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Abstract

Support Vector Machines (SVMs) have shown to be strong methods for
classification problems. Especially for difficult tasks the performance of
SVMs is often superior to other learning algorithms. A main issue arising
with this kernel-based learning is the high computation time and also the
large memory demand required for training with large data. As a solution to
this, ensemble-based SVM approaches have recently been proposed. Mey-
er et al. [1] investigated SVM ensembles based on bagging [2] and Cascade
SVMs [3]. Stork et al. [4, 5] proposed ensembles based on boosting [6] and
bagging with subsampling of the training data. In their experimental study
they observed that subsampling is a necessary ingredient to impede over-
fitting. Unfortunately no rule-of-thumb could be given for the sample size
parameter. The goal of this study is to get a deeper understanding which
elements in a fruitful combination of individuals in SVM ensembles lead
to considerable time savings while maintaining a good classification accu-
racy. First, we expect to obtain an asymptotic behaviour when we increase
the ensemble size for a fixed training set size setting. Secondly, we want
to measure the influence of the training set size on the classification accu-
racy. With these findings we try to give recommendations for sample size
and ensemble size in order to balance computation time and accuracy. As
a nice side effect, the observations made in this study can be used to create
ensembles of other learning algorithms as well.

1 Introduction

Support Vector Machines (SVMs) [7, 8, 9] are state-of-the-art learning al-
gorithms for supervised machine learning. SVMs often have shown supe-
rior performances both in classification and regression. A drawback of the
method is that it badly scales with increasing dataset sizes. This can be a
problem today, as dataset sizes are more and more increasing.

Recently, alternatives based on ensemble learning have been proposed to
circumvent this issue. E.g., Meyer et al. [1] investigated SVM ensembles
based on bagging [2] and Cascade SVMs [3]. Stork et al. [4, 5] propo-
sed ensembles based on boosting [6] and bagging with subsampling of the
training data.



In this study we analyze the influence of the ensemble size (number of ite-
rations in boosting) related to the sample size inside the boosted learners.
By doing this we expect to find an asymptotic behaviour of the ensemble
learner, e.g., the classification performance should increase with larger en-
semble sizes, but finally should converge when no further improvements
are possible.

The paper is structured as follows: we give a brief overview about Support
Vector Machines in Sec. 2.1 and the boosting algorithm (AdaBoost) in
Sec. 2.2. In Sec. 3 we perform an experimental analysis on datasets from
the public UCI repository [10]. The results are discussed in Sec. 4 and we
summarize with a conclusion and outlook on future research in Sec. 5.

2 Methods

2.1 Support Vector Machines

Support Vector Machines (SVMs) [7, 8, 9] are state-of-the-art learning al-
gorithms for classification and regression. In classification, data can be
written as a number of n observations

(~x1, y1), (~x2, y2), ..., (~xn, yn) ∈ X × Y (1)

where xi ∈ X are the input patterns and yi ∈ Y the corresponding class
labels for pattern xi. In the simplest form, the output set Y only contains
two elements, leading to binary classification, where the classes are often
denoted by Y = {−1, 1}

For linearly separable data, SVM fit a linear classifier, maximizing the mar-
gin between the classes in order to give the best generalization performan-
ce. But as data is often not linearly separable, it is the core of machine
learning that two observations “being near in input space” should have a
similar output value. Therefore, SVM incorporate kernel functions

k : X × X → R (2)

denoting the similarity of two observations. The kernel function k needs to
suffice several condtitions, e.g., symmetry, and positive semi-definiteness.
The function itself can be interpreted as a dot product in a high-dimensional
space [11]. It enhances the SVM learning algorithm by an implicit map-
ping of the input data into a higher-dimensional feature space, where a



linear classifier is applicable. In this paper, without loss of generality we
use only one single kernel function, that is the radial basis kernel

k(~x, ~z) = exp(γ · ||~x− ~z||2) (3)

with hyperparameter γ ∈ R+. For a comparison with other kernels on the
same task see [4, 5].

An optimal prediction model can now be determined by introducing the
associated reproducing kernel Hilbert space H for the kernel function k
and solving the optimization problem:

f̂ = arg inf
f∈H,b∈R

||f ||2H + C
n∑
i=1

L(yi, f(~xi) + b) . (4)

The first summand ||f ||2H defines a penalty and in case of the 2-norm pena-
lizes non-smooth functions. Because the function f maps into R, the sign
is calculated in the case of binary classification. Finally the second term
measures the closeness of the predictions to the true outputs. The closen-
ess is defined by a loss function, that is usually the Hinge loss L(y, t) =
Lh(y, t) = max(0, 1−yt) in case of classification. The Hinge loss is a con-
vex, upper surrogate loss for the 0/1-loss (which is a desired loss function,
but algorithmically intractable). A hyperparameter C controls the balance
between the smoothness and the loss function.

SVM are ideally suited for binary classification tasks, but can also handle
more classes. Approaches for multi-class problems have been proposed by
Weston and Watkins [12], and Crammer and Singer [13] gave an alternative
formulation.

2.2 AdaBoost

AdaBoost, as a shorthand for Adaptive Boosting, was proposed in 1995 by
Freund and Schapire [6]. The basic AdaBoost algorithm is shown in Al-
gorithm 1. It works by repeatedly building and evaluating weak classifiers
on the training set where each time a different sample from the training
set distribution is drawn. Misclassified records in previous iterations get
higher weights, leading to a stronger emphasis on those records by the
forthcoming classifiers. For each classifier ht its quality αt ∈ [0,∞] on the
original training set is evalulated. The final ensemble output is that class
with the largest sum of αt, where the sum is calculated for all classifiers
voting for that class.



Algorithm 1 Multi-class SVM AdaBoost algorithm
1: Input: a training set Γ = {(~x1, y1), . . . , (~xN , yN)} with class labels yi

having K levels.
2: Initialize: the weights w1

i = 1/N for i = 1, . . . , N .
3: Define Θ(P ) = 1 if P is true, 0 else.
4: for (t = 1, . . . , T ) do
5: Draw a wt

i-weighted training sample set S of size s = bN with
replacement from Γ, where b ≤ 1 denotes a fraction of the training set.

6: Train a weak learner ht on S. Here ht is a SVM.
7: Calculate training error εt =

∑N
i=1wi Θ(ht(~xi) 6= yi) on set Γ.

8: Set αt = 1
2

(
ln
(
1−εt
εt

)
+ ln(K − 1)

)
(quality of weak learner ht).

9: Update weights: wt+1
i = wt

iexp(αtΘ(ht(~xi) 6= yi))/Z, where Z is
a normalization constant such that

∑N
i=1w

t+1
i = 1.

10: end for
11: Output: f(~x) = arg max

c

(∑T
t=1 αtΘ(ht(~x) = c)

)
.

Compared to the original AdaBoost algorithm, our SVM AdaBoost with
SVMs as the base classifiers has three modifications:

1. As Wickramaratna et al. [14] pointed out, it is essential for the classi-
fiers to be weak in order to make AdaBoost productive. Since SVMs
tend to be strong classifiers, it is necessary to weaken them. We sam-
ple in S for each classifier only a small fraction b of the set Γ in Al-
gorithm 1, Step 5, e.g. b = 0.1 or b = 0.01. Note that the evaluation
in Step 7 and weight update in Step 9 is done on the whole set Γ:
This gives a precise figure of merit for each classifier and keeps the
weights in sync. Training on the set S with only s = bN records has
the nice side effect that we can tackle large datasets with SVM, wi-
thout being blocked by runtimes increasing approximately cubically
with the number of training records.

2. As a measure to increase the diversity of the ensemble, we choose
for the radial SVMs the width γ randomly and uniformly from the
0.1 to 0.9 quantile range of |~x−~x′|2, as suggested in [15], where x, x′

are distinct data points. We found that this gives a better ensemble
performance than using a tuned but fixed γ.

3. Initially we use the full training set of size Nfull (see Tab. 1) for the
set Γ. Later in Sec. 3.3 we experiment with subsamples Γ of size
N < Nfull, which are smaller than the full training set.



3 Experimental analysis

Earlier experiments [4, 5] showed that for arbitrary kernel types better re-
sults could be obtained with SVM AdaBoost, when the sample size s = bN
during training is fixed at a small level. In cases where the sample size was
too large, the algorithm showed a remarkable overfitting on several bench-
marks [4, 5]. This situation is shown exemplarily for dataset Adult from the
UCI repository in Fig. 1. Here the performance of small and large sample
sizes together with different kernel types is compared and it can be seen
that small sample sizes (b ∈ [0.05, 0.12]) are better for all kernels.
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Figure 1: Test set accuracy on task Adult with SVM AdaBoost. In case of training with
larger sample size fractions than b = 0.12, the ensemble suffers from considerable over-
fitting. The optimal fraction is in this case in the range b ∈ [0.05, 0.12]. Mixed ensembles
like “RadPol” =(radial + polynomial kernels) are better than a pure “radial” ensemble.

We observed also in some earlier experiments [4, 5] a steady increase with
increasing ensemble size, but only ensembles up to T = 50 were inve-
stigated at that time. Therefore it seems natural to ask whether a further
increase in ensemble size can boost the performance even more or whether
a converging behaviour is observed. We perform the relevant experiment
in Sec. 3.2.

Besides the better performance, it is notable that large speed-ups are possi-
ble when training with small sample sizes inside the ensemble. For this re-
ason we have set the sample size fraction to very low values, e.g. b = 0.5%



Table 1: Datasets used in experiments: Number of records, training records (Nfull), num-
ber of features and number of classes. The test set is the set of all non-training records.
The dataset Acoustic2 is a binarized version (class 3 vs. rest") of the Acoustic2 dataset in
the UCI repository [10], which is originally a three-class problem.

Name Records Train Features Classes

Adult 45222 30162 14 2
Acoustic2 98528 78823 50 2

(cf. Sec. 3.2). However, for each SVM in the ensemble, a different sample
is drawn from the training set. It is matter of future research which sample
size is suited best for a new task. Up to now this parameter was always
chosen manually by the experimenters. In the experiments in Sec. 3.3 we
analyze the behaviour of different training set sizes N for two benchmark
datasets.

3.1 Experimental Setup

We perform an experimental study on two datasets from the UCI repo-
sitory [10]. Intentionally, we select two larger-sized datasets from the re-
pository, since in earlier studies [4, 5] SVM ensembles could especially
diminish the required training times for larger datasets. Furthermore we
only perform experiments on binary classification problems, since SVMs
have been originally proposed for such type of problems. Nevertheless, the
SVM AdaBoost algorithm can be applied to multi-class problems as well.
This is true if the underlying SVM does support multiple classes, e.g., by
using strategies as proposed in [12, 13].

Our experimental setup runs the SVM AdaBoost algorithm ten times with
different random seeds and varying ensemble sizes (Sec. 3.2) or training
set sizes (Sec. 3.3).

3.2 Results Ensemble Size

In this experiment we vary the number of iterations (ensemble size) used in
AdaBoost, while keeping the sample size on a very low level (subsamples
of 0.5% of the total number of training patterns). We use ensemble size
settings of {10,20,30,40,50,100,200,300,400,500,600,700,800,900,1000}.
Although 1000 is a very large ensemble size for SVM AdaBoost, we expect
that due to the subsampling, the time spent in this experiment should still
be feasible with small sample size settings in AdaBoost.
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Figure 2: Mean accuracy and standard deviation of ten runs on independent test data for
the “Adult” dataset. The ensemble size is varied between 10 and 1000 iterations, while
keeping the sample size fixed at 0.5% at the same time.

The results illustrate the mean classification accuracy plus standard devia-
tion on independent test data for each ensemble size setting. In Fig. 2 we
show the results for the Adult dataset, while in Fig. 3 we show the results
for the Acoustic2 dataset.

A mainly converging behaviour is seen for the Adult dataset. Here, the per-
formance increases remarkably for the first 200 iterations of the algorithm,
then fluctuates for some time at a level of 84.75%, but finally decreases
slightly for≥ 700 iterations. After the decrease the results seem to fluctua-
te slightly around the new level.

A similar behaviour can be observed for the Acoustic2 dataset. When the
ensemble size tends to be very small (only 10 or 20 iterations), we obtain
a significantly inferior result compared to more iterations. This result can
be reasoned due to the small sample size of only 0.5% together with only
a few iterations of AdaBoost. However, when the ensemble size is set to a
sufficient level (≥ 200 iterations as in the case of “Adult”), we can expect
a better performance of the algorithm. For larger ensemble sizes the im-
provement effect is lost and similar to the results of the Adult experiment
we can observe a fluctuating performance.
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Figure 3: Mean accuracy and standard deviation of ten runs on independent test data for
the “Acoustic2” dataset. The ensemble size is varied between 10 and 1000 iterations,
while keeping the sample size fixed at 0.5% at the same time.

3.3 Results Training Set Size

We noticed when training AdaBoost on larger datasets, that the majority
(90%) of the time was not spent in the training of the individual SVMs
ht (Algorithm 1, Step 5) but instead it was spent in predicting ht(~xi) for
all training set records (Step 7). This is understandable since the original
training set size (Nfull = 30162 or 78823, see Tab. 1) is much larger than
the sample size s = 300 used for each individual SVM.

Is it possible to reduce the total computation time by decreasing the trai-
ning set size N in Algorithm 1 without loss in accuracy? We investigated
this question with the following experiment: Instead of the full training set
Nfull we draw a sample of size N = {10%, 25%, 50%, 100%}×Nfull and
perform Algorithm 1 on that N . The sample size s was kept constant.1

Each experiment was repeated 10 times with different samples of size N
being drawn. Fig. 4 shows the resulting accuracies on the test set. We ob-
serve that for N = 50%Nfull there is virtually no degredation in accuracy.
The smaller training set sizes N = 25%Nfull or N = 10%Nfull show so-
me degradation in accuracy for Adult and nearly none for Acoustic2. At
the same time Tab. 2 shows, that the total computation time is diminished

1More precisely: s = 1%Nfull = 302 for dataset Adult and s = 0.6%Nfull = 473 for Acoustic2.
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Figure 4: Boxplots: classification accuracies for our modified AdaBoost algorithm as a
function of the training set size N . Horizontal lines: for comparison the accuracy of a
single SVM trained on all data. We observe only a slight degradation with decreasing N .
At the same time, the computation time decreases largely, see Tab. 2.

by a factor of approximately 2, 4 or 8 for N = (50%, 25%, 10%) ×Nfull,
resp., as compared to N = Nfull.

4 Discussion

4.1 Stopping Rule Ensemble Size

The converging behaviour of the accuracy with increasing ensemble sizes
can be used to define a stopping criterion. A possible measure is

∆A/A

∆T
< θ (5)

where ∆A/A is the relative change in accuracy on the test set, ∆T denotes
the change in ensemble size when moving from one point to the next in



Table 2: Computation times in seconds for the AdaBoost algorithm on larger datasets. The
training set sizeN varies, while the sample set size s is kept constant for each dataset. The
ensemble size is 50. Column ’speedup’ shows the speedup factor as compared to a single
SVM trained on all data (last line). Especially for the bigger dataset Acoustic2, impressive
speedups can be achieved.

Adult Acoustic2

N s time [s] speedup N s time [s] speedup

3016 302 8.8 16.6 7882 473 35.2 109.7
7540 302 17.1 8.6 19705 473 80.9 47.7

15081 302 31.8 4.6 39411 473 160.8 24.0
30162 302 61.8 2.3 78823 473 322.8 11.9

1-SVM 148.2 1.0 1-SVM 3866.0 1.0

Fig. 2 or Fig. 3, and θ is a suitable threshold. ∆T should be at least 20 or
higher to accumulate enough statistical evidence.

If we set θ = 10−6 in our experiments, then the stopping point would be
T = 200 for dataset Adult and T = 400 for Acoustic2. If we set θ = 0,
thus detecting the first turning point, then the stopping point prior to the
sign change of the measure would be T = 400 for both datasets Adult and
Acoustic2. Both results reflect quite well the convergence to a plateau in
Figs. 2 and 3.

A similar stopping rule can be set up for the sample size s. Further work is
needed to set up and test such a rule on a variety of benchmarks.

4.2 Related Work

Meyer et al. [1] analyzed an approach named Cascade SVM, that is like-
wise a sequential ensemble method. Cascade SVM aims at reducing the
training time by splitting the training data into k disjoint subsets. For each
of these subsets a single SVM is trained. The support vectors of the single
SVMs then constitute the training set in the subsequent steps. By doing
this, the training size is kept low, but the subsequent SVMs still receive the
support vectors of the precedent classifiers. Meyer et al. [1] observed that
the Cascade SVM performs almost equal to a single SVM on a variety of



datasets, but the method is much slower in computation than an approach
based on Bagging, that is also analyzed by Stork et al. [4, 5].

The AdaBoost approach described in this paper is considerably different
from the Cascade SVM investigated by Meyer et al. [1]. AdaBoost is also
sequential, but introduces weights for the training patterns. It is not the
case that patterns are ’thrown away’ as a consequence of earlier steps. For
this reason it is not necessary to perform multiple runs of the algorithm to
reach a reasonable and non-overfitting classifier. Instead it could be shown
in this article that SVM AdaBoost tends to show an asymptotic and robust
behaviour, even when only small training set sizes are encountered.

5 Conclusions and Outlook

We performed experiments using AdaBoost as an ensemble strategy build
upon SVMs where each individual learner in the ensemple needs only a
small sample of the full training set. With a very small sample size (only
0.5% of the total data available for training) and only a few iterations of the
algorithm we obtain classification results slightly inferior to a single SVM
trained on all data and we see a high variance of these results. But with
more iterations of the algorithm (larger ensemble sizes) the variance in the
results decreases and the classification accuracy comes close to the single-
SVM-all-data accuracy or even surpasses it. The accuracy converges in a
plateau when the number of iterations is further increased.

For our medium-sized datasets SVM AdaBoost is faster than a single SVM
trained on all data. Thus, the SVM AdaBoost algorithm constitutes a viable
alternative for applying SVM to even larger datasets where a single SVM
cannot handle all data in reasonable time.

In another experiment we varied the training set size N , while keeping the
ensemble size and the sample size s fixed at the same time. Surprisingly,
the ensemble method did not perform worse with about 50% of the total
training data for the Adult dataset, and for the Acoustic2 dataset even smal-
ler sample sizes of only 25% were found to be sufficient. In both cases the
classification accuracy with the subsampled training data was only slight-
ly worse compared to the full training data. At the same time we observe
large speed-ups in the total training time of the SVM AdaBoost algorithm.

We proposed with Eq. (5) a stopping rule to find the right ensemble size in
SVM AdaBoost for a given dataset. In future work we want to apply this
stopping rule to further datasets to test its general validity and to formulate



and test a similar stopping rule for finding semi-automatically the right
sample size as well.
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