a state is mapped
to a non-divergent feature vector and ∆ = 1 is the best possible
value. Of course we have to correct ∆ for the probability ∆0 that
a random assignment of states to a feature vector produces a non-
divergent feature vector. For example, in the feature set T0 each
state is mapped to exactly one feature vector (itself), so ∆0 = 1.
If on the other hand, say, 20 states are mapped to one feature vec-
tor, then the probability that a random assignment produces a non-
divergent feature vector is virtually ∆0 ≈ 0. (This approximation
contains the assumption that the states assigned to feature vector
i carry each reward with equal probability.) The corrected term
∆−∆0 is one part of the characterization for a "good" feature set.

The second part deals with the number K of different feature
vectors occuring in game play. K is measured empirically during
game play (game learning) by counting the number of different fea-
ture vectors.2 If we assign an adress to each feature vector i then an
upper bound of the information needed to distinguish feature vector
i from all others is given by ld(K) (similar to the approach in [9]
based on Shannon’s information measure [13]). This is an upper
bound because for an actual task (like winning the game) some
elements of the feature vector may turn out to be irrelevant, thus re-
ducing the effective number K of elements to be distinguished. We
propose that the learning task complexity is inversly proportional

2In this way we count only the feature states actually occuring in
game play, not the theoretically possible feature states.

Table 2: Feature set utility and divergence measure: For the
feature sets of Table 1 with dimension M and number K of
different feature vectors we show their divergence measures ∆
and their feature set utility FU from Eq. (5) for a = 0.3.

Name M K ∆ ∆−∆0 FU

T0 9 4501 100% 0% 2,5
T1 4 111 33% 33% 9,2
T2 10 121 74% 74% 14,4
T3 19 4501 100% 0% 2,5
T4 13 486 95% 95% 13,2

to that information, leading finally to the following lower bound of
feature set utility:

FU = 100
(∆−∆0) + a

ld(K)
(5)

where a is an empirical factor accounting for the fact that even for
∆−∆0 = 0 (e. g. the cases T0 and T3) a certain feature set may
well contain learnable information. Here we take a = 0.3, but the
results are not very sensitve on a.

Our hypothesis is that feature sets with large utilities FU (shown
in Table 2) should make the learning task considerably easier. T2
and T4 have a large FU since they provide a large ∆−∆0 and at
the same time a feature space much smaller than the original state
space. Note that FU is a lower bound, as can be seen from feature
set T3: T3 contains T2 as a subset, so if a learning algorithm learns
to ignore the extra T0-inputs, T3’s utility can be eventually as large
as T2’s utility. However, the learning algorithm has first to learn
to ignore the T0-inputs, so we expect T3’s utility to be somewhere
between 2,5 and 14,4.

2.3 Success Measures
For board games it is a bit difficult to define when a player is

really successful or optimal due to the following reasons: (i) the
optimal policy for each possible state is often not known or too
costly to calculate and (ii) the real performance in a league largely
depends on the environment, i. e. the strength of the opponents. Re-
peated games only against the optimal player (Minimax in the case
of TicTacToe) might explore only a tiny fraction of the state space.
We therefore define a success measure based on three elements

• S(rand) : success rate when playing 100 game doubles against
RandomPlayer, which draws its moves completely at ran-
dom. A game double consists of two games where each
player assumes both roles, X and O. The success is measured
as -1, 0, 1 for win, tie, loss. It turns out, that even the optimal
player Minimax cannot achieve S(rand) > 0.9 on average,
since the random player will get a tie in 20% of the games
when playing X.

• S(mini) : success rate when playing a game double against
Minimax, the perfect player. Since no one can win against
Minimax, the best possible score is S(mini) = 0, the worst
is −1.

• S(val) : success rate when playing 100 game doubles against
another opponent (based on value iteration), which plays as
strong as Minimax but uses different moves and selects ran-
domly among them when there are moves of equal strength.
Again the best possible score is 0, the worst is −1.

Since some learning algorithms might be biased towards a single
success measure as they might use it directly or indirectly during



Table 3: Success or failure of different algorithms on the Tic-
TacToe learning task. All experiments used feature set T2 and
neuroevolution of a feedforward net having one hidden layer
with 15 neurons. In columns 2 and 3 we show the number G
of games needed on average to reach the condition of row 2 for
the success measure pS . Column 4 shows the average value of
pS after 105 games. A dash in the columns for G means that
the condition was not met within 3× 105 games.

Quantity G G pS

Condition pS ≥ 60% pS ≥ 80% G = 105

Algorithm

CMA-ES with F (1) - - 50%
CMA-ES with F (2) 30000 - 55%
CMA-ES with F (3) 3000 3000 100%
CMA-ES with F (4) 31200 120000 70%
CMA-ES with F (4),
n(Pool) = 3

7200 30000 96%

RWG - - 0%
TDL 5000 10000 100%

learning, we define an overall success of a learned player as the
combination

S = (S(mini) = 0) ∧ (S(rand) > 0.8) ∧ (S(val) > −0.1) (6)

From our experiments we know that a player fulfilling all three
criteria will play perfect in nearly all constellations. In our exper-
iments described below we often compute Z different realizations
of the same learning task to get statistically sound results. As a
measure which is not disturbed by single outliers we propose

pS = RS/Z, (7)

the percentage of realizations which are successes according to
Eq. (6), where RS is the number of realizations with S fulfilled.
This success measure characterizes the certainty with which a train-
ing run will produce a strong player.

A second combined success measure

SC = 1 +
(S(rand) − 0.9) + S(mini) + S(val)

3
(8)

delivers a real number between 1 (perfect) and 0 (bad). It allows to
calculate standard deviations from repeated experiments.

3. RESULTS

3.1 Failures due to Fitness Functions
We applied CMA-ES in its standard settings to the TicTacToe

learning task. The fitness functions F (2), F (3), F (4) were the suc-
cess rate in a tournament of nG = 30 game doubles against a (fixed
or randomly selected) opponent where in each game double one of
73 starting positions (see Sec. 2.1.3) was randomly selected. Each
experiment was repeated Z = 25 times with new random weights
to measure the statistical fluctuations.

It is very convenient that CMA-ES is a (or can be used as a)
parameter-free optimization algorithm. However, the first two fit-
ness functions F (1) and F (2) and in part also the first realization of
F (4) were complete failures, see Table 3, at least within the number
of games tested. (For F (1) there are strictly speaking no games to
count, but we translate the number of necessary move evaluations
into games using the average number of 7 moves/game.)

For F (1) this is not a big surprise since a tiny fraction of the state
space is not likely to produce good game players. In our experi-
ments we saw that the population reaches very quickly a plateau
where all individuals have a perfect fitness F (1) so there is nothing
to learn for them further, although they have not yet learned a good
strategy.

It is somewhat more surprising that F (2) turns out to be a fail-
ure since one could expect that playing against other individuals
should eventually strengthen the population. But this strategy turns
out to work not for CMA-ES and it is also likely that it is the rea-
son for other partial failures reported in the literature (e. g. [7]):
A closer inspection reveals that the always-changing nature of the
fitness function F (2) is the problem: In the beginning virtually all
individuals are weak. If one individual is slightly better than the
others, it will score a high fitness because it can beat all others.
This is not likely to happen again later in the training, so the fitness
function becomes poorer although the players are stronger. Never-
theless, the best-ever solution returned is one from the initial phase
resulting in a mediocre player. We find these hypothesis verified in
our CMA-ES runs since with fitness F (2) the evolution process re-
ports always the best-ever solution to occur somewhere in the first
20 generations.

There are two options to overcome this weak fitness F (2): to
make a constant fitness F (3) with an opponent delivered from out-
side the learning algorithm (Minimax in the case of F (3)) or to
work with evolution restarts and to keep between restarts the oppo-
nent fixed (coming from the popultion set as described with fitness
F (4) in Sec. 2.1.3).

We find F (3) to work very well as can be seen from Table 2:
it reaches within 10 generations or 3000 games a 80%-level for
pS which F (1) and F (2) never achieve and it quickly boosts this
up to 100% if we increase the number of generations. Is the task
perhaps with this fitness and this feature set so easy that any learn-
ing algorithm can learn it? – We tested this hypothesis by running
the same experiment having only CMA-ES replaced by Random
Weight Guessing (RWG): Each weight is drawn randomly from the
uniform distribution [−1, 1]. As Table 2 shows, RWG does not
produce a single good player at all, so the task is not trivial.
F (4) on the other hand is in its first attempt only partially satis-

factory (see Table 2): It reaches the (pS = 80%)-level only after
120000 games (200 generations) and even 300000 games will not
bring pS above the 90%-level. Results were obtained with R = 4
restarts (we tested also R = 8 and R = 12 but found the results to
be rather similar).

Again, this failure is instructive because a closer inspection of
the fitness curves for a single training shows: a player which fi-
nally failed on the pS-criterion was often successful before prior
restarts. That is, a success level once reached was lost when chang-
ing the opponent. We attribute this to the fact that the learned
CMA-ES mean and CMA-ES distribution were no longer useful
when switching to a different opponent. We therefore modified the
fitness function to become less discontinuous between restarts: In-
stead of a single opponent we used a pool of n(Pool) = 3 opponents
where on a restart only one of those opponents was replaced in a
round-robin fashion. Algorithm 1 gives the detailed pseudocode
for this procedure. The result with n(Pool) = 3 in Table 2 shows
that this brings a spectacular improvement compared to the base-
line F (4) (with n(Pool) = 1): the number of games needed to reach
a medium pS-level drops by a factor of four and the final pS-level
is only 4% below the optimum.

Finally we compare results from CMA-ES runs to those from
TDL runs, the other well-known learning method for reinforcement
tasks. The TDL algorithm and its parameter settings are the same
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as described in [8]. As Fig. 2 shows, all algorithms are comparable
on feature set T2 while there is a slight advantage of CMA[F (3)]

and TDL over CMA[F (4)] on feature sets T3 and T4. We see
from Table 3 that TDL is both in quality and in time (number G of
games needed) comparable to the two best CMA-ES results F (3)

and F (4)(n(Pool) = 3).
It is interesting to compare this with Lucas’ findings [9] who

compared TDL and co-evolution on another simple game and found
that TDL had learning rates by a factor of 7 to 50 faster than co-
evolution. We find here that CMA-ES brings the learning rate of an
evolutionary algorithm into the same region as TDL, but only if we
use well-designed fitness functions. Thus CMA-ES has, due to its
directed mutations, the potential to increase the information rate in
the sense as discussed by Lucas [9].

3.2 Failures due to Wrong Features
How is the performance of different feature sets on the same

learning task? Are the conclusions drawn with respect to features
similar when different learning algorithm are used? We show in
Fig. 3 and Fig. 4 the performance of different feature sets using
CMA-ES (with the two best fitness functions found in Sec. 3.1)
and using TDL.

Most notably, the raw board position input (feature set T0) and
the feature set T1 which contains only 4 features, are complete
failures for every learning algorithm. Stenmark [15] obtained some
good results with the raw board position as input to a similar feed-
forward net, but only after one million of games. In our experiments
with up to 300000 games we could not see any learning progress.

In contrast to that, feature sets T2 and T4 allow successful CMA-
learning (pS > 90%) as early as after 6000 and 12000 games with
fitness function F (3). This is an increase in learning rate by a fac-
tor of 160 and 80, resp., compared to [15]. TDL performs simi-
larly to CMA[F (3)] with the feature sets T2 and T4 crossing the
(pS > 90%)-level after 9000 and 17000 games (Fig. 4).

It is interesting to see that all three diagrams in Fig. 3 and Fig. 4
show a strict ranking order

pS(T2) ≥ pS(T4) ≥ pS(T3) ≥ pS(T1) ≥ pS(T0)

for all measurements (with the sole exception of the G = 100000
experiment for TDL where T4 and T3 are interchanged). This is
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used for neuroevolution of a feedforward net having one hid-
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in good agreement with the ranking order of the feature set utility
FU which reads according to Table 2

FU (T2) ≥ FU (T4) ≥ FU (T1) ≥ FU (T3) ≥ FU (T0)

We have only a one-place disagreement between T3 and T1. But
this does not come unexpected, as already explained in Sec. 2.2.1,
since FU is only a lower bound and the true utility for T3 can be
somewhere between FU (T0) = 2.5 and FU (T2) = 14.2. T3
reaches the upper bound if the learning algorithm learns to ignore
the T0-part of the T3-inputs. This view is supported by our exper-
iments: The diagrams for TDL and for CMA[F (3)] show that T3
takes considerably longer to achieve good performance (it has to
learn to ignore the ’distractive’ T0-part) but eventually reaches the
same performance as T2 at 50000 and 60000 games, resp.

In the case of CMA[F (4)] the ’distractive’ T0-part in T3 seems
to be more confusing for the learning algorithm, since it does not
reach the same performance as T2. Another point which is not yet
fully understood is the fact, that all learning algorithm show for T3
a decline in performance as we go beyond G=60000 games.

It may be somewhat surprising that T4, although being ’richer’
than T2 and obeying in the same way the eightfold symmetry, is
always inferior to T2. But the point is, as also correctly predicted
by our feature set utility FU , that T4 has a higher dimension and
much higher feature vector count K which counteracts the benefi-
cial effect of a lower divergence (higher ∆−∆0).

In summary we have demonstrated the great importance of fea-
tures for our application. We were able to develop with the feature
set utility FU a qualitative measure based on information-theoretic
and empirical ingredients which is able to correctly predict the
ranking order of the different feature sets’ performances. This rank-
ing order holds for very different RL learning algorithms TDL and
CMA-ES.

4. CONCLUSION
CMA-ES has been applied for the first time, at least to our knowl-

edge, to board game learning based on RL. Initially some instruc-
tive failures were observed which shed some light on the impor-
tance of the right fitness function. Some lessons learned:

• Do not rely on only a subset of board positions as fitness
function (F (1)). CMA-ES will produce agents which fulfill
the fitness function perfectly, but they are usually "blind" for
other board positions.

• Do not allow the fitness function to be dependent on the pop-
ulation (F (2)). If fitness is defined as success against oth-
ers from population, then initial results against a weak pop-
ulation will very likely mask later improvements and hinder
CMA-ES to learn.

But if we use CMA-ES with a good fitness function – either a con-
stant fitness like F (3) or a bootstrap version F (4)[nPool = 3] with
not too abrupt changes between restarts – then CMA-ES learning
turns out to be successful, even comparable to TDL in terms of
learning speed in the case of F (3). Since Lucas [9] reports other
evolutionary learning schemes like co-evolution to be much slower
than TDL, we conclude that CMA-ES has the potential to learn
considerably more from each game in comparision to co-evolution.

Not surprisingly, feature selections turns out to be another crit-
ical factor for distinguishing failures from successes: raw inputs
or too simple feature sets lead to consistent failures in a variety of
learning algorithms, while other feature sets (T2, T4 and T3 in this
order) lead to more or less fast learning. There is not yet a compre-
hensive theory on how to find the best feature set, but some lessons
can be learned from our experiments:

• Find features which obey the symmetries of the game, this
will lead to better generalization.

• Find feature sets which combine two antagonistic elements
as good as possible: (i) a low count K of different feature
vectors during game play and (ii) a low divergence (high ∆−
∆0) within the states mapped to the same feature vector.

A general recipe for finding feature sets which balance both ele-
ments is not yet known. But we have introduced with the feature
set utility FU of Eq. (5) a measure which allows to give at least
a lower bound on the usefulness of a certain feature set. FU has
shown to be in good accordance with the results from our board
game scenario.

Further directions of research remain to be done: Can the fea-
ture set utility FU prove to be useful also for other, more realistic
games like Othello or Connect-4? Can a general recipe be devel-
oped on how to find or ’evolve’ good feature sets? Is the bootstrap-
ping CMA-ES approach also successful for larger games? We hope
to adress some of these questions in the near future, perhaps again
being led by some instructive failures.
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