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Abstract Support Vector Machines (SVM) are strong classifiers, but large data sets
might lead to prohibitively long computation times and high memory requirements.
SVM ensembles, where each single SVM sees only a fraction of the data, can be
an approach to overcome this barrier. In continuation of related work in this field
we construct SVM ensembles with Bagging and Boosting. As a new idea we ana-
lyze SVM ensembles with different kernel types (linear, polynomial, RBF) involved
inside the ensemble. The goal is to train one strong SVM ensemble classifier for
large data sets with less time and memory requirements than a single SVM on all
data. From our experiments we find evidence for the following facts: Combining
different kernel types can lead to an ensemble classifier stronger than each individ-
ual SVM on all training data and stronger than ensembles from a single kernel type
alone. Boosting is only productive if we make each single SVM sufficiently weak,
otherwise we observe overfitting. Even for very small training sample sizes — and
thus greatly reduced time and memory requirements — the ensemble approach often
delivers accuracies close to or better than a single SVM trained on all data.

1 Introduction

1.1 Related work

Several researchers have studied SVM ensembles during the last years (see e.g.
Wang et al. [13] and references therein), predominantly in an attempt to strengthen
the overall accuracy, not with the large data aspect in focus. Yu et al. [16] and
Chang et al. [4] present different approaches to tackle the large data aspect, like
cluster-based data selection or parallelization, but they do not use SVM ensembles.
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Recently, Meyer et al. [11] analyzed two variants of SVM ensembles for large data
sets, which were based on Bagging and Cascade SVM.

1.2 Research questions

We analyze the following hypotheses in this article:

H-1 An ensemble classifier combining different kernel types performs better than en-
sembles from a single kernel type alone.

H-2 Boosting is only productive if we make each single SVM sufficiently weak, oth-
erwise we observe overfitting.

H-3 Even for very small training sample sizes — and thus greatly reduced time and
memory requirements — the ensemble approach often delivers accuracies close
to or better than a single SVM trained on all data.

2 Methods

We give a brief introduction to Support Vector Machines in Sec. 2.1 for classifica-
tion tasks. Two well-known ensemble methods are incorporated in the experiments:
the Bagging approach is introduced in Sec. 2.2, whereas the AdaBoost approach is
delineated in Sec. 2.3.

2.1 SVvM

SVM [5, 12, 7] are state-of-the-art learning algorithms for classification and regres-
sion. In classification, data is usually written as a number of n observations

(Xlayl)a(X2,y2)7"'a(xn7yn) S Z x @ (1)

where the set 2~ defines the input values describing the patterns and the set %
comprises the corresponding class labels. In the simplest form, the output set only
contains two elements, leading to binary classification, where the classes are often
denoted by % = {—1,1}

For linearly separable data, SVM fit a linear classifier, maximizing the margin
between the classes in order to give the best generalization performance. But as data
is often not linearly separable, it is the core of machine learning that two obser-
vations “being near in input space” should have a similar output value. Therefore,
SVM incorporate kernel functions

k: % x2 SR )
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denoting the similarity of two observations. The kernel function k needs to suffice
several condtitions, e.g., symmetry, and positive semi-definiteness. The function it-
self can be interpreted as a dot product in a high-dimensional space [10]. It enhances
the SVM learning algorithm by an implicit mapping of the input data into a higher-
dimensional feature space, where a linear classifier is applicable.

In our experiments we incorporate a selection of the most commonly used kernel
functions

linear: k(x,z) =x" -z
polynomial: k(x,z) = (x” -z 4 co)?
radial: k(x,z) = exp(y-|[x —z]|?)

where 7, cp and d are hyperparameters of the corresponding functions.

An optimal prediction model can now be determined by introducing the associ-
ated reproducing kernel Hilbert space H for the kernel function k and solving the
optimization problem:

iL(yz‘,f(Xi)er) - 3)

f=arg inf z2.1C
f=ae gt 1 +CY

The first summand ||f||? defines a penalty and in case of the 2-norm penalizes
non-smooth functions. Because the function f maps into R, the sign is calculated in
the case of binary classification. Finally the second term measures the closeness of
the predictions to the true outputs. The closeness is defined by a loss function, that is
usually the Hinge loss L(y,?) = Ly (y,¢) = max(0, 1 —yt) in case of classification. The
Hinge loss is a convex, upper surrogate loss for the 0/1-loss (which is a desired loss
function, but algorithmically intractable). A hyperparameter C controls the balance
between the smoothness and the loss function.

SVM are ideally suited for binary classification tasks, but can also handle more
classes. Approaches for multi-class problems have been proposed by Weston and
Watkins [14], and Crammer and Singer [6] gave an alternative formulation.

2.2 Bagging

Bagging [1], as a shorthand for bootstrap aggregation, is a well-known meta-
algorithm to improve base classifiers in terms of stability and accuracy. The un-
derlying idea is simple: Form several bootstrap samples by uniformly sampling T
records with replacement from the full training set with N records (' < N). Sub-
classifiers are trained on each of these bootstrap samples, and the final classifier
makes its prediction by aggregating the predictions of all sub-classifiers. Typical
aggregation methods are:

Majority voting Predict the class most often predicted by the sub-classifiers (ties
broken randomly).

Probability sum If each sub-classifier delivers class probabilities, sum them up
and predict the class with the highest probability sum.
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Algorithm 1 Basic multi-class AdaBoost algorithm. See text for our modifications.

1: Input: a training set I = {(x1,y1),-.., (Xn,yn)} with class labels y; having K levels

2: Initialize: the weights w! = 1 /N fori=1,...,N

3: for(tr=1,...,T)do

4: Draw a w!-weighted training sample set S of size N with replacement from I".

5: Train a weak learner /; on S.

6: Calculate training error & = ):l (Wi O(h(x;) #y;) onsetI.

7 Set quality of weak learner /; as 0o = % ( n ( 1&81 ) +In(K 1))

8: Update weights: w/™ = wlexp(04@ (h,(x;) # yi))/Z, where Z is a normalization constant

such that YN, wi™ = 1.

9: end for
10: Output: f(x) = arg max (X, O (h(x) =¢)). > O(P) = 1 if Pis true, 0 else.

Our Bagging approach has SVMs as sub-classifiers and investigates the benefits
of combining different kernel types in one ensemble. Besides the pure types Lin
(linear), Rad (radial, RBF) and Pol (polynomial) we form also mixed ensembles

LinPol linear + polynomial

RadPol radial + polynomial

LinRad linear + radial

LinRadPol linear + radial + polynomial

E.g., given three ensembles Lin, Rad, Pol of ensemble size 10 each, a mixed ensem-
ble LinRadPol of size 30 is built by joining these three.

2.3 AdaBoost

AdaBoost, as a shorthand for Adaptive Boosting, was formulated 1995 by Freund
and Schapire [9]. The basic AdaBoost algorithm is shown in Algorithm 1. It works
by repeatedly building and evaluating weak classifiers on the training set where
each time a different sample from the training set distribution is drawn. Misclassified
records in previous iterations get higher weights, leading to a stronger concentration
for these records by the fortcoming classifiers. For each classifier /4, its quality oy €
[0,00] on the original training set is evalulated. The final ensemble output is that
class with the largest sum of ¢, where the sum is calculated for all classifiers voting
for that class.

When applying AdaBoost to SVM as the base classifier, we propose three modi-
fications

1. As Wickramaratna et al. [15] pointed out, it is essential for the classifiers to
be weak in order to make AdaBoost productive. Since SVMs tend to be strong
classifiers, it is necessary to weaken them. We sample in S for each classifier only
a small fraction b of the set I' in Algorithm 1, Step 4., e.g. b =0.1 or b = 0.01.
Note that the evaluation in Step 6. and weight update in Step 8. is done on the
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Table 1 Datasets used in experiments: Number of records, number of training records, number of
features and number of classes

Name Records Train Features Classes Remarks
Spam 4601 3036 57 2

OptDigit 5620 3823 64 10

Satellite 6435 4435 36 6

Adult 45222 30162 14 2

Acoustic 98528 78823 50 3

Acoustic2 98528 78823 50 2 class 3 vs. rest

full set I': This gives a precise figure of merit for each classifier and keeps the
weights in sync. Training on the set S with only bN records has the nice side effect
that we can tackle large datasets with SVM, without being blocked by runtimes
increasing approximately cubically with the number of training records.

2. To increase the diversity of the ensemble, we combine the results from different
kernel types. We consider here the three well known SVM kernel types radial
(RBF), polynomial and linear. Two alternative ensemble-forming methods are
proposed:

Mixed In each iteration, one of the three types is selected at random to be the
next weak classifier.

Combined First, three sub-ensembles of pure type (radial, polynomial or lin-
ear) are formed, using the basic AdaBoost algorithm. The combined ensemble
is formed by taking all classifiers 4, with their individual ¢; from the three
sub-ensembles. This ensemble predicts in the usual way the output on new
cases.

3. As a further measure to increase diversity we choose for the radial SVMs in the
ensemble the width y randomly and uniformly from the .1 to .9 quantile range of
|x —x'|?, as suggested in [2], where x,x" are distinct data points. We found that
this gives a better ensemble performance than using a tuned but fixed 7.

3 Experiment setup

We tested our methods on several medium-sized machine learning datasets with
3,000 to 98,000 records from the UCI repository. Their characteristics are given in
Table 1. In the cases where the original dataset provides a separation in training and
test set, we used it in our experiments (column Train). Otherwise the dataset was
randomly split in 2/3 training and 1/3 test data.

To compare accuracy and speedup we have run the following algorithms on the
datasets: The basic SVM, modified AdaBoost-SVM with pure, mixed and combined
ensembles (see Sec. 2.3) and a reduced training fraction (parameter ), Bagging-
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SVM with pure and mixed ensembles (Rad, RadPol, LinRadPol) and probability-
based prediction, Bagging-SVM with the same ensembles and majority voting. For
the underlying SVM we used the R package e1071 [8] which is based on the pop-
ular LIBSVM implementation [3]. All algorithms were run repeatedly (10 times)
with different training samples. The mean classification accuracy and its standard
deviation is reported, as well as the training time on a single machine.

We performed a basic tuning of the SVM hpyerparameters: The parameters cg
and d were tuned by grid search and the parameter ¥ was choosen according to the
recipe of Sec. 2.3, item 3.

4 Results

linear polynomial radial LinPol LinRad RadPol LinRadPol Radialx3
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Fig. 1 Accuracy on task Spam with SVM-bagging. Each sub-classifier uses a training sample of
only 300 records (roughly 10% of the available training data). Differnt ensembles of pure and
mixed kernel type are formed, as indicated in the figure head.

The effectiveness of Bagging is shown in Fig. 1. Ensembles of mixed type (Lin-
Rad, RadPol and LinRadPol) are significantly better in this case than ensembles of
pure type (Lin, Rad and Pol). Even if we build from the best type (radial) an en-
semble "Radialx3” with the same ensemble size as in LinRadPol, its accuracy is
significantly below that of LinRadPol.

The complete results on all datasets are shown in Table 1. It is impressive to
note that the ensembles — although each ensemble SVM is only trained on a much
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Table 2 Accuracies of the different models in percent. All ensembles were trained on small strat-
ified samples of size 300, while the single SVM was trained on all training data (3000-79000
records). The first line shows the mean test-set accuracy of ten runs with different training sam-
ples. The second line (in italic numbers) gives the standard deviations. The best result in each row
is marked in bold face. A result in column RadPol is underlined if it is significantly better than the
results in the preceeding columns radial and polynom.

Name SVM Bagging Boosting
radial polynom RadPol LinRadPol Radialx3 |radial polynom mixed RadPol
enssize | 1 | 50 50 100 150 150 | 50 50 50 100

Spam 93.01{93.05 92.80 93.64 93.70 93.17 [93.74 93.94 94.01 94.10
0.14 0.26 0.13 0.10 021 033 024 019 032
OptDigit |97.94|96.36 96.19 9633  96.15 96.38 [97.69 97.38 97.11 97.69
0.16 0.10 0.16 0.08 0.10 [023 019 015 0.15
Satlog 91.05|87.51 86.49 87.21 86.16 87.76 (89.96 88.73 89.69 90.31
0.28 0.36 0.19 0.24 0.14 058 067 030 0.36
Adult 84.45(84.84 82.94 84.03 84.50 84.86 |(84.53 84.15 84.40 84.92
0.07 0.13 0.10 0.05 0.05 030 022 042 0.26
Acoustic2(90.70|190.10 89.85 90.28  90.05 90.26 [89.46 89.56 89.28 90.01
0.13  0.10 0.11 0.05 0.08 037 018 005 0.15

Table 3 Training times in seconds (Intel Core 173632QM CPU, 64bit, 2.2 GHz, 8GB RAM).

Name #train| SVM on Boosting on 300 records, ensemble size 50
records |all records radial  polynomial mixed RadPol
Spam 3067 1.2 11.0 8.0 9.5 19.1
OptDigit 3823 2.2 13.0 11.5 12.4 24.5
Satlog 4435 2.1 12.5 9.2 10.3 21.7
Adult 30162 148.2 60.1 37.7 50.0 97.8
Acoustic2| 78823 3866.5 231.3 167.2 199.4 398.6

smaller training set — reach or even surpass the accuracy of the single SVM. For
the ensembles we tested all three kernel types, but since radial and polynomial per-
formed usually better than linear, we show only the former pure types. A result in
column RadPol is underlined, if it was significantly (& = 5%) better in a t-test com-
parison to the ’radial’ or polynom’ results of the same method. It has to be noted
that RadPol / LinRadPol ensembles have twice / three times as many SVMs as a
pure ensemble, requiring much more computation time. If we compare LinRadPol
in Table 1 with the column Radialx3, we find that it is sometimes better than even
Radialx3 (dataset Spam), but sometimes not (datasets Satlog and Adult).
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Fig. 2 Test-set accuracy on task Spam with SVM-Boosting. In case of training with the complete
data (full: 3036 records), the ensemble suffers from considerable overfitting, while at the same time
the ensemble performs better with subsamples of the data (small: 300 records). Mixed ensembles
like “radpol” and “combined”’=(linear, polynomial, radial) are better than a pure “radial” ensemble.

4.1 Discussion

The most interesting effect is the lower resource consumption for larger datasets.
If we compare the training times for the Acoustic2 dataset (Table 3), the RadPol
ensemble needs less than 1/10 and the radial ensemble needs only 1/16 of the
SVM (all data) training time. The price to pay is a somewhat longer prediction time
of the ensemble, but SVM prediction is usually fast and the prediction time rises
only linearly with ensemble size.

We analyzed the sample size settings used for the ensembles. Here, Bagging
usually performs better with larger sample sizes, while Boosting tends to be more
effective with smaller sample sizes. The reasons can be interpreted as follows: while
for Bagging larger sample sizes lead to better predictions for the single SVM in the
ensemble, consequently the ensemble performs better and is more robust. The oppo-
site could be observed for boosting. In boosting, a sequential procedure is initiated,
where the decisions in initial iterations directly influence the later behaviour of the
algorithm and the underlying prediction models. In our case the ensemble tends to
focus on initial wrong predicted patterns, whereas the generalization of the remain-
ing patterns is lost. Thus, the underlying problem can be seen as a certain kind of
overfitting. A solution to this can now be given by reducing the sample sizes for the
single SVM learners. By conducting a repeated resampling of the data, the overfit-
ting for some individual patterns is avoided. The single learners trained with few
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patterns seem to be weak at first, but the whole ensemble achieves a better general-
ization performance by the right combination of several weak learners.

A nice side effect of ensemble learning with SVM is that the aggregation of
multiple SVM learners leads to a decreased impact of hyperparameter settings as C
or ¥. Usually these parameters are very sensitive and have a high influence on the
prediction accuracy. The ensemble approach seems to weaken this influence by its
subtle combination of the single learners.

Meyer and Bischl [11] did research on parallel approaches for SVMs with Bag-
ging and cascade SVM. We can support their main result that Bagging is often
effective in producing good accuracy within drastically reduced time. They had en-
sembles of size 9, having each 1/9 of the training data. We found that even lower
sample sizes can be effective. In addition we found that AdaBoost gives only better
results on SVM ensembles, if the training size is small enough.

Wang et al. [13] considered a similar approach to ours in that they proposed a
modified AdaBoost algorithm with reduced sample size for each classifier of the
ensemble. However, they considered only a slight reduction (80% of all training
data) which does not weaken’ the SVMs sufficiently, and they observe a strong
degredation when the ensemble size is increased. We initially observed a similar
behavior that the ensemble was less productive than a single SVM when the training
sample was too big (see Fig. 2).

5 Conclusion

We performed an analysis of ensemble methods consisting of SVM learners. In our
study we compared two ensemble approaches based on Bagging and Boosting. In an
experimental study we observed comparable performances of the ensemble learners,
with viable runtimes for the ensemble. This could be achieved by incorporating
random resampling strategies, considering only parts of the training data for the
ensemble learners.

In part of our experiments (Spam/Bagging and Adult/Boosting) the ensemble
learners performed significantly better when different kernel types were combined.
This is due to the fact that multiple kernel types inside the ensemble are beneficial
for diversification, partially supporting our hypothesis H-1. In the other cases the
combined ensembles did as well as the pure radial ensembles.

The ensemble performed well enough to compete with one single SVM learner
trained on the full data, which corresponds with hypothesis H-3. Due to the bad
scalability of SVM, such ensemble approaches are especially interesting for large
datasets, where the runtime of a single SVM training becomes prohibitively long.
Here, the approaches based on Bagging and Boosting are possible solutions. The
most apparent advantage of Bagging is probably its nice potential for paralellization.
Boosting could stress its good theoretical properties, but it was necessary to use
small training sample sizes for making each SVM in the ensemble weak, as it was
advocated by hypothesis H-2.
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