
Efficient Surrogate Assisted Optimization for

Constrained Black-Box Problems

Samineh Bagheri

Master Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Engineering

Cologne University of Applied Sciences

Campus Gummersbach

Faculty of Computer Science
and Engineering

In the Course of Studies

Master of Automation & IT

First Supervisor: Prof. Dr. Wolfgang Konen
Cologne University of Applied Sciences

Second Supervisor: Prof. Dr. Thomas Bäck
Leiden University

February 2015

Abstract

Modern real-world optimization problems are often high dimensional and subject
to many constraints. These problems are typically expensive in terms of cost and
computational time. In order to optimize such problems, conventional constraint-
based solvers require a high number of function evaluations which are not affordable
in practice. Employment of fast surrogate models to approximate objective and con-
straint functions is a known approach for efficient optimization. The performance of
the RBF interpolation is not dependent on the dimensionality of the optimization
tasks. This is why in the area of surrogate-assisted optimization a lot of attention is
devoted to RBF modeling. As an example for such a solver, COBRA is a constrained
based efficient optimizer that outperforms many other algorithms on a large number
of benchmarks. COBRA-R is a variant of COBRA extended with several algorithms
such as a different initialization method and a novel repair technique. In this thesis,
after investigating the strengths and weaknesses of COBRA-R, we introduced sev-
eral extensions to enhance the overall performance of COBRA-R. Our investigation
showed that the RBF surrogates cannot provide a suitable model for steep func-
tions. Therefore, problems with steep objective or constraint functions have to be
modified in order to be optimized with the COBRA-R approach. Additionally, the
performance of COBRA-R is highly sensitive to the correct selection of a parameter
called DRC. Also, the surrogate models appeared to be wrong for the problems with
highly varying input ranges. Moreover, it was observed that sometimes a bad initial
design could cause an early stagnation. The extended COBRA-R called self-adaptive
COBRA-R intends to overcome these mentioned obstacles by including three extra
steps: 1. Rescaling the input space to [0, 1]d (if it is necessary). 2. Automatic pa-
rameter/function(s) adaptation according to the information gained from the initial
population. 3. Random start mechanism to avoid occasional bad solutions due to a
few unfortunate initial designs. We evaluate our approach by using 11 G-problems
and a high dimensional automotive problem (MOPTA08) as benchmark. We also
report negative results where SACOBRA-R still shows a bad behavior and gives
indications for possible improvements.

Keywords: nonlinear optimization, constrained optimization, expensive function,
surrogate models, Radial Basis Functions, efficient optimization.

iii

Acknowledgements

I want to express my deepest gratitude to my supervisor, Prof. Dr. Wolfgang
Konen who was abundantly helpful and offered priceless assistance, support and
guidance throughout my study period. Special thanks to Dr. Patrick Koch, for his
support in the last year.

I would like to thank Prof. Dr. Bäck for accepting to supervise my thesis. The
last but not the least, I would like to thank Markus Thill and Robin Eccleston for
their great help in revising and editing this thesis.

iv

To my parents and my brother Milad.

v

Contents

Abstract . iii
Acknowledgements . iv
List of Tables . viii
List of Figures . ix

Chapter 1 Introduction 1
1.1 Related Work . 4
1.2 Thesis Outline . 5

Chapter 2 Methods 6
2.1 No Free Lunch Theorems for Optimization 6
2.2 Unconstrained Optimization Techniques 6

2.2.1 Point Based Strategy . 7
2.2.2 Population Based Strategies 9

2.3 Constraint Handling Techniques . 14
2.3.1 Death Penalty . 15
2.3.2 Penalty Functions . 16
2.3.3 Stochastic Ranking . 16
2.3.4 Multiobjective Optimization 17
2.3.5 Repair Algorithms . 17

2.4 Surrogate Assisted Optimization . 17
2.4.1 COBYLA (Linear Approximation) 17
2.4.2 COBRA (RBF) . 21
2.4.3 COBRA-R (RBF) . 24

Chapter 3 Research Questions 29

Chapter 4 Experimental Analysis 32
4.1 G-problem Test Suite . 32

4.1.1 Challenges of Optimization on the G-problems 35
4.1.2 Performance of COBRA-R with tuned Parameters 38
4.1.3 Performance of Self-Adaptive COBRA-R 49
4.1.4 Comparing the Performance of SACOBRA-R and COBRA-R . 68
4.1.5 Comparison with other Techniques 69

vi

4.2 MOPTA 2008 . 73
4.2.1 Performance of COBRA-R with different Internal Optimizers . 74
4.2.2 Repairing infeasible for MOPTA08 78

Chapter 5 Conclusion and Future work 84
5.1 Conclusion . 84
5.2 Future Work . 88

Bibliography 89

Chapter A Algorithms 94

vii

List of Tables

4.1 Characteristics of the G-functions . 35
4.2 Summary of the challenges of G-problems and possible solutions in

COBRA . 39
4.3 COBRA-R optimization error on G-functions with tuned parameters. 40
4.4 COBRA-R optimization result on G-functions with tuned parameters. 43
4.5 COBRA-R parameter settings for G-problems 44
4.6 Comparing the worst results achieved by SACOBRA-R and manually

tuned COBRA-R . 55
4.7 Self-adaptive COBRA-R optimization error on G-functions. 60
4.8 Self-adaptive COBRA-R optimization result on G functions. 60
4.9 Comparison of the error obtained by COBRA-R & self-adaptive

COBRA-R . 68
4.10 Result comparison with other techniques 69
4.11 Distance Requirement Cycles . 76

viii

List of Figures

2.1 Conceptualization of point based optimization method. 7
2.2 Conceptualization of population based optimization method. 10
2.3 Two dimensional demonstration of reforming a simplex (Nelder-Mead) 14
2.4 Conceptualization of RBF interpolation in 1D, with Gaussian φ(r) . . 19
2.5 Conceptualization of RBF interpolation in 1D, with cubic φ(r) 19
2.6 Flowchart of the COBRA [34] algorithm. 22
2.7 Flowchart of the COBRA-R algorithm. 25
2.8 randomly produced Latin hypercube in 2 dimensions 26

4.1 G06 problem . 37
4.2 G02-2d problem . 38
4.3 COBRA-R optimization process with tuned parameters for G-

problems(1) . 41
4.4 COBRA-R optimization process with tuned parameters for G-

problems(2) . 42
4.5 COBRA-R optimization process with tuned parameters for G-

problems(3) . 43
4.6 Impact of the initial population size on the COBRA-R performance

for G03 . 45
4.7 Impact of the internal optimizer selection on the COBRA-R perfor-

mance for G08 . 47
4.8 Impact of DRC selection on COBRA-R performance for G02-2d . . . 48
4.9 Self-adaptive COBRA-R algorithm flowchart 50
4.10 Impact of the input space normalization on the approximation error

of the objective function . 51
4.11 Impact of the logarithmic transformation of the objective function for

G03 with a large FR . 57
4.12 Self-adaptive COBRA-R optimization process for G-problems(1) . . . 61
4.13 Self-adaptive COBRA-R optimization process for G-problems(2) . . . 62
4.14 Self adapted COBRA-R optimization process for G-problems(3) . . . 63

ix

4.15 Self-adaptive COBRA-R optimization process for the G02 problem . . 65
4.16 Objective function approximation error for G01 to G11. 66
4.17 COBYLA optimization process for MOPTA08 74
4.18 COBRA-R(ISRES) optimization process for MOPTA08. 76
4.19 COBRA-R optimization for MOPTA08 with COBYLA, HJ and NM. 77
4.20 Different optimization processes for MOPTA08 79
4.21 Different optimization processes for MOPTA08 (zoomed) 80
4.22 Repairing performance on reducing the number of violations. 81
4.23 Approximation error and move length in the input space for MOPTA08. 82

5.1 Impact of random start algorithm on G01 87

x

1

Chapter 1

Introduction

Nowadays, optimization problems arise in many fields like automotive and semicon-
ductor industry, process and control engineering and many other areas. Real-world
optimization problems often have to be tackled by numerical approaches due to the
absence of an algebraic model of the problem to be optimized. It is common that
complex computer-based models are used to simulate expensive engineering prob-
lems. For instance, a car crash simulation eliminates the possible costs imposed due
to the need of replacing the damaged parts after doing a real crash test [18]. As
the computational power grows, the simulation software becomes more and more
accurate and complex. Complex simulations are computationally expensive. As an
example, it can take ca. 20 hours to simulate a car crash [18]. Expensive optimization
problems are desired to be solved within a severely limited number of evaluations.
Another demand to address real-world optimization problems, is due to the limita-
tions imposed by the existing constraints, restricting the valid solutions to a smaller
subset of the search space. Therefore, the development of efficient optimization
techniques for constrained expensive black-box problems are of great interest for
industrial applications.

In order to handle constraints many different strategies are proposed in the scien-
tific literature. It is very common to make use of dynamic or static penalty functions
combined with conventional unconstrained solvers to address constrained problems.
Some other constraint handlers are working on completely different principles. E.g.,
repair methods try to generate a feasible solution by modifying the infeasible so-
lutions. Furthermore, several techniques minimize every constraint by considering
them as additional objectives to be optimized. The underlying methods consider a
constrained-based problem as a multiobjective problem and approach it with mul-
tiobjective optimization methods. Evolutionary strategies which are widely studied
and used for unconstrained problem domains, can also be used in combination with
the mentioned constraint handling techniques. On the other hand, improved stochas-

2

tic ranking evolutionary strategy proposed in [38] introduces the stochastic ranking
to tackle constraints by using the helpful information coming from infeasible points.

Although a lot of research have been devoted to constraint handling approaches,
many of the constrained-based solvers demand for a large number of function eval-
uations. Up to now only few techniques have been proposed regarding efficient
constraint optimization which can achieve a significant reduction in the number of
function evaluations. A possible solution in that regard is to utilize surrogate assisted
approaches to evaluate models of the objective and/or constraint functions instead
of real expensive functions.

As a promising example of surrogate assisted optimization techniques for con-
strained problems, we can name COBRA introduced by Regis [34] which is tested
on a large number of benchmarks and outperforms many other algorithms. The CO-
BRA optimization framework utilizes cubic radial basis functions (RBF) to model
the objective and constraint functions and performs a constrained optimization pro-
cedure on the surrogate functions. An implementation of the COBRA algorithm
was developed in R under the name of COBRA-R optimization framework, the per-
formance of the COBRA-R framework was tested and reported in [20]. COBRA-R
is different from COBRA in various aspects. For example, a new repair algorithm
called RI-2 [21] is embedded in COBRA-R as an extension.

The COBRA and COBRA-R optimization frameworks, both use the same bench-
mark to evaluate the performance of the proposed solvers. A subset of well-known
constrained problems, the so called G-problems [26], were used as artificial test-
problems. Additionally, a substitute for a real-world car weight minimization subject
to several safety requirements, called MOPTA08, was addressed by the mentioned
algorithms. MOPTA08 provides a suitable benchmark to evaluate how well an opti-
mizer can cope with demands of engineering problems which are highly constrained
in a high dimensional space (68 constraints, 124 dimensions). It is desired to solve
MOPTA08 problem within ca. 2000 or less evaluations since it may take about one
month to evaluate approx. 15 · d design points by a car crash simulation. Investing
more computational time is not affordable for such a problem [19].

The better results achieved by COBRA-R [20] for the G-problems in comparison
with COBRA [34] was mainly due to the use of manual parameter tuning for COBRA-
R. Both techniques require to modify some constraint or objective functions which are
difficult for radial basis functions to model. Manual tuning or problem modification
is done based on our previous knowledge about the problem, though in black-box
optimization such knowledge about behavior of objective and constraint functions is
not known.

Fachhochschule Köln
Cologne University of Applied Sciences

3

In this thesis we analyze the COBRA-R algorithm and reveal the strengths and
weaknesses. We try to investigate different types of challenges imposed by the G-
problems to the COBRA-R framework. After broadening our knowledge about the
potential challenges that COBRA-R is dealing with, we introduce new extensions to
the current COBRA-R framework. The performance of COBRA-R is sensitive to the
parameter selection. Also, the minimization quality is not reasonable when problems
with steep objective and constraint functions are addressed. Therefore, we introduced
a new extension which is supposed to adapt the parameters and modify the objective
and constraint functions of problems automatically (when it is necessary) according
to the information driven from the initialization phase. Apart from introducing
a problem/parameter adaptation step, we introduced a technique – called random
start algorithm – to escape from possible local optima and improve on the worst-case
results occurred due to a bad initial design. Furthermore, we investigated whether
COBRA-R with the introduced extensions can accomplish good results without the
need of manual parameter tuning. The extended COBRA-R optimization framework
is named self-adaptive COBRA-R or SACOBRA-R in this thesis. This study focuses
on investigating on the performance of the SACOBRA-R framework and comparing
the results achieved on minimization of a subset of G-problems and the MOPTA08
problem. The results are compared with several other techniques and the impact of
adding problem/parameter adaptation and random start algorithms is discussed in
detail.

In general, the overall performance of SACOBRA-R on G-problems is beneficial
in comparison with COBRA [34], in terms of better convergence to the real optimum.
Also, SACOBRA-R reduces the dependency of the final optimization results on the
parameter selection and pre-modification of test problems. SACOBRA-R is capable
of improving on the worst case results for a number of G-problems due to the usage
of the new extension introduced as the random start algorithm.

In this thesis, we also investigated the performance of COBRA-R with a differ-
ent parameter setting than what was used in [21] to approach MOPTA08 problem.
An improvement is achieved due to selection of a smaller set of distance require-
ment cycle which is one of the important parameters for the COBRA algorithm and
its variants. We discussed the reasons behind the last achieved improvements on
MOPTA08 problem in this study.

1.1. RELATED WORK 4

1.1 Related Work

Up to now various approaches have been proposed to solve constrained optimization
tasks efficiently. Surrogate-based optimization is often used to address expensive
problems [32]. For example, Wang, Dong, and Aitchison [43] proposed a variant
of a response surface method to approximate the objective function by quadratic
modeling. Although they addressed constrained problems, they assumed that con-
straint functions are cheap to evaluate in order to keep the problems easy to tackle.
Kramer and Schwefel [22] investigated three methods to handle constraints in Evo-
lution Strategies (ES). Later, Poloczek and Kramer [29] analyzed the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) in combination with a surrogate
model based on support vector machines which is used as classifier for feasibility.
In their approach it is assumed that only constraint evaluations are expensive and
because of that they just concentrated on reducing the constraint function calls by
means of support vector classifiers. They obtained slight improvements on analyt-
ical test functions, but also report negative results on some functions. Arnold and
Hansen [1] give reasons for this decreased performance, which is possibly due to the
rotation of the CMA-ES mutation distribution. On the other hand, the contribu-
tion made by [29] in terms of reducing the required number of constraint function
calls was not significant. Arnold and Hansen [1] recommend an alternative approach
which yields better results. Recently, Basudhar et al. [4] coupled the efficient global
optimization algorithm with a support vector machine as constraint classifier and
a Kriging approach is applied to model the objective function. They report good
performances of the method in an experimental study, but use different benchmarks
and do not compare their approach with other constraint-handling methods. The
test problems used in the mentioned works are mostly low-dimensional problems.

Several optimization approaches such as [35], [13] and [15] utilized radial basis
functions as surrogates. Radial basis function approximation is beneficial to other
techniques in terms of the small computational time required for modeling, even for
high dimensional problems. In [33] a novel surrogate assisted optimization method
is proposed for high dimensional expensive black box problems. Later, the same
author extends his work and proposes a more sophisticated algorithm called CO-
BRA [34] which also uses RBF models. COBRA [34] obtained promising results
on a large range of benchmarks varying in many different aspects. Usage of radial
basis functions as surrogate model made it possible for COBRA [34] to approach
a very high dimensional problem like MOPTA08 with 124 dimensions and 68 con-
straints efficiently. Although the results shown for the G-problems approached by
COBRA [34] are as good as those by evolutionary based strategies such as [37]

Fachhochschule Köln
Cologne University of Applied Sciences

5

and [6], for many of the G-problems a reasonable solution was found after a very
limited number of evaluations. Later, [20] and [21] developed COBRA-R which is a
variant of the COBRA algorithm in R, extended with a repair method and different
initialization techniques. Although COBRA-R [20] appeared to be capable of solv-
ing the G-problems and MOPTA08 better than COBRA [34], the enhancement was
achieved by manual tuning of the parameters. In this study, we review the main dif-
ferences between COBRA [34] and COBRA-R [20]. Additionally, we introduce two
algorithms as extensions to COBRA-R to eliminate the need of manual tuning.

1.2 Thesis Outline

In this thesis several important optimization methods are discussed and explained
in Chapter 2. In the same chapter, a few unconstrained techniques which are widely
used as the basis of the constrained solvers are discussed (Section 2.2). In Section 2.3,
various constraint handling techniques are explained. Section 2.4 addresses surrogate
assisted approaches. First, Powell’s COBYLA [31] is described and then the Regis’
COBRA [34] is discussed in detail followed by an explanation of the COBRA-R
optimization framework and its differences from COBRA.

We pose several research questions in Chapter 3. In order to answer the research
questions COBRA-R optimization results on G-problems and an engineering problem
MOPTA08 are presented and analyzed in Chapter 4. In Section 4.1 SACOBRA-R
is introduced and the results obtained for G-problems by means of SACOBRA-R
are analyzed and compared with the results from several other techniques. In Sec-
tion 4.2 the performance of our optimization framework is evaluated on MOPTA08.
Finally, in Chapter 5 the outcome of this thesis is summarized and further steps for
investigation is listed as the future work.

6

Chapter 2

Methods

2.1 No Free Lunch Theorems for Optimization

Wolpert and Macready in 1997 [44] introduced the free lunch theorem for optimiza-
tion. Basically, this theory is telling us that it is impossible to develop a universal
optimization technique which can outperform the other optimization approaches on
all possible classes of problems [11]. Wolpert and Macready [44] prove that the av-
eraged performance of all algorithms are exactly same if they are performed on all
possible types of problems.

Michalewicz also points the similar idea with other words in [26]. No universal
optimization algorithm exists for addressing all problems. As Gregory mentions in
1995 in order to successfully optimize a problem we ”should try to select an approach
that fits the problem we are solving”.

Overall, gaining some insight about different optimization algorithms and various
possible classes of problems is more important than just comparing the performance
of several strategies for a small group of problems. Roughly speaking, it is worthy
to illustrate where and why an algorithm fails or succeeds.

2.2 Unconstrained Optimization Techniques

Many optimization approaches applied to constrained problems use unconstrained
techniques in combination with a suitable constraint handling method. For instance,
handling constraints by means of penalty functions transforms a constrained problem
into an unconstrained problem. Therefore, a conventional unconstrained approach
in combination with a constraint handler can be utilized to locate a global feasible
optimum or several local optima. Unconstrained problems are less challenging and
studied more often than constrained problems. There are a number of proposed
techniques to solve such problems in a satisfactory manner although there is no single

Fachhochschule Köln
Cologne University of Applied Sciences

7

method which can cope with all types of problems. Later, we describe COBRA-R
framework which is capable of applying any unconstrained optimization technique
in order to address constrained problems. However, a promising result is highly
dependent on relevant selection of techniques and parameters. Studying various kinds
of unconstrained optimization algorithms gives us an insight into the correct choice of
algorithms for different problems. In general, iterative unconstrained optimization
can be categorized into two separated classes: point based and population based
strategies.

An unconstrained optimization problem is defined as the minimization of an
objective function f in a search space bounded by a lower bound lb and an upper
bound ub. Maximization and minimization problems are sharing similar principles.
A maximization problem can be converted to a minimization problem by negating
the objective function f . An unconstrained optimization problem is formulated as
follows:

Minimize f(~x), ~x ∈ Rd, lb ≤ ~x ≤ ub. (2.1)

2.2.1 Point Based Strategy

Point based strategies address optimization algorithms which use one point in every
iteration to produce only one new iterate. These type of algorithms need one function
evaluation per iteration Figure 2.1. The new iterate will be considered as starting
point in the next iteration if it produced a better objective value. Otherwise, the
old starting point should be modified in a somehow different manner as long as
the termination criteria are not met. Two well-known algorithms in this class are:
simulated annealing for global optimization and Hooke-Jeeves for local optimization.

Modify(x)
to explore or exploit

x x

Figure 2.1: Conceptualization of point based optimization method.

2.2. UNCONSTRAINED OPTIMIZATION TECHNIQUES 8

Pattern Search (Hooke-Jeeves)

Hooke-Jeeves [14] is a classical pattern search algorithm which is very well suited for
numerical black-box unconstrained problems because of its derivative-free manner.
The Hooke-Jeeves process is a local direct search; it cannot guarantee to locate the
optimum of a multimodal problem unless enough sets of starting points distributed
all over the search space are used. In every iteration the next iterate is selected by
a local sequential exploratory move or exploitative move. Exploitative moves which
are also called pattern moves follow a successful exploratory move. The algorithm
can be summarized as follows:

Exploratory move. In the beginning of every iteration the best visited point so
far (~x best) is considered as the starting point. In order to obtain knowledge about
the correct move direction, exploratory moves are performed. Consider, that the
problem f(x) is defined in d dimensions and that we want to explore behavior of
f(x) in the neighborhood of the current best point. An exploratory move aims to
find ~xnew in the neighborhood of ~x best with a better objective function value. In
every iteration we walk from ~x best along every dimension with the step size ε. First
we perform an incremental move and if no progress could be observed then we move
to the opposite direction. As soon as a better point is obtained the vector ~xnew is
updated. If exploratory moves have been considered in all the directions and resulted
in a reduction of the objective function value f(~xnew) < f(~x best) then the pattern
move is called. Exploration moves can fail if the search is stuck in a local optima. On
the other hand, in the case of unimodal problems as we approach the real optimum
we require smaller step sizes. Therefore, if the exploration fails then the step size ε
should be reduced.

Pattern move. Only if the exploration in one or more directions led to a better
iterate, a pattern move or exploitative move is carried out. Pattern moves use the
information gained by exploration to speed up the optimization process by assuming
that the direction of the last move ~xnew−~x best is the correct direction. Thus, it moves
the new point found by exploration ~xnew slightly into the same direction, although
there is no guarantee that the pattern move yields in a progress. Hence, we assign
the pattern move’s result in a temporary variable ~x temp:

~x temp = ~xnew + α(~xnew − ~x best), (2.2)

where, α is the acceleration factor.

After executing the pattern move it is time to update the ~x best. If the pattern
move was successful then ~x best will be replaced by ~x temp otherwise, the current best
point is the output of the exploratory move before the exploitative move ~xnew. The

Fachhochschule Köln
Cologne University of Applied Sciences

9

process will be repeated as long as the termination criteria is not met. The termina-
tion criteria can be defined in various ways. In efficient optimization we have limited
budget of function evaluations. Therefore, one of the termination criteria could be
the number of function evaluations.

2.2.2 Population Based Strategies

Population based strategies are iterative optimization processes which evolve solu-
tions in every iteration by an interaction of a population of solutions Figure 2.2. Many
of such heuristics are inspired by nature, which are either on the basis of Darwin’s
law of evolution or a behavioral imitation of social animals. In principle, they can be
classified into categories of Evolutionary Algorithms (EAs) and Swarm Intelligence
(SI). Such approaches appeared to perform strong in black box optimization and
attracted the interest of many researchers. Numerous variants of nature based meth-
ods have been developed during the last years. The performance of one algorithm in
comparison to the other is dependent on the test problems and parameter settings
and there is no algorithm which can outperform all others in black box optimization.
On the other hand, the progress of nature-inspired heuristics in the field of efficient
constrained black box optimization is not yet empirically observable. As population
the based approach usually requires a large number of function evaluations to find
the optimum, it is not the optimal approach for problems with a limited budget [28].
Although there are many attempts in the direction of parameter adjustment in or-
der to reduce the number of function evaluations imposed by such techniques, still
the improvement is not satisfactory. The challenge becomes even more pronounced
for constrained problems because many constraint handling tricks impose even more
evaluations of true functions. Therefore, using surrogate models can be an efficient
solution for use of this class of population based optimization problems, which will
be discussed in this study. Evolutionary Strategies [39] and Genetic Algorithms [10]
are two very well-known branches of Evolutionary Algorithms.

Evolutionary Strategies

There are many variants of evolutionary strategies. At this point we provide an
explanation of a basic multimembered ES. This variant is typically a better imitation
of natural evolutionary processes in comparison with a two membered ES or (1+1)-
ES.

The main concept of evolutionary strategies is the survival of the fittest members
of a population, therefore, a higher chance for good genes to appear in the future
generations. Assume, that the number of parents in every generation is µ and the

2.2. UNCONSTRAINED OPTIMIZATION TECHNIQUES 10

Modify(X)
to explore or exploit

},...,,{ 21 nxxxX },...,,{ 21 nxxxX

Figure 2.2: Conceptualization of population based optimization method.

number of offspring in the same generation is λ. Then, in a two membered evolu-
tionary strategy both of these parameters have a value of one. Thus the parent of
the next generation is selected from a population of the size µ+ λ = 1 + 1 according
to the fitness value of current parent and offspring. Nevertheless, this model of evo-
lutionary strategy is far from the natural evolution. Consider, λ > 1 and µ > 1, then
the selection can be done either among the parents and the offspring (µ+ λ) or just
among the offspring λ (in this case the offspring population should be larger than the
parents population λ > µ). In the first multimembered approach (µ+ λ)ES, a good
parent can survive for very long time over generations. This behavior is inconsistent
with with reality. Any member of a population has a limited lifetime. Therefore, the
second mentioned approach (µ, λ)ES appears to be more realistic.

In practice, every ES includes three main steps after the generation of the initial
population:

Step 0: (Initialization)
In the beginning, a parent population should be initialized with µ individuals.
Initialization can be a tricky task for constrained problems but for uncon-
strained problems we can often use random initialization in the search space,
or biased initialization in the neighborhood of a promising starting point which
is known before any computation starts.

Step 1: (Mutation)
Parents are responsible for reproducing a population of offspring with the size
of λ by mutation. This is done by modifying the parents genes and creating new
individuals. Genes are variables of the problem, so an n dimensional problem
has n genes. Consider, ~x

(g+1)
k = {x (g+1)

k,1 , x
(g+1)
k,2 , . . . , x

(g+1)
k,n } is the k-th parent

Fachhochschule Köln
Cologne University of Applied Sciences

11

in the g + 1 generation with n genes. Therefore, in this scenario mutating
the individuals means moving the parents slightly in the input space. On the
other hand, it should be considered that every parent should generate λ/µ

offspring in average. Thus, the offspring population of ~y
(g+1)
l for l ∈ {1, . . . , λ}

is produced as follows:

~y
(g+1)
l = ~x

(g+1)
k + ~z (gλ+l), (2.3)

where ~y
(g+1)
l is the vector of l-th offspring, l ∈ {1, . . . , λ} and k ∈ {1, . . . , µ}.

e.g., k =

{
µ if l = pl, p is an integer
l mod µ otherwise.

~z (gλ+l) is a normally distributed random vector N(0, σ2
i). Hence, in every

generation a random vector z is generated λ times to move each parent about
λ/µ times with an averaged step size of σ in the input space in order to generate
the offspring.

Step 2: (Ranking & Selection)
After the mutation step, all the newly generated individuals will be evaluated
by an objective function and they will be ranked with respect to their fit-
ness value. Consider, the optimization problem as described in Equation 2.1.
Therefore, the individuals which have a smaller objective value are considered
as the fitter and as a result they are ranked higher. A sorting algorithm should
be used to put the offspring individuals in the desired order. After sorting the
offspring we have

f(~y
(g+1)
1) < f(~y

(g+1)
2) < . . . < f(~y

(g+1)
λ). (2.4)

The very first µ individuals among the offspring population will be selected to
be the parents in the next generation. Therefore,

~x (g+2)
s = ~y (g+1)

s , for s ∈ {1, . . . , µ}. (2.5)

Step 3: (Check Termination Criteria)
Termination criteria are often checked after the evaluation and ranking step,
in the case of fulfilling any termination criterion the process will be stopped.
Otherwise, the process will be continued from step 1.

Selection and control of the step size σi has influence on the performance of the
optimization. According to Darwin’s evolutionary model, mutation is not fully ran-

2.2. UNCONSTRAINED OPTIMIZATION TECHNIQUES 12

dom. Therefore, this idea that the result of reproduction of every parent can be in
a hyperellipsoid with semi-axes σi for i ∈ {1, . . . , n} around the parent, is clever.
But there is no unique step size vector which is valid over all generations. So, this
vector can be controlled based on the success rate. Basically, the step size should be
increased in the case of a high success rate and should be decreased if the success
rate is lower than desired.

One other approach to control the step size, is considering σi as a strategy param-
eter and initialize it with the initiative population for each single individual. Then,
in every generation recombine and mutate individuals and strategy parameters [2].

Genetic Algorithms

Genetic algorithm is similar to ES in many aspects. Both techniques are biological-
inspired population based strategies which can address nonlinear black-box uncon-
strained problems by means of recombination and mutation of the superior individ-
uals in the population [12].

Although, GA and ES are sharing many conceptual properties, they are pretty
different in the details regarding the operators. One of the main differences between
GAs and EAs is about the representation of the individuals which is considered as
binary coding for GA whereas, ES uses real values representation. In [12] a more
detailed list of differences between these two well-known evoluitonary algorithms is
provided.

Nelder-Mead Optimization Algorithm

We already discussed a pattern search technique. Nelder-Mead represents a local
direct-search optimizer. This unconstrained optimization method was introduced
in [27] for the first time but it is used as the basis of several other sophisticated
algorithms which can handle constraints in an efficient manner [24]. Therefore, we
bring an abstracted explanation of it here.

Classical Nelder-Mead can be applied to solve high dimensional unconstrained
problems. In this approach, for an n-dimensional problem in every iteration a simplex
with n + 1 vertices is utilized. Every vertex is ranked regarding its objective value
and the worst vertex will be replaced by a better point in the search space. The
simplex approaches the optimum by adaptively reshaping over iterations.

In order to replace the worst vertex, we first need to find a better point. There
are several means of building a new simplex which are used in the specific situations
during the search. A new simplex can be created by one of the four schemes of
reflection, expansion, contraction and shrink.

Fachhochschule Köln
Cologne University of Applied Sciences

13

Assume, {~P1, ~P2, . . . , ~Pn+1} are n+ 1 points in an n-dimensional space, and they
represent the vertices of the current simplex. The point with the highest objective
value for every simplex is then considered as the worst point of the iteration ~Pw and
the point with the lowest objective value is the best point ~Pb. We define a hyperplane
V which is

∑ ~Pi for i 6= w. Centroid of the V is represented as P̄ .

Reflection
Consider a linear approximation in the trust region specified by the current
simplex. By walking from the worst point ~Pw to any point in the V hyperplane,
the objective value decreases. Therefore, the first guess for finding a better
point could be the reflection of the worst point over the centroid point P̄ .
Reflection is done in the beginning of every search cycle and can be awarded
by expansion in the case of success or it can be followed by contraction if it
fails. A moderate solution by reflection will simply be replaced by the worst
solution and next search cycle starts again with reflection.

– Success : f(~Pr) < f(~Pb)

– Fail : f(~Pw) < f(~Pr)

– Moderate : f(~Pb) < f(~Pr) < f(~Pw)

Expansion The expansion in Nelder-Mead algorithm is performed to speed
up the search. If in the reflection phase the move was towards the correct
direction, then we move slightly further into the same direction.

Contraction A failure for the reflection can be due to a large move or a non
valid direction addressed by the linear approximation. In this case, we select
two points on the hyperline which connects the worst point ~Pw to the centroid
point P̄ equally distanced from the centroid.

Pco = P̄ + γ(P̄ − ~Pw)

Pci = P̄ − γ(P̄ − ~Pw) where γ < 1
(2.6)

Shrink The simplex must be shrunk towards the best point ~Pb, if contraction

fails. Shrinking is done by by replacing all ~Pi by
~Pi+~Pb

2
.

These schemes are visualized for two dimensional in the Figure 2.3. Moreover, the
general algorithm for any arbitrary n is listed in Algorithm 3.

2.3. CONSTRAINT HANDLING TECHNIQUES 14

w = p3

pr

m = p̄

w = p3

pr

pe

m = p̄

w = p3

pco

pci

m

pr

w = p3

p1 m = p̄

ReflectionExpansionContractionShrink

Figure 2.3: Two dimensional demonstration of four means of building a new simplex in the
Nelder-Mead optimization algorithm: reflection, expansion, contraction and shrink.

2.3 Constraint Handling Techniques

Engineering optimization problems in real-world are more complicated than what is
described by Equation 2.1 which basically represents the minimization of an objec-
tive function. Most of the underlying problems belong to the class of constrained
optimization problems (COPs) [16]. Valid solutions for COPs are located in a so-
called feasible region restricted by several constraints and this makes such class of
problems very demanding.

Generally, the constrained minimization problem can be formulated as follows:
the task is to find a feasible point ~x = {x1, x2, . . . , xd} ∈ Rd which minimizes the
objective function function f(x). A solution is considered as feasible when it satisfies
all equality and inequality constraints, hj and gi, respectively.

Minimize f(~x), ~x ∈ Rd

subject to gi(~x) ≤ 0, i = 1, 2, . . . ,m

hj(~x) = 0, j = 1, 2, . . . ,m

The existence of equality constraints hj, j = 1, 2, . . . ,m makes the COPs even
more demanding. Many algorithms cannot handle problems with equality constraints
directly and they change the equality constraint to the inequality constraint. There-

Fachhochschule Köln
Cologne University of Applied Sciences

15

fore, we reformulate the COP as follows:

Minimize f(~x), ~x ∈ Rd

subject to ci(~x) ≤ 0, i = 1, 2, . . . ,m

Conventional unconstrained techniques are not sufficient to address COPs. Typ-
ically, a combination of unconstrained optimization algorithms with a constraint
handling extension are applied to COPs [23]. Constraint handling is done in differ-
ent fashions. Several approaches concentrate on the feasible region and assume that
any feasible solution is better than the infeasible ones [23] [9] unlike some others
which try to approach the feasible region by allowing some infeasible points in the
population [37]. Additionally, there exists several approaches which benefit from
the existence of infeasible solutions by repairing and guiding them to the feasible
area [6] [25] [21]. Various constraint handling techniques can be classified as follow-
ing:

• Death penalty rejects the infeasible individuals and re-sample as long a feasible
solution is found. This method is used with simulated annealing [40] and ES
for simple problems [3].

• Penalty functions are added to the objective function to increase the fitness
value proportional with the distance to the feasibility or the number of violated
constraints.

• Stochastic ranking is utilized for ES. With a fixed probability Pf feasible so-
lutions are ranked according their objective value. Otherwise, high ranks are
assigned to the infeasible solutions according to the sum of the constraint val-
ues [37].

• Repair algorithms attempt to find a solution by modifying the infeasible solu-
tions.

• Multiobjective optimization, where the objective and constraint functions are
both minimized [16].

2.3.1 Death Penalty

Death penalty is a simple algorithm but not very practical especially for problems
with very small feasible region. It imposes many extra evaluations to locate a feasible

2.3. CONSTRAINT HANDLING TECHNIQUES 16

solution. By rejecting all the infeasible points we are losing the useful information
about the distance to the feasible area.

2.3.2 Penalty Functions

Since the penalty principle is simple and easy to implement, many constrained op-
timization algorithms are working based on the usage of the different variants of
penalty functions [23]. Another advantage of the penalty functions is that they can
be used in combination with most of the unconstrained optimization algorithms and
transform COPs to conventional unconstrained problems. The main idea is to add a
penalty value proportional to the values of the violated constraints to the objective
function (see Equation 2.7).

f̃ = f(x) + α ·G(x). (2.7)

Where, α is the penalty factor and can be assigned statically or dynamically.

Selecting a suitable penalty factor requires extra tuning and a correct penalty
factor is not the same for various problems. Although several self-adaptive penalty
approaches [8] were proposed, there exists no unique algorithm for determining the
correct penalty factor during the optimization procedure.

In [37], the two terms of underpenalization and overpenalization are introduced
to describe the circumstances of having a wrong penalty factor. If the penalty term
is too small (underpenalization) then basically the constraints are not taken into
account and the minimization is done only regarding the objective function. There-
fore, the optimization procedure can have a problem locating any feasible solutions.
Furthermore, a large choice for the penalty factor results in ignoring the impact of
the objective function. This yields in finding feasible solutions but not finding a
correct direction to minimize the objective value.

2.3.3 Stochastic Ranking

In ES for each generation the new parents are selected by ranking the offspring. For
unconstrained problems the ranking is done regarding the objective value. For COPs,
the ranking can be done by comparing the penalized objective function f̃ Equa-
tion 2.7. The problem with this approach is the challenge to find a proper way to
select correct penalty factor. In order to avoid underpenalization and overpenaliza-
tion stochastic ranking was introduced [37]. The main idea is to take advantage of
both feasible and infeasible points by allowing several infeasible points in the parents

Fachhochschule Köln
Cologne University of Applied Sciences

17

populations. It is shown in [37] that this method is successful in optimizing the
G-problems.

2.3.4 Multiobjective Optimization

[40], [7] and [16] introduce techniques in which constraints are handled by being
considered as another objective function. Multiobjective optimization can be some-
times more expensive and complicated than the conventional COPs [42]. It is not
efficient to use multiobjective optimization especially when the number of constraint
functions are relatively high.

2.3.5 Repair Algorithms

The constraint handling approaches which attempt to generate feasible points by
modifying an infeasible point are called repair algorithms. Except from gene-repair
which is a nature-inspired strategy and can be applied to genetic algorithms, there
are also general repair approaches which can be combined with various optimization
techniques. [21] and [6] introduced a gradient based repair algorithm. Both meth-
ods have similar principles. They both use the gradient information driven from
constraints. The differences of these two approaches are discussed in detail in [21].

2.4 Surrogate Assisted Optimization

2.4.1 COBYLA (Linear Approximation)

COBYLA [31] was introduced in 1994 by Powell. This technique is a more sophis-
ticated and efficient version of Nelder-Mead described in Section 2.2.2 and also it is
designed to solve constrained problems. This method utilizes linear approximation
to model the objective and constraint functions. In every iteration a new simplex
is formed and the linear models are fitted through the vertices of the simplex. The
procedure to select a new vertex is similar to Nelder-Mead explained in 2.2.2, with
the difference that COBYLA selects a better point (vertex) according to an approx-
imated merit function Φ̂ (see Equation 2.8). The constraints are handled by use of
a penalty function which is always the greatest violated constraint according to the
linear approximation of the constraint functions ĉi multiplied by a penalty factor α.

Φ̂ = f̂(x) + α · [max{ĉi : i = 1, 2, · · · ,m}]+ , x ∈ Rd, (2.8)

2.4. SURROGATE ASSISTED OPTIMIZATION 18

where, ˆ is representing the linear approximation instead of the true function.
Therefore, f̂(x) is the linear approximation of the objective function, ĉi is the linear
approximation of the i-th constraint function and Φ̂ is the function which is supposed
to be minimized in every iteration of COBYLA.

COBYLA uses a dynamic penalty function. The penalty factor α is initially set to
a small positive value and is adjusted internally. Let us assume that x∗ is the optimum
of the problem and in every iteration the best point found so far is xb. Therefore,
it is not logical if the value of the merit function in the optimum is larger than the
value of the merit function in the best found point, and if this happens it provides an
evident that the penalty factor is not large enough. Hence, consider ᾱ is the smallest
possible value which fulfills the following condition Φ̂(x∗) < Φ̂(xb), then the penalty
factor α is left as it is if α > 3

2
· ᾱ; otherwise, α is increased to 2 · ᾱ. According

to [31] the adjustment factors are determined by numerical calculations. Although,
COBYLA appears to be successful for minimizing several well-known COPs, there
is no guarantee that the described dynamic penalty approach is sufficient for all the
problems.

Radial Basis Function

In surrogate assisted optimization, finding a suitable approximation technique to
build the surrogate model is a challenge. Although, there are multitude approaches
with various characteristics, there are not many which can compete with radial basis
function interpolation when dealing with high dimensional problems [5]. It is worth
to mention that RBF interpolation is also suitable for problems in low dimensions.
In the other words, performance of RBF interpolation is not highly dependent on
the dimensionality of the problem comparing with other multivariate approximation
methods.

Any function which is only dependent on the distance from a specific point in the
space belongs to the group of radial basis function.

φ(x) = φ(r) = φ(||x− c||), x, c ∈ Rd (2.9)

The distance r is often determined based on the Euclidean norm but this is not
the only approach. In addition, for defining φ a wide range of choices exist like
Gaussian, thin plate spline and polyharmonic spline.

Gaussian RBF: φ(r) = e−εr
2
, where ε can have any positive value.

Fachhochschule Köln
Cologne University of Applied Sciences

19

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

Figure 2.4: Conceptualization of RBF interpolation in 1D, with Gaussian φ(r). The goal is to
approximate a curve according to the information from the blue points. The red curves are weighted
Gaussian radial basis functions with centers of blue points. The red dashed line is the polynomial
p(x). Summation of all the red curves and the dashed line is the blue curve which interpolates all
points and fits a smooth curve through them.

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

Figure 2.5: Conceptualization of RBF interpolation in 1D, with cubic φ(r). The goal is to
approximate a curve according to the information from the blue points. The red curves are weighted
cubic radial basis functions with centers of blue points. The red dashed line is the polynomial p(x).
Summation of all the red curves and the dashed line is the blue curve which interpolates all points
and fits a smooth curve through them.

polyharmonic spline: φ(r) =

{
rk where k = 1, 3, 5, . . .
rkln(r) where k = 2, 4, 6, . . .

thin plate spline: φ(r) = r2log(r)

2.4. SURROGATE ASSISTED OPTIMIZATION 20

pseudo-cubic: φ(r) = r3

RBF interpolation fits a model on n points x = {x1, x2, . . . , xn} in d dimensional
space with the known real function values of U = {u(x1), u(x2), . . . , u(xn)}. This
is done by summation of n radial basis functions defined with xi centers and with
different weights λi.

sn =
n∑
i=1

λiφ(||x− xi||) + p(x), (2.10)

where p(x) is a polynomial tail added to the summation of RBFs in order to reduce
degrees of freedom. Hence, weights of the radial basis functions and the polynomial
can always be obtained uniquely by solving the following system of equations.(

Φ P
P T 0(d+1)×(d+1)

)(
λ
e

)
=

(
U

0d+1

)
, (2.11)

where Φ is the distance matrix – a symmetric matrix with zero diagonal – and
Φij = φ(||xi − xj||), i and j both are from 1 to n. In addition, 0(d+1)×(d+1) and 0d+1

are zero matrices in R(d+1)×(d+1) and Rd+1 space, resp. Moreover, P is defined as
follows,

P =

1 xT1

1
...

1 xTn

n×(d+1)

.

We obtain the weights of RBFs λ = {λ1, . . . , λn}T and coefficients of the polyno-
mial tail e = {e1, . . . , ed}T as following,(

λ
e

)
=

(
Φ P
P T 0(d+1)×(d+1)

)−1(
U

0d+1

)
(2.12)

It is important to stress this point that the matrix inversion can be done if and
only if rank(P) = d+1 [5], [30] which means we need d+1 affinely independent points
among n points. Therefore, we can say for RBF interpolation in the d dimensional
space at least d+ 1 points must be used.

RBF models are easy to implement and computationally efficient even for high
dimensional problems. Also, they can train models with reasonable accuracy and
only a very few points. Regis in [34] uses a cubic RBF for COBRA and Extended
ConstrLMSRBF algorithms. The same author in [33] and [35], illustrates the superi-
ority of the cubic RBF in comparison with other kinds of RBFs like thin plate spline

Fachhochschule Köln
Cologne University of Applied Sciences

21

for black box optimization applications. As a result, we also utilize the same form of
the RBF for COBRA-R optimization framework. But it is very easy to modify this
feature in COBRA-R framework and use other types of RBF or even other kind of
surrogates.

Figure 2.4 is a 1D interpolation example by means of Gaussian radial basis func-
tion. The goal is to approximate a curve according to the information from the blue
points. Red curves are weighted Gaussian radial basis functions with centers of blue
points. The red dashed line is the polynomial p(x). Summation of all the red curves
and the dashed line is the blue curve which interpolates all points and fits a smooth
curve through them.

2.4.2 COBRA (RBF)

Constrained Optimization by Radial Basis Function Approximation (COBRA) is a
surrogate assisted optimization algorithm proposed by Regis [34]. The main idea of
this method is to use approximations of both, the objective function and constraint
functions, in order to save evaluations of the real function and constraints. COBRA
uses RBF interpolation to model the objective and constraints. Each iterate is a
result of an optimization on a subproblem, which is a constrained problem defined
by the RBF interpolation models of the objective and the constraint functions.

Figure 2.6 illustrates a flowchart of the algorithm. In the fist step an initial
population is produced to make it possible to create the first RBF model. The
initialization phase in COBRA [34] is done by locating d + 1 random individuals
in the search space. The resulting RBF models from the initial design are used to
find the next iterate to be evaluated on the real function. The COBRA process has
two main phases. If there exists no feasible point in the initialization step phase
I is performed and as soon as a feasible point is found then the phase II is called;
otherwise, phase II is directly started. During the both phases an internal optimizer
minimizes the subproblem defined in each phase. Basically, the subproblems are
optimization problems on the surrogate.

Note that the solution returned by the optimization on the surrogates (infill
point) is the only point that is also evaluated on the real function. This makes
the algorithm efficient in terms of real function evaluations required. If the internal
optimizer returns a better point than the current best solution, the best solution is
replaced by the infill point. In any case the RBF models are updated using the new
information. This procedure will be performed in a sequence until the number of
function evaluations exceeds the maximum number of allowed evaluations given by
the user (the budget for the optimization).

2.4. SURROGATE ASSISTED OPTIMIZATION 22

Generate
initial
design

Evaluate new
point(s) on

the real function

Budget
exhausted?

No

No

PhaseI:
Fit RBF surrogates

of constraints

PhaseII:
Fit RBF surrogates
of objective and

constraints

Run optimization
on subproblem

Update the
 best solution

Yes Found
 any feasible

 solution?

Yes

Figure 2.6: Flowchart of the COBRA [34] algorithm.

Distance Requirement Cycle

COBRA applies a distance requirement factor which determines how close the next
solution ~xinfill ∈ Rd is allowed to be to all previous ones. The idea is to avoid frequent
updates in the neighborhood of the actual best solution. The distance requirement
can be passed by the user as an external parameter vector Θ = 〈θ(1), θ(2), . . . , θ(κ)〉
in phase I and Ξ = 〈ξ(1), ξ(2), . . . , ξ(κ)〉 in phase II, where ξ(i), θ(i) ∈ R≥0. In each
iteration, COBRA selects the next element ξ(i) of Ξ and adds the constraints ||~xinfill−
~xj|| ≥ ξ(i), j = 1, ..., n to the set of constraints. This measures the distance between
the proposed infill solution and all n previous infill points. The distance requirement
cycle is a clever idea, since small elements in Ξ lead to more exploitation of the
search space, while larger elements lead to more exploration. If the last element of
Ξ is reached, the selection starts with the first element again and so on.

The size of the vector and the single components of the distance requirement
vector can be arbitrarily chosen.

Fachhochschule Köln
Cologne University of Applied Sciences

23

Uncertainty of Constraint Predictions

COBRA aims at finding feasible solutions by extensive search on the surrogate func-
tions. However, as the RBF models are probably not exact especially in the initial
phase of the search, a factor ε is used to handle wrong predictions of the constraint
surrogates. In the beginning we set εinit = 0.005 · l, where l is the smallest side of
the bounds box. In each iteration n we only claim the point to be feasible if the
following Equation holds for all constraint surrogates s

(n)
i with i = 1, . . . ,m:

s
(n)
i + ε

(n)
i ≤ 0 (2.13)

The constraints are tightened by adding the factor ε which is adapted during the
search. The ε-adaptation is done by counting the feasible and infeasible infill points
Cfeas and Cinfeas over the last iterations. When the number of these counters reaches
the threshold for feasible or infeasible solutions, Tfeas or Tinfeas, respectively, we ad-
just ε by dividing or doubling it by 2 (up to a given maximum). When ε is decreased,
solutions are allowed to move closer to the constraint boundaries (the imaginary
boundary is relaxed), since the last Tfeas infill points were feasible. Otherwise, when
no feasible infill point is found for a while (Tinfeas), the ε factor is increased in order
to keep the points further away from the constraint boundary.

Subproblem optimization

In each iteration COBRA performs an optimization on the RBF models. This is
done by the Fmincon function in MATLAB. This function utilizes an interior point
algorithm and can address constrained problems.

In phase I, the goal is to find a feasible point. Therefore, the subproblem in
phase I only gives attention to the minimization of the summation of the violated
constraints according to the surrogate models of the constraint functions. However,
in phase II the objective RBF model is supposed to be minimized subject to the
surrogates of constraint functions. In this work the solution returned by the internal
optimization on the surrogates is called infill point. The subproblem in phase I is
formulated as follows:

Minimize
∑m

i=1[max{s(i)n (~x), 0}]2, ~x ∈ Rd, a ≤ ~x ≤ b (2.14)

subject to s
(i)
n (~x) + ε

(i)
n ≤ 0, i = 1, 2, . . . ,m (2.15)

ρn − ||x− xj|| ≤ 0, j = 1, . . . , n (2.16)

2.4. SURROGATE ASSISTED OPTIMIZATION 24

where s
(i)
n is the surrogate model for the i-th constraint function. Also, ε

(i)
n is the

margin used to take the uncertainty of the constraint prediction into account. Fur-
thermore, ρn is the required distance of the new iterate from all the other points in
the population in the n-th iteration.

The subproblem in phase II has a different objective in comparison with the
subproblem in phase I. The subproblem during phase II is described as following:

Minimize s
(0)
n (~x), ~x ∈ Rd, a ≤ ~x ≤ b (2.17)

subject to s
(i)
n (~x) + ε

(i)
n ≤ 0, i = 1, 2, . . . ,m (2.18)

ρn − ||x− xj|| ≤ 0, j = 1, . . . , n (2.19)

where s
(0)
n (~x) is the surrogate model for the objective function.

2.4.3 COBRA-R (RBF)

The promising results achieved by COBRA [34] for high dimensional highly con-
strained optimization problem (MOPTA08) motivated us to re-implement the CO-
BRA algorithm. COBRA-R [20] is an implementation of COBRA [34] in R.

Although, COBRA and COBRA-R are sharing many common principles, there
are several differences which can lead to different results for the same problems. The
main fundamental differences between COBRA [34] and COBRA-R [20] are listed as
follows:

• Implementation environment : COBRA-R is implemented in R while COBRA
is implemented in MATLAB

• Initialization

• Skipping phase I : COBRA-R has an option to skip the phase I and directly
proceed with phase II even if no feasible solution is found in the initialization
phase.

• Internal optimizer

• Repair infeasible: an extension to COBRA embedded in COBRA-R

Initialization

The COBRA-R optimization framework gives the users the possibility of choosing
between several initialization approaches like LHS, Biased and Optimized. Except

Fachhochschule Köln
Cologne University of Applied Sciences

25

Generate
initial
design

Evaluate new
point(s) on

the real function

Update the
best solution

Budget
exhausted?

Fit RBF surrogates
of objective and

constraints

Run optimization
on surrogates

Add solution
to the

population

NoYes

Solution
repaired or
feasible?

Yes

Run
repair

heuristic

No

Figure 2.7: Flowchart of the COBRA-R algorithm.

from the LHS initialization the other algorithms are only practical if a feasible start-
ing point is provided. In COBRA [34] the initialization is usually done randomly by
means of Latin hypercube sampling.

LHS or Latin hypercube sampling is one of the options in the COBRA-R frame-
work to create the initial population. The underlying algorithm generates random
points in a way that the search space is well covered.

Assume, we require to generate n individuals in a two-dimensional input space.
Every variable (x1, x2) should be stratified into n quasi-equal intervals. The formed
square grid is called a Latin square if and only if in each row and column only one
point exists (see Figure 2.8). In fact, the Latin hypercube design concept is on

2.4. SURROGATE ASSISTED OPTIMIZATION 26

Figure 2.8: A randomly produced Latin hypercube for two variables and 5 individuals (samples).

the basis of the generalization of the two-dimensional Latin square to any arbitrary
dimensions [41].

The ”lhs” package in R provides an implementation of Latin hypercube sampling.
The COBRA-R optimization framework utilizes this package to generate the random
initial population.

Biased initialization is usually recommended to be performed if a feasible starting
point is provided for the problem with a small feasible region. The main idea is to
sample points close to the known starting point instead of sampling within the whole
search space. Although this approach can be beneficial in some cases, if the starting
point is located in a region far from the real optimum then the model built on these
points after the initialization phase is not very informative.

In practice, the Biased initialization in the COBRA-R framework generates ran-
dom points normally distributed around the suggested starting point N(~xstart, σ

2),
the standard deviation σ can be passed by the user through the parameter called
”initBias”. The initBias should be kept in a small range. If the user does not set
this parameter, then 0.005 is assigned by default.

Optimized initialization is also recommended to be used for unimodal problems
with a feasible starting point. In this approach, unlike the two former ones the
starting population is not generated randomly.

As it is expected from the name of the Optimized initialization approach, the
initial set of points are created by performing an optimization technique on the real
functions. We use Hooke & Jeeves search for a limited number of evaluations to pro-

Fachhochschule Köln
Cologne University of Applied Sciences

27

vide enough individuals required in the initialization step. Moreover, the constraints
are handled by penalty function addressing the maximum violated constraint.

Internal optimizer

Different optimizers are used by the COBRA-R and COBRA frameworks to solve
the subproblem defined by the surrogate models. We call the optimizers used in the
inner loop as the internal optimizer. The internal optimizer used in COBRA [34]
is Fmincon function provided by the optimization tool in MATLAB. It is mentioned
in [34] that this function uses an interior point algorithm. The COBRA-R optimiza-
tion framework gives the users the possibility to choose between COBYLA, ISRES,
HJKB and NMKB. All the mentioned solvers are already implemented in R. The
latter optimization techniques are described in Section 2.2, 2.3 and 2.4.1. In gen-
eral, any unconstrained or constrained technique can be embedded to the COBRA-R
optimization framework.

We use two constrained (COBYLA [31], ISRES [38]) and two unconstrained
(NMKB, HJKB) solvers for the internal optimizer. NMKB and HJKB are the imple-
mentation of Nelder-Mead and Hooke&Jeeves techniques in R, respectively. As it is
mentioned before, the subproblem in phase I and phase II both are COP. Therefore,
an unconstrained solver requires a trick to handle the constraints.

When an unconstrained technique such as HJKB and NMKB is utilized as the
internal optimizer in the COBRA-R framework, the constraints are handled by means
of a static penalty approach. In the COBRA-R we have the possibility to skip the
phase I and directly start with the phase II, here we discuss how we handle the
constraints of the subproblem in phase II. For subproblem of phase II we have two
types of the constraints to handle: 1. the constraint imposed by the required distance
from the other points in the population. 2: surrogate models of the constraint
functions. Usually the COPs have more than one constraint function. In order to
handle the second type of the constraints, we always take the summation of the
violated constraints on the surrogate into account. Therefore, the function passed to
the unconstrained internal optimizers is as following:

Minimize s
(0)
n (~x) + α2 · (α1 · penalty1 + penalty2), (2.20)

~x ∈ Rd, a ≤ ~x ≤ b, (2.21)

2.4. SURROGATE ASSISTED OPTIMIZATION 28

where, penalty1 and penalty2 are defined as following:

penalty1 =
m∑
i=1

max{s(i)n (~x) + ε(i)n , 0}, i = 1, 2, . . . ,m (2.22)

penalty2 =
n∑
j=1

max{ρn − ||x− xj||, 0}, j = 1, . . . , n. (2.23)

The penalty factors α1 and α2 are constant during the internal optimization
on the surrogates. But, they get adjusted in every iteration, if it is necessary. In
every iteration if the infill point does not fulfill the constraint related to the distance
requirement cycle, then α1 is increased. Also, α2 is increased in every iteration up
to a maximum value which can be assigned by the users. The penalty functions
described in Equation 2.23 are simply used for the unconstrained internal optimizers
NMKB and HJKB. For the constrained internal optimizers (ISRES and COBYLA),
the constraints of the subproblem defined in Equation 2.16 and 2.19 are directly
passed to the solver.

Repair algorithm

Sometimes the infill points returned by the internal optimizer are infeasible. A re-
pair algorithm is embedded in the COBRA-R optimization framework which intends
to repair the infill points with a slight infeasibility by guiding them to the feasible
region. The repair algorithm used in COBRA-R is called ”RI-2”. This algorithm is
described and discussed in detail in [21]. It is worthwhile to mention that, since the
repair algorithm is performed on the surrogate models no real function evaluations
is used and only after the repair algorithm returns a point the real function is called
for the purpose of evaluation of the new point.

29

Chapter 3

Research Questions

In this work we mainly investigate the performance of the COBRA-R optimization
framework, which is a variant of COBRA introduced by Regis in [34] for solving
black-box constrained optimization problems. First, we present results accomplished
by COBRA-R with the manually tuned parameter settings differing from problem to
problem. These results are partly presented in an earlier study in [20]. Additionally,
we study the benefits of extending the COBRA-R framework with an automatic
parameter adaption mechanism. Moreover, we introduce an approach to select the
starting point of the internal optimizer to investigate whether an occasional random
start has the potential to improve the results in minimization. In this Chapter
we state several research questions. In order to answer the research questions, the
optimization algorithms are evaluated with 12 benchmarks including MOPTA08 and
the well-known G-problems suite.

Q.1: Which challenges are imposed to COBRA-R for optimizing the
G-problems?

G-problems with different dimensions, different types of fitness and constraint
functions impose various kinds of challenges to the COBRA-R optimization
algorithm. This question is addressed in detail in Section 4.1 and answered in
the same section.

Q.2: Can COBRA-R efficiently optimize the G-functions?

To our best knowledge, several techniques already exist which can solve G-
problems and approach the optimum of many G-problems with a great accu-
racy, but most of the algorithms require a large number of function evaluations.
One important question is whether the COBRA-R optimization algorithm is
capable of reducing the amount of function evaluations required for minimizing
G-problems?

30

Q.3: Can COBRA-R achieve better results than COBRA [34] in
solving G-problems? If so, what are the reasons for improvement?

Regis in [34] reports the minimization results for G-problems achieved by CO-
BRA algorithm initialized with one set of parameter settings for all problems.
Although the results are obtained after a very limited number of function eval-
uations, the final results for many of tested problems are not as accurate as
those determined by evolutionary algorithms with many function evaluations.
COBRA-R is an implementation of COBRA in R with several differences de-
scribed in Section 2.4.3. We show that the performance of COBRA-R is very
parameter sensitive. Therefore, it is interesting to investigate if COBRA-R
initialized with manually tuned parameters for each problem shows any ben-
efits in terms of finding a better solution for G-problems in comparison with
COBRA.

Q.4: Are there strategies to improve upon the worst-case results
in minimization? E.g. to avoid occasional bad solutions due to an
unfortunate initial design?

In order to evaluate the COBRA-R framework all tests for G-problems are
repeated 30 times. There are some problems which can be solved efficiently
with COBRA-R but few trials out of 30 never improve due to an unfortunate
initial design. We introduced a random start strategy to prevent a seldom
early stagnation. The performance of the introduced technique is tested in this
study.

Q.5: Is it possible to achieve reasonably good results for all G-
problems, with COBRA-R initialized with only one set of param-
eters?

COBRA and COBRA-R need to modify some problems before starting the
optimization process in order to assure RBF interpolation can provide an ap-
propriate model for the objective or constraint functions. On the other hand,
the performance of COBRA is sensitive to the selection of several parameters
like the DRC parameter, initialization approach and size of initial population.
We investigate whether extending COBRA-R with a parameter adaptation al-
gorithm provides a framework that can solve G-problems needless of manual
tuning and function modification.

Q.6: Does COBRA-R show any benefits on high dimensional prob-
lems such as MOPTA08 in comparison with COBRA [34]?

Fachhochschule Köln
Cologne University of Applied Sciences

31

In addition to G-problems we study the performance of our optimization frame-
work on MOPTA08 test problem which is a substitute for a real world problem
with high dimension(124) and high number of constraints(68). We compare
our results with the promising results presented in [34] and try to answer the
question above.

32

Chapter 4

Experimental Analysis

In this chapter, we investigate the performance of the COBRA-R optimization frame-
work by evaluating it on the G-problem test suite and MOPTA 2008 benchmarks.
We compare our results with the original COBRA algorithm [34] and some other
optimization techniques.

After describing the G-problem test suit in Section 4.1, different challenges im-
posed by these problems to the COBRA-R framework are discussed in Section 4.1.1.
Analyzing COBRA-R’s behavior in approaching different G-problems gave us indi-
cations to find suitable parameter configurations for each problem. In Section 4.1.2,
we present the optimization results for the G-problems, using the manually tuned
COBRA-R optimization. We introduced several algorithms to enhance the over-
all performance of COBRA-R. We call the extended COBRA-R algorithm as Self-
Adaptive COBRA-R (SACOBRA-R) and we discuss the proposed extensions in Sec-
tion 4.1.3. We evaluate the SACOBRA-R on the G-problems and bring a comparison
with COBRA-R and several other techniques, in Section 4.1.4 and 4.1.5, respectively.

Section 4.2 describes a high dimensional real-world optimization problem
(MOPTA08). First, we show how COBRA-R with different internal optimizers
can approach the MOPTA08 problem in Section 4.2.1. In Section 4.2.2, we show
successful results accomplished for optimizing MOPTA08 by means of COBRA-R
algorithm with assistance of the RI-2 repair technique. We also report how a
careful selection of DRC parameter can improve the performance of the COBRA-R
optimization on MOPTA08.

4.1 G-problem Test Suite

The G-problem test suite [26] is very often studied in the scientific literature for
analyzing constrained-based solvers. Therefore, the G-functions provide a good an-
alytical testbed for our optimization framework.

Fachhochschule Köln
Cologne University of Applied Sciences

33

The underlying functions differ in dimension (d = 2, . . . , 20), type of objec-
tive function (linear, quadratic, nonlinear), and number and type of constraints
(m = 1, . . . , 9). The large range of variation in the characteristics of the G-problems
makes them even more interesting to be studied in order to test the strength of the
optimization algorithms in facing different challenges.

In practice, except from the important mentioned features of a toy problem like
dimension, type of fitness and constraint functions, there are many other features
which can make a real difference in the difficulty of the optimization problems and
as a result in finding a suitable technique to solve them.

Optimization problems have different bound constraints ~x ∈ [~a,~b], which restrict

the input space in every dimension by the lower bounds ~a and the upper bounds ~b.
We defined the input space elongation ISE as a measure to indicate the ratio of the
maximum input range and the minimum input range:

ISE =
max(~b− ~a)

min(~b− ~a)
. (4.1)

In addition, we indicate the range of the objective values over the search space
with a feature called FR. This feature can show the steepness of the fitness function.
It is difficult to model steep functions with RBF interpolation. So, FR can be
considered as a measure for the complexity level of a problem to be approached by
an RBF surrogate assisted strategy.

FR = max(f(~x))−min(f(~x)), ~x ∈ [~a,~b], (4.2)

where, f(~x) is the value of the objective in point ~x. We estimate the objective range
FR by locating n points in the search space and calculating the fitness value in these
points. Let us assume that, F = {f1, f2, . . . , fn} is a set of the objective values
determined for n points distributed in the search space. Therefore, an estimation for
FR can be determined as follows:

FR ≈ max(F)−min(F). (4.3)

Most of the G-problems have multiple constraints and the values of these con-
straint functions can be varied in different ranges. The constraint ratio feature GR is
a measure to determine the ratio of the largest constraint value range to the smallest
constraint value range. The range of every constraint function gr can be determined

4.1. G-PROBLEM TEST SUITE 34

similar to how the objective range is determined:

gr = max(g(~x))−min(g(~x)), ~x ∈ [~a,~b], (4.4)

where, g(~x) is representing the value of the constraint in point ~x. Let us consider
that, for a problem with m constraint functions G = {gr1, . . . , grm} is the set of the
constraint ranges. Therefore, the constraint ratio feature GR is defined as follows:

GR =
max(G)

min(G)
. (4.5)

In order to determine an estimation for this measure we place n points in the search
space and measure all m constraint values for all n points distributed in the search
space.

GR ≈
maxk

(
maxi(g

(k)
i)−mini(g

(k)
i)
)

mink

(
maxi(g

(k)
i)−mini(g

(k)
i)
) , (4.6)

where, i = 1, . . . , n and k = 1, . . . ,m.

The feasibility ratio ρ is the fraction of the feasible space within the search space.
This value is almost zero for problems with equality constraints. We evaluate the
feasibility of n random points in the search space to estimate the feasibility ratio
feature ρ by counting the number of feasible points and dividing it by the number of
all n evaluated points.

ρ =
feasible space

search space
≈ number of feasible points

number of all evaluated points
. (4.7)

The problems with a low feasibility ratio ρ are usually more challenging than other
problems with a wide feasible area.

Since the COBRA-R framework can only deal with inequality constraints, we
modified problems with equality constraints like G03, G05 and G11 and transformed
their equality constraint to inequality. Depending on the problem we decide whether
the positive or negative side of the equality constraint should be considered as the
infeasible region of the corresponding inequality. ρ∗ used in Table 4.1 is the feasibility
ratio of the modified problems.

The values shown in the Table 4.1 regarding ρ∗, FR and GR are obtained by
placing 10 million random points in the search space and measuring the corresponding
fitness and constraint values in order to determine the defined measures.

Fachhochschule Köln
Cologne University of Applied Sciences

35

Table 4.1: Characteristics of the G-functions: d: dimension, ρ∗: feasibility rate(%) after changing
equality constraints to inequality constraints, FR: range of the fitness values, GR: ratio of the
constraints values, LI: number of linear inequalities, NI: number of nonlinear inequalities, NE:
number of nonlinear equalities, a: number of active constraints in the optimum.

Fct. d type ISE ρ∗ FR GR LI NI NE a

G01 13 quadratic 100 0.0003% 298.14 1.969 9 0 0 6
G02 20 nonlinear 1 99.997% 0.57 2.632 1 1 0 1
G03 20 nonlinear 1 0.0000% 92684985979.23 1.000 0 0 1 1
G03MOD 20 nonlinear 1 0.0000% 24.4 1.000 0 0 1 1
G04 5 quadratic 1.33 26.9217% 9832.45 2.161 0 6 0 2
G05 4 nonlinear 1090,91 0.0919% 8863.69 1788.74 2 0 3 3
G06 2 nonlinear 1.15 0.0072% 1246828.23 1.010 0 2 0 2
G07 10 quadratic 1 0.0000% 5928.19 12.671 3 5 0 6
G08 2 nonlinear 1 0.8751% 1821.61 2.393 0 2 0 0
G09 7 nonlinear 1 0.5207% 10013016.18 25.05 0 4 0 2
G10 8 linear 10 0.0008% 27610.89 3842702 3 3 0 3
G11 8 linear 1 66.7240% 4.99 1.000 3 3 0 1

4.1.1 Challenges of Optimization on the G-problems

As the initial optimization tests in COBRA-R, we started with the suggested pa-
rameter setting by Regis [34]. He uses d + 1 random points to generate the initial
population. In fact, COBRA creates the initial population by use of the minimum
permitted points because in a d-dimensional space at least d + 1 points are nec-
essary in order to fit a RBF model. The distance requirement cycle in phase I is
fixed to Θ = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005} and in phase II is selected either as
ΞLOCAL = {0.01, 0.001, 0.0005} or ΞGLOBAL = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}
which has more elements. This leads to a more diverse search. Regis reports the
results for these two choices of Ξ as COBRA-LOCAL and COBRA-GLOBAL, re-
spectively. In addition, feasible and infeasible thresholds (τ feas, τ infeas) are set to⌈
2
√
d
⌉
. Moreover, 0.005l([a, b]) is assigned to the initial and maximum margins for

both algorithms. These parameters are defined in Section 2.4.2.

In the first step, we run our experiments with the same parameter settings. How-
ever, COBRA [34] and COBRA-R[20] are different in several aspects. The differences
are described in Section 2.4.3. For instance, COBRA utilizes the fmincon function
from the MATLAB optimization toolbox but COBRA-R uses several other solvers as
the internal optimizer.

4.1. G-PROBLEM TEST SUITE 36

The very first results gave us the impression that the quality of the final solution
found for the G-problems by COBRA-R is highly dependent on the parameter setting.
Although the given experimental setup by Regis [34] gives intermediate results on a
large set of test problems, it is not the optimal setting for all of them.

In order to find a better setting it can be helpful to investigate the possible
obstacles COBRA-R has in handling optimization problems from different classes.
We classified the possible challenges of COBRA-R solving the G-problem test suite
as following:

• Many local optima: First, these type of problems are challenging to be
modeled by means of RBF interpolation and limited amount of points. Second,
even if the model is reasonably fitted, a local internal optimizer has difficulties
to approach the global optimum, especially when the number of evaluations are
restricted. As an illustration, we can name G02 and G08 which are problems
with many local optima and a global optimizer technique should be used as
the internal optimizer, otherwise the results determined by COBRA-R are very
poor.

• High FR: The high variation of fitness values over the search space causes
trouble for our RBF modeling approach to train a model with acceptable ac-
curacy. On the other hand, a large FR is an indication for a steep fitness
function. This means, that a small move in the input space can cause a large
change in the objective. Therefore, the optimum of such a problem should be
approached with smaller steps which means smaller values in the set of the dis-
tance requirement cycle are more desirable. COBRA-R has to deal this type
of challenge to optimize the G03, G06, G09 and G10 problems. But only a
careful selection of the DRC is not sufficient for problems similar to G03 with
extremely a large fitness range (FR > 1011). Another solution can be a log-
arithmic transformation of the fitness function which is also suggested in [34]
and the modified version of G03 is, called G03MOD.

• High GR: When GR is high it means different constraints have very differ-
ent ranges in the overall search space. This can cause severe problems for
elimination of the infeasibility because most of our options as internal optimiz-
ers handle constraints with the penalty approach. Hence, this high variation
causes that always some constraints are ignored. On the other hand, steep
constraint functions are difficult to be modeled with RBF. G10 is one of the
problems which suffers from this issue. Regis suggests a logarithmic transfor-
mation approach for the steep constraint functions of G10. This problem has

Fachhochschule Köln
Cologne University of Applied Sciences

37

Figure 4.1: G06 problem. The black lines are representing constraint boundaries. The gray area
describes the infeasible region and the white area describes the feasible zone. The curves which
vary in color from red to white are showing the objective function contour lines, darker colors have
lower objective values. The blue point represents the optimum. The original search space for this
problem is [13, 100]× [0, 100]. Left: overview of infeasible region for G06. Right: zoomed in to the
interesting region.

8 constraints and 3 of them have large and fast variations. Regis applies a
logarithmic transformation for those three constraints and names the modified
test problem G10MOD in [34].

• Zero or small feasible region (ρ∗): COBRA-R has difficulties to find a
feasible solution for problems with very small or zero ρ when the distance
requirement cycle includes large values. The presence of large elements in the
set of the distance requirement cycle always leads to undesired jumping in the
search space and this can only be beneficial if the problem is highly multimodal.
In some cases, adding an absolute zero value to the DRC set is required to find
the optimum with a high accuracy. Otherwise, if a good point is found in
the neighborhood of the optimum then large values of DRC, mostly guide the
next iterates to the infeasible region. It can happen that the true optimum is
placed in the forbidden region restricted by DRC and it can never be found.
G01, G03, G07, G08, G10 have very small ρ∗. Although G06 has a large ρ∗

in comparison to the other mentioned G-functions, it is still challenging and
this is because of its needle shape in the interesting region. In this case, in the

4.1. G-PROBLEM TEST SUITE 38

Figure 4.2: G02 problem.

neighborhood of the true optimum the feasibility ratio is much lower than the
real feasibility ratio ρ∗ (see Figure 4.1).

• High input space elongation (ISE): Problems which have some variables
changing in a large range and some other variables having a relatively small
min-max range can face difficulties to be correctly modeled by RBF interpo-
lation. Also, it is very tough to select an appropriate DRC for problems with
such an input space. For example, if the search is started from the wrong side
of the space a small step size causes a very slow convergence and in the opposite
scenario a large step may skip the interesting region. G05 is one example with
this issue. Our experiments show that we cannot accomplish good solutions
without normalizing the input space for such problems.

Summary of the challenges of the G-problems and their possible solutions in
COBRA-R are listed in the Table 4.2.

4.1.2 Performance of COBRA-R with tuned Parameters

Since the G-problems differ in a large range of features and impose different types of
challenges to the COBRA-R optimization framework, we tuned the initial parameters
of COBRA-R for every single problem in a different manner to obtain successful
optimization results. The results presented in this section are also partly shown
in [20].

Fachhochschule Köln
Cologne University of Applied Sciences

39

Table 4.2: Summary of the challenges of G-problems and their possible solutions in COBRA-R

Challenge(s) Solution(s)

G01 Small feasible region. Getting stuck in a local
optimum with some initial population.

Add 0.3 to DRC (more
exploration), from time
to time start the internal
search from a random
point.

G02 Multimodal: Many local optima, especially
in 20d

None!

G03 Nonlinear and non-separable objective. High
dimension d = 20 and large FR.

Logarithmic transform of
the objective function

G04 Fitness function and constraints with mixed
terms x1x2

Easy with COBYLA (others
fail: NMKB, ISRES)

G05 Extremely thin feasible region. Three nonlin-
ear active constraints. Highly varying input
ranges.

Rescale inputs to [0, 1]d.

G06 Very thin feasible region, optimum at tip of
needle. Steep objective function, large range
FR.

Add 0.0 to DRC (avoid
blocking the optimum)

G07 Constraints with mixed terms x1x2 → dif-
ficult for constraint surrogates. Relatively
large FR. Very small ρ = 0.0001%.

Use optimizer COBYLA
(others fail: NMKB, IS-
RES)

G08 Shallow optimum in feasible region is masked
by high (+/−) infeasible peaks, multimodal
problem

Use optimizer ISRES (oth-
ers fail: NMKB, COBYLA)

G09 Very large range FR → one wrong point can
spoil the surrogate models

Start directly in the ”good”
region, use a local surrogate
model

G10 Very small ρ = 0.0007%→ difficult to find a
feasible solution. Large range GR.

Normalization of con-
straints.

G11 Equality constraint (Not a tough challenge). Transforming equality con-
straint to inequality (We
only pass problems with
equality constrained to
COBRA-R framework).

4.1. G-PROBLEM TEST SUITE 40

Table 4.3: Performance of the COBRA-R optimization algorithm on the G-functions with tuned
parameters for each problem. The statistics on the optimization error f(x)− f(x∗) are determined
based on 30 independent runs. The statistics on the final optimization results f(x) for the same
runs are listed in Table 4.4.

Best Median Mean Worst sd fe
G01 2.9E-07 7.5E-05 6.2E-01 2.5E+00 1.1E+00 100

G03MOD 6.7E-07 6.4E-06 2.5E-05 3.2E-04 6.4E-05 400
G04 2.5E-10 6.3E-08 6.7E-07 1.1E-05 2.1E-06 200
G05 1.3E-05 3.0E-04 1.0E-03 2.5E-02 4.5E-03 200
G06 1.9E-04 2.2E-03 5.8E-03 8.1E-02 1.5E-02 100
G07 4.0E-08 6.3E-07 2.7E-06 4.1E-05 7.6E-06 200
G08 3.4E-09 6.6E-07 1.5E-06 2.0E-05 3.5E-06 200
G09 1.5E-08 3.5E-07 1.8E+00 3.8E+01 7.1E+00 300

G10MOD 5.1E-03 8.7E-02 1.6E-01 1.3E+00 2.6E-01 300
G11 3.7E-15 2.3E-13 3.4E-13 1.6E-12 3.9E-13 100

After finding the best parameter setting for each problem (Table 4.5), every test
is repeated 30 times with a limited evaluation budget which also varies from problem
to problem. The statistics of the final deviation from the optimum value and the
final objective value are listed in Table 4.3 and Table 4.4, respectively. In addition,
the applied parameter setting for each G-problem is presented in Table 4.5.

The COBRA-R optimization result for G02-20d is not listed in this table be-
cause we believe we cannot find any suitable parameter setting in COBRA-R to
approach such problem with many local optima due to the modeling limitations (see
Figure 4.2).

As it is listed in Table 4.4, COBRA-R with tuned parameters can approach the
optimum value of all G-problems except G02-20d with a reasonable accuracy after a
limited number of function evaluations.

We also displayed the progress of the manually tuned COBRA-R optimization
process after the initialization phase for every G-problem in Figures 4.3 to 4.5. In
these figures the result presented by Regis in [34] are also indicated by a red square.
Regis [34] always allows only 100 function evaluations. If there is no red square in
the figure this means there was no result presented for the corresponding problem.
For instance, there is no result reported in [34] for the problems G01 and G11. Also,
the missing red point in the plot of the G03 problem in Figure 4.3 is because we

Fachhochschule Köln
Cologne University of Applied Sciences

41

●
●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

49 59

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G01 problem (d=13, m=9)

●

●

●

●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

200 250 300 350 400

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G03MOD problem (d=20, m=1)

●

●

●

●
●

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

1e
+03

20 50 80 110 140 170

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G04 problem (d=5, m=6)

●

●

● ● ● ● ● ●

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

1e
+03

20 45 70 95 120 145 170 195

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G05 problem (d=4, m=5)

Figure 4.3: Manually tuned COBRA-R optimization process for G01, G03, G04 and G05. The
gray curve is representing the median error per iteration for 30 independent trials. The gray shade
around the median is showing the worst and the best error. The red square is the result reported
in [34] after 100 iterations. The blue curve is a fitted smoother for the averaged RBF approximation

error, shown in logarithmic scale log(|S(k)
0 (~xk)−f(~xk)|), where S

(k)
0 is the RBF model of the fitness

function in the k-th iteration trained with k − 1 iterates excluding xk. The blue ribbon around
the averaged approximation error is representing the minimum and maximum approximation error
among 30 runs in every iteration.

4.1. G-PROBLEM TEST SUITE 42

● ●

● ● ●

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

1e
+03

1e
+05

6 26 46 66 86

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G06 problem (d=2, m=2)

●

●

●
●

●
● ●

●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

1e
+03

30 45 60 75 90 105 120 135 150

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G07 problem (d=10, m=8)

●

●

●
●

● ●

1e
−111e
−091e
−071e
−051e
−031e
−011e
+011e
+03

20 45 70 95 120 145

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G08 problem (d=2, m=2)

●

●

●
● ● ●

1e
−091e
−071e
−051e
−031e
−011e
+011e
+031e
+051e
+07

21 71 121 171 221 271

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G09 problem (d=7, m=4)

Figure 4.4: Manually tuned COBRA-R optimization process for G06, G07, G08 and G09. The
gray curve is representing the median error per iteration for 30 independent trials. The gray shade
around the median is showing the worst and the best error. The red square is the result reported
in [34] after 100 iterations. The blue curve is a fitted smoother for the averaged RBF approximation

error, shown in logarithmic scale log(|S(k)
0 (~xk)−f(~xk)|), where S

(k)
0 is the RBF model of the fitness

function in the k-th iteration trained with k − 1 iterates excluding xk. The blue ribbon around
the averaged approximation error is representing the minimum and maximum approximation error
among 30 runs in every iteration.

Fachhochschule Köln
Cologne University of Applied Sciences

43

Table 4.4: Performance of the COBRA-R optimization algorithm on G-functions with tuned
parameters for each problem. The statistics of the final feasible objective value f(x) are determined
based on 30 independent runs.The statistics on the optimization error f(x) − f(x∗) for the same
runs are listed in Table 4.3.

optim Best Median Mean Worst sd ffc
G01 -15.00000 -15.00000 -14.99992 -14.37540 -12.45300 1.062 100

G03MOD -0.69315 -0.69315 -0.69314 -0.69312 -0.69283 0.000 400
G04 -30665.53867 -30665.53867 -30665.53867 -30665.53867 -30665.53866 0.000 200
G05 5126.49748 5126.49812 5126.49841 5126.49915 5126.52284 0.004 200
G06 -6961.81474 -6961.81371 -6961.81173 -6961.80809 -6961.73258 0.015 100
G07 24.30620 24.30621 24.30621 24.30621 24.30625 0.000 200
G08 -0.09583 -0.09583 -0.09582 -0.09582 -0.09581 0.000 200
G09 680.63006 680.63006 680.63006 682.45706 719.04006 7.053 300

G10MOD 7049.24802 7049.25311 7049.33514 7049.40852 7050.56202 0.256 300
G11 0.75000 0.75000 0.75000 0.75000 0.75000 0.000 100

●

●

●
● ●

●

1e
−091e
−071e
−051e
−031e
−011e
+011e
+031e
+05

24 74 124 174 224 274

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G10 problem (d=8, m=6)

●

●

●

●

● ●

1e
−151e
−131e
−111e
−091e
−071e
−051e
−031e
−01

20 25 30 35 40 45 50

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G11 problem (d=2, m=1)

Figure 4.5: Manually tuned COBRA-R optimization process for G10 and G11. The gray curve
is representing the median error per iteration for 30 independent trials. The gray shade around
the median is showing the worst and the best error. The red square is the result reported in [34]
after 100 iterations. The blue curve is a fitted smoother for the averaged RBF approximation error,

shown in logarithmic scale log(|S(k)
0 (~xk) − f(~xk)|), where S

(k)
0 is the RBF model of the fitness

function in the k-th iteration trained with k − 1 iterates excluding xk. The blue ribbon around
the averaged approximation error is representing the minimum and maximum approximation error
among 30 runs in every iteration.

4.1. G-PROBLEM TEST SUITE 44

Table 4.5: Parameter setting used to determine the best results shown in Table 4.4 and Table 4.3.
Initialization: the approach used to generate the initiative population, in parenthesis size of the
initial population is shown. d is referring to the dimension of the problem. IOptimizer: Internal
optimizer. DRC: Distance Requirement Cycle. SCALE: 3 means that input space is normalized or
constraint and/or objective function(s) are modified. RI: repair infeasible mode. (0: not Repaired,
RI-2: RI-2 repair algorithm proposed in [21], CHO: Chootinan repair algorithm proposed in [6]).

Initialization IOptimizer DRC SCALE RI

G01 LHS(3 · d) COBYLA {0.3, 10−2, 10−3, 5 · 10−4} 7 0
G03 LHS(200) COBYLA {0.3, 10−2, 10−3, 5 · 10−4, 0} 3 0
G04 LHS(20) NMKB {0.3, 10−2, 10−3, 5 · 10−4, 0} 7 2
G05 BIASED(20) COBYLA {3, 0.1, 10−2, 5 · 10−3, 0} 3 2
G06 LHS(3 · d) NMKB {0.03, 10−3, 10−4, 5 · 10−5, 0} 7 0
G07 OPTIMIZED(3 · d) COBYLA {0.03, 10−3, 10−4, 5 · 10−5, 0} 7 0
G08 LHS(20) ISRES {0.1, 10−2, 10−3, 5 · 10−4, 10−6} 7 0
G09 OPTIMIZED(3 · d) COBYLA {0.03, 10−3, 10−4, 5 · 10−5, 0} 7 0
G10 BIASESD(3 · d) COBYLA {0.03, 10−3, 10−4, 5 · 10−5, 0} 3 2
G11 LHS(20) COBYLA {0.03, 10−3, 10−4, 5 · 10−5, 0} 7 0

have the COBRA result after 100 iterations and we started to plot the optimization
process for G03 after 200 iterations.

Comparison with COBRA [34]

Overall, we can claim that tuned COBRA-R is able to successfully optimize 10 prob-
lems out of 11 tested ones. In comparison with the results gained by the COBRA [34],
the median of all results is significantly better than the median reported by Regis
in [34]. In addition, we have results for two more functions (G01 and G11) which are
also solvable by COBRA-R and the median of the results can approach the absolute
optimum within a very few number of iterations after the initialization. Although
there are several runs for the problems G01 and G09 which get stuck and do not
improve, most of the other trials converge to the optimum.

Initialization

The COBRA-R optimization framework needs to be initialized with a population
size of at least d+ 1 individuals due to the limitation imposed by the RBF surrogate
approach. The size of the initial population and the method of generating this

Fachhochschule Köln
Cologne University of Applied Sciences

45

● ●

●

●

●

●

●

1e
−07

1e
−05

1e
−03

1e
−01

61 111 161 211 261 311 361

 function evaluation

lo
g(

f(
x)

−
f(

x*
))

G03MOD problem (d=20, m=1)

● ● ●

●

●

●

●

1e
−07

1e
−05

1e
−03

1e
−01

60 110 160 210 260 310 360 410

 function evaluation

lo
g(

f(
x)

−
f(

x*
))

G03MOD problem (d=20, m=1)

Figure 4.6: Impact of the initial population size on the COBRA-R performance for G03. A similar
parameter setting is used for both tests and the only difference lies in the size of initial population.
Left: initial population of size 3 · d = 60, Right: initial population of size 10 · d = 200. The test
with more investment on the initial phase, starts the optimization process with a 10 times smaller
approximation error for the fitness function, shown by blue curves.

population is an important parameter which can influence the quality of the objective
and the constraint(s) model(s) and as a result, the quality of the final results.

In general, our experiments showed that most of the G-problems require a larger
initial population than d+ 1 suggested by Regis [34]. As it is shown in Table 4.5, in
many cases a population size of 3 · d is required.

Also, some problems like G03 require even a larger initial population than 3 · d.
We take a closer look at this problem. First, COBRA-R is not achieving any good
result on the original G03 toy problem due to the very large value of FR. Therefore,
a logarithmic transformation is utilized for its objective function which is described
in [34, 36]. Whenever we mention G03MOD, we are referring to the G03 problem with
a modified objective function. Second, the impact of the initial population size on
the performance of the COBRA-R optimization for G03MOD is shown in Figure 4.6.
In this figure, we are showing the COBRA-R optimization process with the same
parameter setting and the only difference is the size of the starting population (Left:
3 · d = 60, Right: 10 · d = 200). The existence of several runs which do not improve
for the case with the smaller population size, shows us that the model trained based
on some initial designs are not good enough and the new iterates generated during
the process are not correcting the model in the interesting region. Investing more
evaluations for the initial phase is of benefit to start with a better fitness model (10

4.1. G-PROBLEM TEST SUITE 46

times smaller approximation error after initialization phase) for all 30 trials, but with
this drawback that the optimization process has less iterations to move toward the
optimum.

As it is described in Section 2.4.3, the initialization phase can be done by various
approaches. One of the common means used for our tests is a random generation
based on the Latin hypercube design [41]. The benefit of this approach is that there
is no need of any extra knowledge for the starting point. The Biased and Optimized
approaches can be used only if we have a good starting point. For some problems
such as G07, G09 and G10 a random initialization appeared to be insufficient. There
is no recommended starting point for these two test problems in the literature. We
started from a point in the neighborhood of the optimum to generate Biased or
Optimized initial population for G07, G09 and G10.

Internal Optimizer

A careful selection of the internal optimizer is another important factor for conduct-
ing results with good quality by means of our approach. For most of the tested prob-
lems COBYLA [31] is performing well as the internal optimizer. But for problems
with many local optima COBYLA fails. The point is that a local optimizer typi-
cally cannot solve optimization problems with multimodel objectives. The internal
optimizers in COBRA-R are basically performing an optimization on the surrogates
instead on the real models. A reasonable surrogate model for a multimodel problem
normally should be also mutilmodal. Therefore, we cannot expect from a local in-
ternal optimizer to find the global optimum of a problem with many local optima.
G02 and G08 are examples for such problems. Using the global optimizer ISRES [38]
as the internal optimizer for G08 and G02-2d is recommended. But, when the di-
mension of the problem is increased ISRES cannot be an appropriate choice for the
internal optimizer because of high computational time imposed in every iteration by
such population based strategy.

Distance Requirement Cycle

A careful selection of the distance requirement cycle is a rather complex task. Since
even a small adjustment – such as one extra element or less in the cycle – can
completely change the behavior of the whole optimization process. But, what our
experiment shows is that adding a 0.0 value to the cycle is necessary for some prob-
lems and does not have many negative influences even if it is not required. For
problems with very large FR, a small move in the input space induces large changes
in the objective, therefore, we should make sure to have small steps. But depending

Fachhochschule Köln
Cologne University of Applied Sciences

47

Figure 4.7: Impact of the internal optimizer selection on the COBRA-R performance for G08.
Left: COBYLA is the internal optimizer, Right: ISRES is the internal optimizer. The solid curves
are representing the contour line for the true objective function and the dashed curves are the
surrogate model. The black solid curves are representing the constraint boundary. The color range
from red to white is representing the objective value. Darker colors have lower values. The black
point is the best ever found individual and the white points are showing the population of all
evaluated points. The blue point is showing the real optimum. This figure is zoomed in to the
feasible region restricted by the black curves but the actual search space is larger than what is
shown in this figure.

on the type of the problem a small move can have different meanings. Since, in ev-
ery iteration the surrogate models are changing, we are not expecting to have many
repeated points during the COBRA-R process even in presence of the 0.0 element
in the cycle. On the other hand, there are problems that need more exploration.
Therefore, elements with larger values in the cycle are helpful. G01 is one of these
type and adding a large element like 0.3 to the set of DRC is required. As an illus-
tration, the influence of different selection of DRC for G02-2d is shown in Figure 4.8.
Figure 4.8 clearly shows that the DRC in the right figure has a better exploration of
the search space and approaches the true optimum far better.

4.1. G-PROBLEM TEST SUITE 48

Figure 4.8: Impact of DRC selection on COBRA-R performance for G02 in 2 dimensions. Left:
Ξ = {0.01, 0.001, 0.0005}, Right: Ξ = {3, 0.30.2, 0.1, 0.0}. The solid curves are representing the
contour line for the true objective function and the dashed curves are the surrogate model. The
black solid curves are representing the constraint boundary. The color range from red to white is
representing the objective value. Darker colors have lower values. The black point is the best ever
found individual and the white points are showing the population of all evaluated points. The blue
point is showing the real optimum.

Scaling the Input Space

Normalizing the input space turns out to be very important for the G05 problem with
a very large value of the input space elongation (ISE = 1090, 91). Our experiments
show that COBRA-R cannot approach the optimum of the G05 problem unless the
input space is scaled to [0, 1]d.

Scaling Objective Function

Earlier, we had this idea of small elements in DRC for problems with large FR, but
this is not adequate for problems like G03 with extremely large FR. The solution
is to apply a logarithmic transformation to the fitness function of this problem to
reduce the steepness of the objective function and make it possible to be modeled
with RBF interpolation approach. The logarithmic transformation that we have used
is described in [34, 36].

Fachhochschule Köln
Cologne University of Applied Sciences

49

Scaling the Constraint Function(s)

Problems like G10 with very large GR appeared to be a challenge for the COBRA-R
method since 3 constraints are very steep in comparison with 5 others. Hence, the
constraints cannot be removed easily. Regis, in [34], modified the G10 problem by
applying a logarithmic transformation (described in [34, 36]) to the three constraints
with a large range of variation. We achieved good results for the G10 problem by
normalizing them in a linear manner. The min-max range of each constraint over
the search space was measured in a prior search and every constraint is divided
by the determined values. We believe, our approach for modifying the constraint
functions is more effective. Although applying a logarithmic transformation on the
steep constraint functions helps us to have a better surrogate model for the underlying
constraints, still some constraints can have a larger variation range in comparison
with others. Normalization of all constraints helps to weight all the constraints
equally and avoid ignoring the effect of some constraints and emphasizing on the
other ones.

Repair

It is shown in a recent study in [21] that the repairing algorithm embedded in the
COBRA-R framework does not have any large affect on the final quality of optimiza-
tion results for G-problems.

4.1.3 Performance of Self-Adaptive COBRA-R

Although the results presented in the latter section have a good quality, the pa-
rameter selection and the function modification had to be done manually, mainly
based on our extra information from the problems. This information usually is not
known for black-box problems. Hence, we introduced three extensions to tackle the
possible challenges automatically. We name the extended framework self-adaptive
COBRA-R. In this section, the self-adaptive COBRA-R will be discussed and the
results obtained with this approach will be presented.

The self-adaptive COBRA-R or SACOBRA-R algorithm includes three additional
extensions in comparison with the COBRA-R optimization framework. First, we
explain the input space rescaling step which occurs before the initialization. Second,
we introduce an approach for starting the internal optimizer from a randomly selected
point in the search space. Third, the parameter/function(s) adaptation phase which
takes place after the initialization step will be described in detail. After describing
these extensions, we explain how the initialization step is done in SACOBRA-R.

4.1. G-PROBLEM TEST SUITE 50

Generate
initial
design

Evaluate new
point(s) on

the real function

Update the
best solution

Budget
exhausted?

Fit RBF surrogates
of objective and

constraints

Run optimization
on surrogates

Add solution
to the

population

NoYes

Solution
repaired or
feasible?

Yes

Run
repair

heuristic

No

Adapt
parameters/
function(s)

Select the
starting point

Rescale
input
space

Figure 4.9: Flowchart of the Self-adaptive COBRA-R algorithm. The self-adaptive COBRA-R
algorithm is a variant of COBRA-R [20] with three extra extensions shown with gray blocks.

Additionally, we explain how the internal optimizer is selected for SACOBRA-R.
Furthermore, the results achieved by SACOBRA-R are presented and analyzed.

Rescaling the Input Space

The G-problems have a different input space restricted by the bound constraints ~x ∈
[~a,~b]. In [34], it is mentioned that all problems passed to the COBRA optimization
framework [34] are rescaled from [a, b] to [0, 1]d. We have applied an input space
rescaling only to the problems with large ISE (described in Section 4.1). It is
important to note that the input space elongation is defined based on the bound
constraints of the problem (lower and upper bounds, ~a and ~b, resp). This value

Fachhochschule Köln
Cologne University of Applied Sciences

51

●

●

●
●
●●
●
●●

●

●
●●●●

●●
●●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●●

●

●●●●

●

●
●

●

●●

●●

●
●

●●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●
●●

●

●●

●●●●
●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●●

●●
●

●

●

●

●
●
●

●

●

●
●●●●

●●

●

●

●

●
●●

●
●

●●
●

●
●●●
●

●

●●●

●
●

●
●●●●
●

●

●

●

●●

●●
●

●

●

●
●

●
●

●
●●●

●

●
●

●

●●
●
●

●

●●

●

●●
●●●●

●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●●
●
●

●
●
●

●
●

●

●●

●
●

●

●
●●
●

●

●
●
●

●

●●

●

●
●●●

●

●

●●
●

●

●
●●●

●●

●

●
●●

●

●

●
●

●
●●●
●●

●
●

●

●

●

●●
●●●

●

●●
●

●●
●
●

●

●
●●

●

●

●

●
●

●
●
●
●●●●

●

●
●●

●

●

●●
●●

●

●

●

●
●

●
●●
●

●

●●

●●●
●

●●

●●

●●●●●

●

●●

●
●

●●
●
●

●
●
●

●

●

●●
●

●

●

●

●●
●●●

●

●

●

●●

●●

●
●

●
●
●

●●

●
●●●
●

●

●
●●

●●

●

●●●●●

●
●

●
●●

●

●

●●●●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●●
●

●

●●

●

●

●
●
●

●

●

●
●

●
●
●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●●
●●●

●

●

●●

●
●
●●
●

●●

●
●

●
●
●

●
●●

●●●●
●

●
●

●
●

●●

●
●●
●

●

●

●

●●

●

●

●

●
●●●

●

●
●

1e
−10

1e
−05

1e
+00

1e
+05

G01 G05 G10

 problem

lo
g(

S(
x)

−
f(

x)
)

scaled
FALSE

TRUE

Figure 4.10: Impact of the input space normalization on the approximation error (|Sk
0 − f(xk)|)

of the objective function for G01, G05 and G10 with large ISE. The results are drieven out of
30 independent trials for each setting. Sk

0 is the RBF model of the objective function in the k-th
iteration trained with k − 1-th iterates excluding xk. It is apparent that scaling the input space in
all three cases has a significant impact on the accuracy of the objective model.

is known for black-box problems without any further evaluation or analysis. The
bounds of a problem describe the range of variation of each variable and typically,
these bounds are known. Therefore, in the self-adaptive COBRA-R framework,
before generation of the initial population, the input space is automatically rescaled
only for problems with large ISE. Among our test problems, G01, G05 and G10
have a relatively large input space elongation (according to Table 4.1).

In Figure 4.10, the boxplot of the objective function approximation error for
three G-functions with and without normalization of the input space is plotted. It is
evident, that in all three cases the scaling of the input space has a notable influence on
the accuracy of the RBF model for the fitness function. This influence is significant
for the G10 problem. It is surprising that without rescaling the input space the
objective approximation error is very large for the G10 problem which has a simple
linear polynomial fG10(x) = x1 + x2 + x3 objective function. The reason behind
such large error for modeling such a simple objective function can be traced back
to numerical issues of RBF modeling. It is mentioned in Section 2.4.1 that a cubic
radial basis function φ(r) = r3 = ||x − xi||3 with combination of a polynomial tail
is utilized to model the objective and constraint functions. Consider, x varying in a

4.1. G-PROBLEM TEST SUITE 52

range of [100, 10000] which is the case for G10, this large values in the input space
lead to very large values for the output of the cubic radial basis function used for
interpolation purpose and these large values neglect the existence of the polynomial
tail in practice. This is why the surrogate model predicts wrong values. This problem
is resolved by normalizing the input space and rescaling the bound constraint from
[a, b] to [0, 1]d.

Random Start Algorithm

We observed in our earlier experiments (shown in Section 4.1.2) that for several test
sets – despite the fact that the median of the 30 trials is converging to the optimum
very fast – there are some trials which never improve after the initialization phase.
Most likely, the search gets stuck in a wrong region (in one of the local optima)
due to the initial model obtained based on the initial population. We assume two
possible scenarios for such a situation: 1. The true function is multimodal and the
surrogate model did not model the global optimum due to lack of information about
the interesting region. 2: The surrogate model is accurate enough in the interesting
region but the internal local optimizer is not successful in escaping the local optima.
It seems like the iterates generated during the optimization process are not improving
the results; therefore, certain randomly generated initial designs never lead to a good
result.

For instance, the G01 problem is facing such difficulties for 10 out of 30 runs.
For this reason, we propose an approach which occasionally selects a random point
in the search space and starts the internal search with this point, instead of always
starting the internal search from the best found individual.

This idea can be implemented in various fashions: One may define a fixed proba-
bility Pr to start the internal search from a random point. We believe, this approach
can be problematic, since a suitable value for Pr may vary for different problems,
which would require additional tuning effort. An alternative approach could trigger
a random start if the minimization results did not improve for a certain number Cs of
iterations in a row (count of stagnation). Hence, the random start does not impose
any extra iterations for problems which are progressing well during the optimization
procedure and is not called unless a stagnation of the optimization process is ob-
served. The parameter Cs can be selected by the user. The described approach has
its own drawback: if the search is converging slowly towards a local optimum then
Cs may be reset and the search is trapped in the neighborhood of a local optimum.
For this reason, we combined the first and second mentioned approaches. In the k-th
iteration, the probability to start the internal optimization with a random point in

Fachhochschule Köln
Cologne University of Applied Sciences

53

the search space instead of the best point found by the optimization procedure, is
Pk. The random start probability P (k) is decayed after each iteration, following a
sigmoid function as described in Equation 4.8.

P (k) =
Pmax − Pmin

2
· tanh(−(k − T)) +

Pmax + Pmin
2

, (4.8)

we select the parameters as following: Pmin = Pmax

10
, Pmax = 0.3 and T = 15 + 3 · d.

The probability of starting the internal search from a random point is decreasing
over time. A high probability of a random initialization during the early iterations is
chosen since we intend to correct the model or find the interesting region during the
early iterations. A low probability of random initialization during the last iterations
is due to the assumption that the interesting region is typically found in the last
iterations and it is preferable to spend the limited number of remaining function
evaluations on the improvement of the model in the interesting region and to avoid
high rate of exploration.

Algorithm 1 is embedded in the COBRA-R framework as a step before optimiza-
tion on the surrogates. This is shown in Figure 4.9.

Applying the random start algorithm as an extension to the COBRA-R opti-
mization framework appears to be beneficial for several test problems such as G01,
G05 and G08 in comparison to the results with manual tuning, as presented in Sec-
tion 4.1.2. The top-left plot in Figure 4.12 is showing the optimization progress for
the G01 test problem with the possibility of a random initialization of the internal
optimizer. It is apparent that all 30 runs converge to the optimum, while only 90%
of the trials with manually tuned parameters and without random starting algorithm
tend to converge to the optimum. In addition, the optimization processes for G08
shown in Figure 4.13 and 4.4 indicates that the random initialization algorithm leads
to a faster convergence. Moreover, G05 is another example where the random start
algorithm shows benefits. The plot regarding the optimization process for G05 in
Figure 4.12 shows that even the worst result for G05 has a small error of 10−3 after
only 50 iterations, but without random start algorithm the worst case error drops
only after 120 iterations.

One can pose this question that why the worst case errors for G09 problem is
not improved after applying the random start algorithm? The answer is that the
bad results observed for G09 are mainly due to the wrong model for the objective
function. It is shown in Figure 4.13 that the surrogate approximation error is very
large for G09. Therefore, a random starting algorithm cannot be effective for these
types of problems. Table 4.6 lists the worst error obtained by the SACOBRA-R and
COBRA-R algorithm among 30 independent runs for the G-problems. Comparing

4.1. G-PROBLEM TEST SUITE 54

Algorithm 1 Random Start Algorithm. Input: The counter for the number of
iterations in a row without a progress c, The best point found in the k-th and
(k − 1)-th iteration, xbest(k) and xbest(k − 1), resp. Output: The selected starting
point xstart(k + 1) which will be passed to the internal optimizer in the (k − 1)-th
iteration, Updated counter c.

1: B : maximum budget for the function evaluations.
2: Cs := B

10 : threshold on number of iterations without a progress.
3: k : The current iteration

4: if The best result is updated in the last iteration (xbest(k) < xbest(k − 1)) then
5: c← 0
6: else
7: c← c+ 1
8: end if
9: ε← generate a random value ∈ [0, 1]

10: if (c > Cs) || (ε < P (k)) then . P (k) is defined in Equation 4.8
11: xstart(k + 1)← a random point in the search space
12: c← 0
13: else
14: xstart(k + 1)← xbest(k)
15: end if

these results shows that the worst case result is improved for 6 problems out of 10.
This can be due to the embedding the random start algorithm extension.

Parameter/Function(s) Adaptation Algorithm

In Section 4.1.2, it is shown that considering the required problem adjustments before
starting the COBRA-R procedure and selecting a suitable parameter setting to start
up the COBRA-R, helps to minimize the G-problems efficiently. However, the pa-
rameter selection was based on our additional knowledge about the characteristics of
the test problems. Since these information are not provided for black-box problems,
it is desirable to add a mechanism to the COBRA-R framework with which the sen-
sitive parameters can be adapted to the problem automatically. Also, it is important
to decide whether the objective function should be transformed (e.g. logarithmic or
scaled) for the purpose of the internal COBRA operations.

Fachhochschule Köln
Cologne University of Applied Sciences

55

Table 4.6: Comparing the worst results achieved by SACOBRA-R and manually tuned COBRA-
R. Performance of the Self-adaptive COBRA-R optimization algorithm on G functions to improve
worst case result by means of random start algorithm. The same configuration is utilized for all
problems except G02 and G08, which use ISRES as the internal optimizer instead of COBYLA.
The worst optimization error f(x)− f(x∗) are determined from 30 independent runs.

COBRA-R SACOBRA-R sd fe
G01 2.5E+00 1.2E-06 5.2E-07 100
G03 3.2E-04 0.994 0.419 300
G04 1.1E-05 2.8E-07 1.8E-07 200
G05 2.5E-02 5.2E-03 7.0E-04 200
G06 8.1E-02 1.5E-02 3.4E-05 100
G07 4.1E-05 1.0E-05 2.0E-06 200
G08 2.0E-05 5.2E-11 1.5E-11 200
G09 3.8E+01 2.2E+05 4.0E+04 300
G10 1.3E+00 2.0E+02 3.8E+01 300
G11 1.6E-12 6.4E-11 1.3E-11 100

As it was mentioned before, the correct choice of the distance requirement cycle
plays an important role in the overall performance of COBRA-R. Moreover, the wise
logarithmic or linear transformation of the fitness and constraint functions made a
real difference in the accuracy of the surrogates and the quality of the optimization
results.

In SACOBRA-R the initialization approach and the internal optimizer are fixed
for all test-problems but the distance requirement is automatically adjusted during
the parameter/function(s) adaptation step. In the parameter/function(s) adaptation
step which is performed directly after the initialization phase, it is decided whether
the objective function or the constraint function require to be modified, and if so, the
modification is done according to the information driven from the initial population.
In the following, we explain how the parameter/function(s) adaptation step works.

Objective Function Transformation As mentioned before, the best results pre-
sented in Section 4.1.2 for the G03 problem with a very large value of FR can just
be achieved if the fitness function is modified by a logarithmic transformation. As
shown in Table 4.1, G03 has a value of FR in the order of billions. This large range
of variation for the fitness function can cause difficulties for the RBF modeling in
order to fit a reasonably correct model. G03MOD is the modified version of G03

4.1. G-PROBLEM TEST SUITE 56

by applying a logarithmic transformation [34, 36] on the fitness function. Table 4.1
shows that FR is reduced by a factor of 10 million. Figure 4.11 illustrates how this
transformation can play a role in improving the fitness model approximation error
and as a result the enhancing the success of the optimization process. However, in
black-box optimization we do not have the possibility to obtain the exact value of
FR for different problems, a rough estimation of this value after the initialization
step can give useful information about the range of the objective value. So, in the
parameter adaptation step F̂R (which is a rough estimation of FR described in
Equation 4.2) is determined by measuring the fitness value for the 3 · d individuals

placed in the search space during the initialization phase. If the measured F̂R after
the first phase is larger than FRu then a logarithmic transformation is automatically
applied to the objective function. Therefore, no extra knowledge about the fitness
behavior is required before the problem is passed to the self-adaptive COBRA-R.
The FRu is a constant which can be defined by the user. We set this value to 108.

We can conclude two important notes from Figure 4.11. 1. Before applying the
logarithmic transformation to the objective function, the prediction error is about
105 in average, but with the logarithmic transformation the approximation error is
reduced to 103 in average which is a great improvement. 2. As it is expected no
good solution is found when the approximation error is wrong, whereas an improved
model of the fitness function results in progress during the optimization process.

Distance Requirement Cycle We discussed earlier that a problem with very
large FR is difficult for our surrogate approach to be handled. On the other hand,
a large FR signifies that the fitness function is very steep and a small movement in
the input space yields in a large change in the output space. Therefore, large values
in the set of the distance requirement cycle can be harmful for such problems. We
define two sets of distance requirement cycles. The first one – which is set as default
DRC – is called large DRC and it is shown with Ξl in Table 4.11. This set has 5
elements with values differing from 0.3 to 0.0. This set of distance requirement cycles
is designed to be used for problems which are not facing challenges induced by large
values of FR. The second DRC is denoted as Ξs in Table 4.11 and has only two
elements, one is the absolute zero and the second element is 0.001 which is added to
prevent repetitive iterates. In the self adaptation step, after obtaining the F̂R value,
the distance requirement cycle is set to the short DRC Ξs if the rough approximation
of the fitness range is larger than FRl and smaller than FRu. Otherwise the default
DRC which is Ξl is utilized. FRl is a constant value which can be assigned by the
user. We fix this value to 103.

Fachhochschule Köln
Cologne University of Applied Sciences

57

● ● ● ● ● ● ●

1e
−03

1e
−01

1e
+01

1e
+03

1e
+05

1e
+07

1e
+09

90 140 190 240 290 340 390

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G03 problem (d=20, m=1)

●

●

●

●

●

●

●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

90 140 190 240 290 340 390

 function evaluations
lo

g(
f(

x)
−

f(
x*

))

G03MOD problem (d=20, m=1)

Figure 4.11: Impact of the logarithmic transformation of the objective function for problems with
very large FR. Left: COBRA-R optimization process for the G03 problem without an objective
function modification. Right: COBRA-R optimization process for the G03 problem after a loga-
rithmic transformation is performed on the objective function. The gray curve is representing the
median error for each iteration driven from the results of 30 independent trials. The gray shade
around the median curve is showing the worst and best error. The blue curve is a fitted smoother

for the average RBF approximation error, shown in logarithmic scale log(|S(k)
0 (~xk)−f(~xk)|), where

S
(k)
0 is the RBF model of the fitness function in the k-th iteration trained with k − 1 iterates ex-

cluding xk. The blue ribbon around the average approximation error is representing the minimum
and maximum approximation error among 30 runs in every iteration.

Constraint Function Transformation In order to achieve successful results for
constrained optimization problems with a surrogate assisted approach only an effi-
cient model for the fitness function is not sufficient, constraint functions also should
be modeled appropriately. Modeling a very steep objective function with a large
variation range is a difficult task for RBF interpolation. This also applies to each
single constraint function. It is also important to mention that in the COBRA-R
optimization process constraints are mostly handled by means of penalty functions;
therefore, a high variation range for some constraints in comparison to the others
can result negligence of some constraints but stressing the others. The ratio of the
constraint value ranges is shown as the GR feature in Table 4.1. G10 is one ex-
ample of such a problem with highly varied ranges for different constraints (high
GR). Regis in [34] suggests a logarithmic transformation for the constraints with

4.1. G-PROBLEM TEST SUITE 58

large values. We believe that a logarithmic transformation is not the best solution
for such a problem. Although this approach can help to reduce the variation range
of every steep constraint function and lead to train better RBF models for them,
some constraints still have larger ranges than the others. Therefore, we believe that
normalizing all constraints and assuring that all of the constraints are changing in
more or less similar ranges can be more effective. In the self-adaptive COBRA-R
the modification of the constraint functions is done in the parameter adaptation
step, right after the initialization phase. A rough estimation of GR is obtained from
the information provided during the initialization step by locating 3 · d points in the
search space. If the rough estimation of the constraint ranges ĜR is larger than GRl,
then every constraint function is adapted and divided by the min-max range of the
constraint variation. Consider, a problem with m constraints. For the j-th constraint
(j = 1 . . .m) the min-max range is determined by calculating maxi(g

(j)
i)−mini(g

(j)
i),

where g
(j)
i is the value of the j-th constraint function in the i-th point of the initial

population.
The other parameters of SACOBRA-R such as initialization approach and inter-

nal optimizer are selected as follows:

Initialization Several algorithms for generating the initial population are imple-
mented and embedded in the COBRA-R optimization framework such as Optimized,
Biased and LHS which are described in Section 2.4.3. All of the mentioned initial-
ization algorithms, with exception of LHS, require a feasible starting point. In many
black-box problems like all G-functions a starting point is not given. Therefore, a
random initialization by means of Latin Hypercube Design is our default choice for
generating the initial population. Our experiments in the last section showed that
d + 1 points are usually not sufficient to start with a good assistant model. On the
other hand, as it is described the parameter adaptation step relies on the informa-
tion coming from the initial population. Therefore, we consider a generation of 3 · d
random points for the initial population for all the test-problems.

Internal Optimizer Table 4.5 shows that most of the G-functions were performing
well with COBYLA or NM as the internal optimizer. Both algorithms are based
on the simplex method, COBYLA is more sophisticated and uses dynamic penalty
internally. For this reason, we use COBYLA as the internal optimizer for all G-
problems except G02 and G08 which have a multimodel fitness function with many
local optima. For G02 and G08 ISRES is used as the internal optimizer.

The results of the optimization of the G-problems by means of the self-adaptive
COBRA-R algorithms are listed in Table 4.7. Every test is repeated 30 times. For

Fachhochschule Köln
Cologne University of Applied Sciences

59

Algorithm 2 Parameter/function(s) Adaptation Step. Input: 3 · d points gener-
ated in the initialization phase and the objective and constraint functions. Output:
The set of distance requirement cycle Ξ and the modified objective and constraint
functions, f(x) and g(j), j = 1, . . . ,m, resp.

1: F̂R : A rough estimation of FR according to 3 · d points located randomly on the
search space in the initialization phase.

2: ĜR : A rough estimation of GR according to 3 · d points located randomly on the
search space in the initialization phase.

3: Ĥ(j) : A rough estimation of the min-max-range of the j-th constraint according to
3 · d points located randomly on the search space in the initialization phase.

4: FRu := 108

5: FRl := 103

6: GRl := 105

7: m : Number of constraints.
8: Ξs = {0.001, 0.0}
9: Ξl = {0.3, 0.05, 0.001, 0.0005, 0.0}

10: if F̂R > FRu then
11: Apply a logarithmic transformation to the objective function
12: else if F̂R > FRl then
13: Ξ← Ξs . Adapt the DRC
14: else
15: Ξ← Ξl
16: end if

17: if ĜR > GRl then
18: for j = 1, . . .m do

19: g(j) ← g(j)

Ĥ(j)
. Normalize constraint functions

20: end for
21: end if

4.1. G-PROBLEM TEST SUITE 60

Table 4.7: Performance of the self-adaptive COBRA-R optimization algorithm on G functions.
The same configuration is utilized for all problems except G02 and G08, which use ISRES as the
internal optimizer instead of COBYLA. The statistics on the optimization error f(x) − f(x∗) are
determined from 30 independent runs. The statistics on the final optimization results f(x) for the
same runs are listed in Table 4.8

Best Median Mean Worst sd fe
G01 1.8E-08 2.9E-07 5.2E-07 1.2E-06 5.2E-07 100

G02-10d 1.4E-01 2.8E-01 2.8E-01 4.4E-01 7.0E-02 500
G03 2.2E-07 2.9E-03 0.36 0.994 0.419 300
G04 1.6E-08 1.5E-07 1.5E-07 2.8E-07 1.8E-07 200
G05 1.4E-03 1.5E-03 1.6E-03 5.2E-03 7.0E-04 200
G06 1.5E-02 1.5E-02 1.5E-02 1.5E-02 3.4E-05 100
G07 7.6E-09 6.4E-07 1.0E-06 1.0E-05 2.0E-06 200
G08 3.4E-13 9.0E-12 1.5E-11 5.2E-11 1.5E-11 200
G09 5.2E+01 7.0E+02 8.9E+03 2.2E+05 4.0E+04 300
G10 1.5E-05 1.2E-03 1.0E+01 2.0E+02 3.8E+01 300
G11 9.2E-15 2.5E-12 8.1E-12 6.4E-11 1.3E-11 100

Table 4.8: Performance of the self-adaptive COBRA-R optimization algorithm on G functions.
The same configuration is utilized for all problems except G02 and G08 which use ISRES as the
internal optimizer instead of COBYLA. The statistics on the objective value f(x) are determined
from 30 independent runs. The statistics on the optimization error f(x)− f(x∗) for the same runs
are listed in Table 4.7

optim Best Median Mean Worst sd fe
G01 -15.00000 -15.00000 -15.00000 -15.00000 -15.00000 5.2E-07 100

G02-10d -0.71355 -0.57052 -0.43815 -0.43111 -0.27057 7.0E-02 500
G03 -1 -1 -0.9941 -0.474133 -0.00000 0.42 300
G04 -30665.53867 -30665.53867 -30665.53867 -30665.53867 -30665.53867 1.8E-07 200
G05 5126.49670 5126.49811 5126.49816 5126.49834 5126.50191 7.0E-04 200
G06 -6961.81388 -6961.79856 -6961.79839 -6961.79840 -6961.79839 3.4E-05 100
G07 24.30621 24.30621 24.30621 24.30621 24.30622 2.0E-06 200
G08 -0.09583 -0.09583 -0.09583 -0.09583 -0.09583 1.5E-11 200
G09 680.63006 732.51012 1378.28968 9594.51480 218444.86203 4.0E+04 300
G10 7049.24802 7049.24804 7049.24920 7059.25564 7250.98785 3.8E+01 300
G11 0.75000 0.75000 0.75000 0.75000 0.75000 1.3E-11 100

Fachhochschule Köln
Cologne University of Applied Sciences

61

●

●

●

● ● ● ●

1e
−131e
−111e
−091e
−071e
−051e
−031e
−011e
+01

40 50 60 70 80 90 100

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G01 problem (d=13, m=9)

● ●
●

●

●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

61 111 161 211 261

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G03 problem (d=20, m=1)

●

●

●

●
●

●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

1e
+03

16 51 86 121 156 191

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G04 problem (d=5, m=6)

●

● ● ● ● ●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

1e
+03

13 48 83 118 153 188

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G05 problem (d=4, m=5)

Figure 4.12: Self-adaptive COBRA-R optimization process for G01, G03, G04 and G05. The
gray curve is representing the median error per iteration for 30 independent trials. The gray shade
around the median is showing the worst and the best error. The red square is the result reported
in [34] after 100 iterations. The blue curve is a fitted smoother for the averaged RBF approximation

error, shown in logarithmic scale log(|S(k)
0 (~xk)−f(~xk)|), where S

(k)
0 is the RBF model of the fitness

function in the k-th iteration trained with k − 1 iterates excluding xk. The blue ribbon around
the averaged approximation error is representing the minimum and maximum approximation error
among 30 runs in every iteration.

4.1. G-PROBLEM TEST SUITE 62

● ●

●

● ● ● ● ● ● ●

1e
−111e
−091e
−071e
−051e
−031e
−011e
+011e
+031e
+05

7 17 27 37 47 57 67 77 87 97

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G06 problem (d=2, m=2)

●

●

●
●

● ●
●

1e
−111e
−091e
−071e
−051e
−031e
−011e
+011e
+03

31 56 81 106 131 156 181

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G07 problem (d=10, m=8)

●
●

●

●

●

● ● ●

1e
−111e
−091e
−071e
−051e
−031e
−011e
+011e
+03

7 32 57 82 107 132 157 182

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G08 problem (d=2, m=2)

● ● ● ● ● ● ●

1e
−071e
−051e
−031e
−011e
+011e
+031e
+051e
+07

22 37 52 67 82 97 112

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G09 problem (d=7, m=4)

Figure 4.13: Self-adaptive COBRA-R optimization process for G06, G07, G08 and G09.The
gray curve is representing the median error per iteration for 30 independent trials. The gray shade
around the median is showing worst and the best error. The red square is the result reported in [34]
after 100 iterations. The blue curve is a fitted smoother for the averaged RBF approximation error,

shown in logarithmic scale log(|S(k)
0 (~xk) − f(~xk)|), where S

(k)
0 is the RBF model of the fitness

function in the k-th iteration trained with k − 1 iterates excluding xk. The blue ribbon around
the averaged approximation error is representing the minimum and maximum approximation error
among 30 runs in every iteration.

Fachhochschule Köln
Cologne University of Applied Sciences

63

●

● ● ● ●

●

1e
−111e
−091e
−071e
−051e
−031e
−011e
+011e
+03

25 75 125 175 225 275

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G10 problem (d=8, m=6)

●

●

●
● ● ● ●

1e
−12

1e
−09

1e
−06

1e
−03

1e
+00

1e
+03

7 22 37 52 67 82 97

 function evaluations
lo

g(
f(

x)
−

f(
x*

))

G11 problem (d=2, m=1)

Figure 4.14: Self-adaptive COBRA-R optimization process for G10 and G11. The gray curve is
representing the median error over iteration for 30 independent trials. The gray shade around the
median is showing worst and the best error. The red square is the result reported in [34] after 100
iterations. The blue curve is a fitted smoother for the averaged RBF approximation error, shown

in logarithmic scale log(|S(k)
0 (~xk)− f(~xk)|), where S

(k)
0 is the RBF model of the fitness function in

the k-th iteration trained with k − 1 iterates excluding xk. The blue ribbon around the averaged
approximation error is representing the minimum and maximum approximation error among 30
runs in every iteration.

each problem a limited budget is given which is also listed as ”fe”, standing for
function evaluation. For 9 out of 11 test problems, the best solution has an objective
value with a distance of approx.10−2 or smaller from the objective value of the global
optimum. The statistics regarding the final objective value obtained by self-adaptive
COBRA-R for the same problems are given in Table 4.8. In order to have a better
view on the self-adaptive COBRA-R optimization process, the optimization error
f(x) − f(x∗) over iteration for G01 to G11 (except G02) is shown in Figure 4.12,
4.13 and 4.14. According to the mentioned figures, the median error is converging
towards the optimum for 9 out of 11 problems. Results show that self-adaptive
COBRA-R is successful for all the G-problems except G02 and G09.

As shown in Figure 4.13, the algorithm is not performing successfully for the G09
problem. We believe this failure is due to the complex objective function of G09. In
the same figure the mean of approximation error is shown with a blue curve. The
extremely large values for the fitness approximation error is an indication that the
optimization process fails due to the wrong model trained by RBF for the objective

4.1. G-PROBLEM TEST SUITE 64

function. This issue can be a good starting point for future work to investigate more
about the strengths and weaknesses of the cubic RBF interpolation and seeking for
solutions to improve the weaknesses.

The G02 problem is not an easy benchmark for the COBRA-R algorithm and its
variants. In this problem constraints are easy to resolve but the objective function
with many local optima is not easy to be modeled with RBF functions. Therefore, a
surrogate assisted approach is not recommended for such a problem. The difficulty to
model the G02 problem grows higher with increasing the dimensionality. Figure 4.15
illustrates the self-adaptive COBRA-R optimization progress for G02-2d and G02-
10d. It is apparent that the average approximation error is 10 times larger for
G02-10d in comparison with G02-2d. Moreover, after 300 function evaluations no
better point is found for G02-10d while in G02-2d after about 180 iterations many
trials converge to the optimum. We can also observe from the same figure that the
minimum approximation error is mostly very small (≈ 1e− 11) for both G02-2d and
G02-10d. This indicates that the model is improving locally but nevertheless has
wrong values in most of the search space since the average error is much larger.

In [34], Regis presented the COBRA optimization results for 9 of the G-problems.
The median error by COBRA after 100 iterations is also plotted with a red square
point in Figure 4.12, 4.13, 4.14 and 4.15. The results achieved in this study are
significantly better than what is reported in [34], except for G03 and G09. Our
results on these two problems are not worse than Regis’ COBRA but also not sig-
nificantl improved. Overall, we believe that self-adaptive COBRA-R outperforms
COBRA [34] in solving the G-problems, because no tuning – automatic or manual
– is done in [34] for approaching different problems, though the suitable parameter
settings for COBRA are varying from problem to problem. Also, we believe that the
utilized DRC in [34] is relatively large for many of G-problems.

Although we do not have any better results for the G03 problem after 100 iter-
ations in comparison with [34], the convergence starts during later iterations. After
160 iterations the median of 30 runs is converging towards the optimum and after 300
iterations the median error is approx. 10−5. Although many runs (out of 30) con-
verge to the optimum, there are still a few runs which never progress within the 300
iterations. This is because the trained initial model, based on certain initial designs
are wrong and the points added to the population during the optimization process
are not good enough to rectify the model in the interesting region. It appears that
this problem requires a larger initial population or a higher probability for starting
from random points in the search space. It was shown in Section 4.1.2 that for the
G03 problem it is worthy to spend a large number of function evaluations on the
initial population (see Figure 4.6).

Fachhochschule Köln
Cologne University of Applied Sciences

65

●
● ● ● ●

●

● ●
●

1e
−14

1e
−11

1e
−08

1e
−05

1e
−021e
−011e
+00

7 42 77 112 147 182 217 252 287

 function evaluations

lo
g(

f(
x)

−
f(

x*
))

G02−2d problem (d=2, m=2)

● ● ● ● ● ● ● ●

1e
−14

1e
−11

1e
−08

1e
−05

1e
−021e
−011e
+00

31 66 101 136 171 206 241 276

 function evaluations
lo

g(
f(

x)
−

f(
x*

))

G02−10d problem (d=10, m=2)

Figure 4.15: Self-adaptive COBRA-R optimization process for the G02 problem. Left: d = 2,
Right: d = 10. The gray shade around the median is showing worst and the best error. The red
square is the result reported in [34] after 100 iterations. The blue curve is a fitted smoother for the

averaged RBF approximation error, shown in logarithmic scale log(|S(k)
0 (~xk)− f(~xk)|), where S

(k)
0

is the RBF model of the fitness function in the k-th iteration trained with k − 1 iterates excluding
xk. The blue ribbon around the averaged approximation error is representing the minimum and
maximum approximation error among 30 runs in every iteration.

The reason behind the weak results of the self-adaptive COBRA-R for G09 was
discussed before. Comparing our results with Regis shows that the COBRA [34]
optimization framework did not solve G09 successfully as well. We assume that the
failure for solving G09 with self-adaptive COBRA-R and COBRA [34] is due to the
lack of a correct model for the objective function, as the objective function is very
complex to be modeled with cubic RBF interpolation.

Figure 4.16 provides an overview for the prediction error of the RBF models
trained for the objective function of all tested G-problems. The RBF approximation
error of the fitness function |Sk0 − f(xk)| is basically the difference of the predicted
value by RBF model and the real value. Assume, Sk0 is the RBF model of the
objective function in the k-th iteration built on the k − 1 points determined during
the former iterations. It is important to note that the surrogate model in the k-th
iterate is trained based on the all points in the population excluding ~xk. Otherwise,
|Sk0 − f(xk)| would have a value of zero.

4.1. G-PROBLEM TEST SUITE 66

●

●

●
●
●●
●
●●

●

●
●●●●

●●
●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●●●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●
●●

●

●●

●●●●
●

●

●

●●
●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●●
●

●
●●●●

●

●●

●

●

●

●
●
●
●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●
●

●
●

●
●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●●

●
●

●

●●
●

●

●

●●●
●●
●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●
●

●●

●
●

●
●●
●●

●

●●

●

●
●

●
●
●●
●
●

●

●

●

●
●

●●

●

●
●
●

●

●

●●

●

●●●
●

●
●

●●

●

●
●●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●
●
●

●
●

●

●
●●
●●

●

●
●

●

●●●●●
●

●●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●●●

●

●

●●

●

●
●

●
●●●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●
●

●
●●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●●

●

●●

●
●
●

●

●●

●

●
●
●

●

●

●●
●

●

●
●●●

●●

●

●
●●

●

●

●
●

●
●●●
●●

●
●

●

●

●

●●

●

●

●

●●
●

●●
●
●

●

●
●
●

●

●

●

●

●
●
●
●●●●

●

●
●●

●

●

●

●●
●●

●

●

●

●
●

●

●●
●

●

●●

●●●
●

●

●●

●●●●●

●

●●

●
●

●●
●
●

●
●
●

●

●

●

●●
●

●

●

●

●●
●●●

●

●

●

●●

●●

●
●

●
●
●

●●

●
●●●
●

●

●
●●

●●

●

●●●

●

●●

●
●

●
●●

●

●

●●●●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●●

●●●

●

●

●●

●
●
●●
●

●●

●
●

●
●

●
●●

●●
●●
●

●
●

●

●

●●

●
●●
●

●

●

●

●●

●

●

●

●
●●●

●

●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●
●
●

●
●

●
●
●

●
●

●

●

●

●

●
●

●
●

●

●●●

●

●

●
●●

●

●●
●●

●●●
●●
●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●

●
●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●
●

●

●

●

●●●

●
●●●

●

●

●
●

●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●●●
●

●●
●●

●

●
●

●

●●
●●
●

●

●
●●

●

●

●

●

●
●

●

●●
●
●

●

●
●

●

●

●

●
●
●

●
●
●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●

●●
●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●
●
●
●

●

●
●

●

●

●

●●

●

●
●●

●

●

●●

●●
●

●

●

●●

●
●

●
●
●

●

●

●●●
●

●

●
●

●
●

●

●

●
●

●

●
●
●
●

●●
●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●
●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●●

●●

●
●●

●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●
●

●

●

●

●
●
●

●

●

●

●●●●

●●

●

●

●

●
●●

●
●

●●
●

●
●●●
●

●

●●
●

●
●

●

●●●●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●●●

●

●
●

●

●●
●
●

●

●●

●

●●
●●●●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●
●
●

●
●
●

●
●

●

●●

●
●

●

●
●●
●

●

●●
●

●

●
●●

●

●●●

●

●

●●
●●

●●

●
●●
●
●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●
●

●

●●●

●

●

●●●●

●

●

●

●

●●
●
●●
●

●

●

●
●
●

●

●●●●
●

●
●

●

●
●
●

●

●
●●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●
●●
●●
●
●●●

●

●
●
●●
●

●

●

●

●

●
●●●●

●

●●

●
●

●●●

●

●
●

●

●●●
●
●

●

●

●

●

●●

●
●●●

●●●
●

●
●
●
●
●

●

●

●

●

●

●
●●
●●

●
●

●●

●

●
●
●
●●●

●

●
●●

●
●

●

●●
●

●

●●
●
●
●

●

●

●
●
●
●
●
●

●

●

●

●
●
●●
●●
●

●

●●

●

●

●●●●
●

●●

●●

●●

●
●●
●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●●●●

●
●
●
●
●

●
●●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●●
●
●●

●
●
●●

●●●
●

●

●
●
●●
●●

●

●●●
●●

●
●
●

●

●

●

●

●
●●

●

●●●●
●
●

●

●
●●●
●

●●

●

●●
●

●

●●

●●
●
●
●

●
●

●●
●●
●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●●
●

●

●

●●●
●
●

●

●
●

●

●●

●●●●

●●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●●●

●

●

●

●●
●

●

●
●
●

●
●

●

●

●

●

●●●

●
●●
●

●

●

●
●●

●

●●
●

●

●

●●
●

●

●●

●
●

●

●●●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●
●●
●

●

●●
●

●

●
●

●
●

●

●
●●

●
●●
●
●●
●●

●

●●
●

●

●

●

●
●
●

●

●

●

●●

●

●●
●
●

●

●●●●●

●

●
●●
●
●

●

●

●

●

●

●

●

●
●●●●
●

●
●

●●
●
●●●

●

●

●

●
●●●
●

●
●

●●

●

●●●
●

●●
●
●●
●
●●

●

●

●●

●
●

●
●

●

●

●●●

●

●●
●●

●

●
●

●●●●

●
●●
●

●
●
●●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●
●●
●●

●
●●●
●●●
●

●

●

●

●
●●
●

●
●

●
●

●

●

●
●
●
●●●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●

●
●
●

●

●●
●
●
●
●
●

●

●●

●

●
●

●

●
●
●

●

●

●●

●
●●

●●

●

●
●
●

●●

●
●

●

●●

●

●●●
●
●●

●

●●
●

●●

●
●
●

●●
●
●●●●●

●

●●

●

●
●
●●

●
●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●●

●●

●

●●

●

●
●●

●
●
●
●

●

●

●
●●●
●●

●
●

●

●

●

●
●
●●●●●

●

●●

●

●●
●

●

●

●

●
●
●
●●

●

●
●
●

●

●

●

●

●●

●

●
●

●
●

●
●

●●

●
●●
●

●

●

●
●

●
●

●

●
●

●
●
●
●●
●

●
●

●

●
●

●

●
●
●●●●

●

●●

●

●

●

●
●●
●

●

●
●●
●
●
●

●●●
●
●
●●
●

●

●

●

●●
●
●

●

●

●

●
●
●
●●
●
●

●

●

●

●

●

●●
●
●

●
●
●●

●

●●●●

●
●

●

●

●

●●
●●●

●
●
●
●●●
●

●
●

●●●
●●
●
●

●●

●●

●
●

●

●●●

●

●
●
●
●
●
●

●●
●

●

●
●
●
●
●

●

●

●●

●

●●

●

●●●●●
●

●●
●

●

●
●

●●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●●●

●

●

●
●
●
●●●●
●●
●

●●

●
●

●

●●
●●

●

●●●

●

●

●

●

●
●

●

●

●●
●●●●●
●●

●

●
●●●
●

●

●●

●

●

●

●
●●●
●

●
●●●

●●●

●●

●
●●

●
●
●

●

●

●
●●

●

●

●

●
●
●
●●●●
●

●●
●
●

●

●
●
●
●

●●

●
●
●

●
●
●
●
●

●
●

●
●
●

●

●
●
●
●

●●
●

●●
●

●
●

●
●●●●●●●

●

●●

●
●●

●
●

●

●
●

●●●
●

●

●

●
●
●

●●●

●

●●

●
●
●●●

●

●
●

●

●
●
●

●
●

●

●

●
●●
●

●●●

●

●
●
●

●

●
●
●●●●
●●
●
●
●

●
●

●

●
●

●
●
●
●
●

●●●

●

●

●

●
●●

●

●

●

●●
●
●●

●●●
●●●

●

●●●
●
●

●

●●●

●

●●

●

●
●
●
●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●
●●

●●●
●●

●

●
●
●
●
●

●
●●
●
●
●
●●

●
●

●

●●●
●

●
●

●
●●
●
●●●

●

●

●
●●
●

●
●●

●
●
●●
●●●●●
●●●●

●

●

●

●●●
●●

●
●

●
●
●

●

●●
●●●
●
●

●
●●●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●
●
●
●●

●

●

●
●

●

●

●

●
●●
●

●
●

●
●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●
●
●
●●●

●
●

●

●

●

●

●●

●●
●●
●

●

●●
●●

●

●

●●
●

●

●

●

●

●

●
●●●
●

●

●
●
●
●

●
●●
●
●
●
●

●●●
●
●●

●

●●
●
●

●
●

●

●
●
●●
●

●

●

●

●

●

●

●
●●●●●
●
●

●

●

●

●
●●●
●
●
●

●

●
●●

●●

●

●●

●
●●●●●●●●●
●
●

●
●●
●●

●
●
●

●

●●

●●

●

●
●●●

●

●●●
●
●
●

●

●●
●●

●●●
●
●●●●

●●●
●●
●
●
●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●
●●

●

●
●

●

●

●

●
●
●
●
●
●
●

●

●
●

●

●●●

●
●●
●
●

●

●●

●

●●

●
●
●

●●●
●

●

●●●●●

●

●
●

●●

●
●

●●
●

●

●●
●
●●
●
●

●

●

●

●●
●
●

●

●
●●
●
●
●

●●

●

●●●
●
●

●
●

●
●●
●
●●●
●

●
●

●

●

●

●●

●

●●

●
●

●
●●●

●

●

●

●●
●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●●●

●

●

●

●

●
●

●

●

●

●
●

●
●●●
●
●
●
●
●

●

●

●●●

●

●●

●
●

●
●
●

●
●

●

●

●
●
●●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●●●●●●●●

●
●

●
●●

●

●
●
●
●

●●

●

●
●

●

●●●
●
●●

●

●

●●●

●
●
●●●
●●●

●
●

●
●●

●

●

●

●
●●

●
●●●●●
●
●

●
●

●

●

●●●

●

●●

●

●

●
●

●●●
●
●

●

●

●

●
●●●

●
●
●

●

●●
●

●●

●

●

●

●
●●●

●
●
●

●

●●
●

●

●

●
●●
●
●

●

●●●
●

●

●
●

●

●
●●
●●●●

●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●
●
●
●

●

●

●
●●
●
●

●●●●
●
●
●
●●
●
●

●

●

●

●

●

●

●
●

●

●

●●●

●
●
●
●●

●

●

●
●

●

●●
●●

●●

●

●

●

●●
●

●●●

●

●
●

●

●

●

●

●
●

●

●●
●●

●
●
●

●

●
●●

●

●

●

●

●
●●

●

●

●●
●
●●
●●●●
●
●

●

●

●

●

●

●
●
●

●●
●●
●
●

●

●

●

●

●

●
●●
●
●
●
●

●

●●

●

●●

●

●
●●●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●●

●
●
●

●

●
●
●
●●●●●
●
●●●
●●

●

●

●

●

●●●

●

●

●
●●

●●●●●
●
●

●

●

●

●
●
●
●
●●●

●

●

●
●
●
●

●

●

●●
●
●

●

●
●
●

●

●●

●

●

●

●●

●●●●●

●
●●
●
●
●●
●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●
●
●
●

●
●●

●

●

●
●
●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●
●●●
●●

●●
●
●
●●

●

●

●●
●
●●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●

●

●
●

●

●
●●
●

●

●●
●●●
●

●

●

●

●
●●
●

●

●
●

●

●●
●
●●
●
●●

●

●

●
●
●
●●●●●●
●
●●

●

●
●
●
●
●
●●●●●●●●
●

●

●

●

●●

●

●

●

●
●
●

●

●●●

●

●
●●●

●

●
●●
●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●●●●
●
●

●

●●
●

●

●

●
●●
●

●

●
●●

●
●
●
●
●

●

●●

1e
−15

1e
−12

1e
−09

1e
−06

1e
−03

1e
+00

1e
+03

1e
+06

G01 G11 G10 G07 G04 G05

G02
−2d

G06 G03

G02
−10

d

G08 G09

lo
g(

s(
x)

−
f(

x)
)

5

10

15

20

G01 G11 G10 G07 G04 G05

G02
−2d

G06 G03

G02
−10

d

G08 G09

di
m

en
si

on

Figure 4.16: Top: Objective function approximation error for all tested G-problems during the
self-adaptive COBRA-R optimization process shown in logarithmic scale. The approximation error

of the objective function is described as |S(k)
0 (~xk) − f(~xk)|, where S

(k)
0 is the RBF model of the

fitness function in the k-th iteration trained with k − 1 iterates excluding xk. Bottom: each bar is
representing dimension of all tested G-problems. It is clear that the RBF interpolation performance
is not dependent on the dimension of the problem.

Fachhochschule Köln
Cologne University of Applied Sciences

67

In surrogate assisted optimization we cannot expect to minimize the objective
function if the objective model is wrong. Also, the internal solvers can handle the
constraints only if reasonable models for constraint functions are provided by the
modeling approach.

It is apparent in Figure 4.16 that the RBF approximation error is not dependent
on the dimension of the problem. We can see that almost never during the self-
adaptive optimization process a good model is provided for G09. This is possibly due
to the complexity of the G09 objective function and its large FR. Furthermore, we
can observe that for the G08 problem with 2 dimensions the objective approximation
error is relatively large comparing to the others. This is because the G08 problem
has many local optima although the model becomes better in the interesting feasible
region, most of the exploratory moves are in an unknown region for the model. This
increases the approximation error in average. The G02-10d problem is also suffering
from similar issues with multi-modality. The objective functions of G01 and G11
seem to be very easy for our approach to be modeled. As a result the convergence to
the optimum is also very fast and within a few evaluations. After the initialization
phase the search finds a solution in the neighborhood of the optimum with a small
distance of (< 10−7). The objective function of G01 is a polynomial with linear terms
and one quadratic term. The objective function of G11 is a combination of a simple
polynomial term and a radial basis function. It is necessary to mention that the
boxplot shown as the approximation error of G10 is gained after the normalization
of the input space. Otherwise, the error rate would be much higher. It is also clear
that the approximation error shown for G03 problem is achieved during the self-
adaptive COBRA-R optimization process, so the objective function is logarithmic
transformed. G06 has the approximation error from very low values like 10−12 to
large values like 1 but most of the time the approximation error is less than 10−2

which is moderately accurate. The reason can be traced back to the large FR value
for G06. A steep function is a difficult task for RBF modeling. Additionally, we have
G04 and G05 which have a slightly more complex objective function with mixed terms
but not as complex or steep as G06 and G09.

4.1. G-PROBLEM TEST SUITE 68

4.1.4 Comparing the Performance of SACOBRA-R and
COBRA-R

Table 4.9: Comparison of the error obtained by COBRA-R & self-adaptive COBRA-R. Best, me-
dian, mean, and worst optimization error f(x)−f(x∗) and their standard deviation (sd) determined
in 30 independent runs. Same number of function evaluations are performed by both algorithms.
The number of function evaluations (fe) for every problem are listed in Table 4.8.

Fct. Alg best median mean worst sd

G01
COBRA-R 2.9E-07 7.5E-05 6.2E-01 2.5E+00 1.1E+00

SACOBRA-R 1.8E-08 2.9E-07 5.2E-07 1.2E-06 5.2E-07

G03
COBRA-R 6.7E-07 6.4E-06 2.5E-05 3.2E-04 6.4E-05

SACOBRA-R 2.2E-07 2.9E-03 0.36 0.994 0.419

G04
COBRA-R 2.5E-10 6.3E-08 6.7E-07 1.1E-05 2.1E-06

SACOBRA-R 1.6E-08 1.5E-07 1.5E-07 2.8E-07 1.8E-07

G05
COBRA-R 1.3E-05 3.0E-04 1.0E-03 2.5E-02 4.5E-03

SACOBRA-R 1.4E-03 1.5E-03 1.6E-03 5.2E-03 7.0E-04

G06
COBRA-R 1.9E-04 2.2E-03 5.8E-03 8.1E-02 1.5E-02

SACOBRA-R 1.5E-02 1.5E-02 1.5E-02 1.5E-02 3.4E-05

G07
COBRA-R 4.0E-08 6.3E-07 2.7E-06 4.1E-05 7.6E-06

SACOBRA-R 7.6E-09 6.4E-07 1.0E-06 1.0E-05 2.0E-06

G08
COBRA-R 3.4E-09 6.6E-07 1.5E-06 2.0E-05 3.5E-06

SACOBRA-R 3.4E-13 9.0E-12 1.5E-11 5.2E-11 1.5E-11

G09
COBRA-R 1.5E-08 3.5E-07 1.8E+00 3.8E+01 7.1E+00

SACOBRA-R 5.2E+01 7.0E+02 8.9E+03 2.2E+05 4.0E+04

G10
COBRA-R 5.1E-03 8.7E-02 1.6E-01 1.3E+00 2.6E-01

SACOBRA-R 1.5E-05 1.2E-03 1.0E+01 2.0E+02 3.8E+01

G11
COBRA-R 3.7E-15 2.3E-13 3.4E-13 1.6E-12 3.9E-13

SACOBRA-R 9.2E-15 2.5E-12 8.1E-12 6.4E-11 1.3E-11

Table 4.9 shows the statistics of the final error determined by self-adaptive COBRA-
R and COBRA-R for 30 independent trials. Comparing the median error shows
that self-adaptive COBRA-R is capable of achieving similar accuracy for 9 out of
10 problems. The good results achieved by COBRA-R for G09 are only determined
if the initialization phase is done by the optimized approach with a given feasible
point in the neighborhood of the optimum. This information is usually not available

Fachhochschule Köln
Cologne University of Applied Sciences

69

and we did not consider any known starting point for G09 when using self-adaptive
COBRA-R approach. The median error for 3 problems is improved by applying
self-adaptive COBRA-R. The mean error of 4 tests is better by using self-adaptive
COBRA-R. Except from G08 and G10, in all other cases the best error found by
COBRA-R approach has smaller value. But, the worst error is improved for 6 tests
which is mostly because of the random start algorithm extension used in self-adaptive
COBRA-R.

In general, self-adaptive COBRA-R does not provide better optimization results
comparing with manually tuned COBRA-R. But, it is worthy to note that the rea-
sonable results achieved by self-adaptive COBRA-R are achieved with no need for
parameter tuning. Real-world problems in industry are usually black-box and only
parameter-free strategies are promising to address such problems.

4.1.5 Comparison with other Techniques

Table 4.10: Best (b), median (m) mean (avg) and worst (w) results and their standard de-
viation (sd) determined in 30 independent runs with different approaches. Average number of
function evaluations (fe). The COBYLA approach very often returns slightly infeasible points. The
COBYLA results listed in this table are determined by allowing 10−08 infeasibility, although still
some solutions are infeasible. The number of the infeasible points returned by COBYLA is shown
in parenthesis in front of the sd value.

Fct. Optimum SACOBRA-R COBRA [34] ISRES [38] RGA 10% [6] COBYLA [31]

G01 -15.0

b -15.0 NA -15.0 -15.0 -15.0
m -15.0 NA -15.0 NA -13.83
avg -15.0 NA -15.0 -15.0 -13.12
w -15.0 NA -15.0 -15.0 -10.1
sd 5.2E-07 NA 5.8e-14 0.0 1.19
fe 100 NA 350000 95512 12743.9

G02 -0.80355

b -0.409403 NA -0.803619 -0.801119 -0.272
m -0.346592 NA -0.793082 NA -0.197
avg -0.346592 NA -0.782715 -0.7857 -0.203
w -0.281917 NA -0.723591 -0.745329 -0.164
sd 0.028 NA 2.2e-02 0.0137 0.023(5)
fe 500 NA 349600 331972 97391.28

G03 -1.0

b -1.0 -0.8965 -1.001 -0.9999 -1.0
m -0.9941 -0.09 -1.001 NA -1.0
avg -0.474133 0.00 -1.001 -0.9999 -0.47
w 0.000 0.00 -1.001 -0.9997 0.0

(Continued on next page)

4.1. G-PROBLEM TEST SUITE 70

Table 4.10: Best (b), median (m) mean (avg) and worst (w) results and their standard deviation
(sd) determined in 30 independent runs with different approaches. Average number of function
evaluations (fe).(continued)

Fct. Optimum SACOBRA-R COBRA [34] ISRES [38] RGA 10% [6] COBYLA [31]

sd 0.42 0.03 8.2e-09 0.0 0.42(3)
fe 300 100 349200 399804 31069.1

G04 -30665.53867

b -30665.53867 -30665.49 -30665.539 -30665.5386 -30665.539
m -30665.53867 -30665.15 -30665.539 NA -30665.539
avg -30665.53867 -30665.07 -30665.539 -30665.5386 -30665.539
w -30665.53867 -30664.58 -30665.539 -30665.5386 -30665.539
sd 1.8E-07 0.04 1.1e-11 0.0 2.2e-07
fe 200 100 192000 26981 418.6

G05 5126.4967

b 5126.4981 5126.5 5126.497 5126.498 5126.498
m 5126.4982 5126.51 5126.497 NA 5126.498
avg 5126.4983 5126.51 5126.497 5126.498 5126.498
w 5126.5019 5126.53 5126.497 5126.498 5126.498
sd 7.0E-04 0.0 7.2e-13 0.0 1.3e-12(7)
fe 200 100 195600 39459 194.34

G06 -6961.8138

b -6961.7986 -6944.54 -6961.81 -6961.8139 -6961.81
m -6961.7984 -6834.48 -6961.81 NA -6961.81
avg -6961.7984 -6795.6 -6961.81 -6961.8139 -6961.81
w -6961.7983 -6460.53 -6961.81 -6961.8139 -6961.81
sd 3.4E-05 24.6 1.9e-12 0.0 2.22-05(3)
fe 100 100 168800 13577 134

G07 24.3062

b 24.3062 24.48 24.306 24.3294 24.306
m 24.3062 25.32 24.306 NA 24.306
avg 24.3062 25.4 24.306 24.4719 24.306
w 24.3062 29.33 24.306 24.8352 24.306
sd 2.0E-06 0.15 6.3e-05 0.1291 5.4e-08(6)
fe 200 100 350000 428314 13072.1

G08 -0.095825

b -0.0958 -0.1 -0.095825 -0.0958 -0.0958
m -0.0958 -0.1 -0.095825 NA -0.0282
avg -0.0958 -0.09 -0.095825 -0.0958 -0.0335
w -0.0958 -0.06 -0.095825 -0.0958 0.0
sd 1.5E-11 0.0 2.7e-17 0.0 2.1e-02
fe 200 100 160000 6217 553.6

G09 680.6301

b 732.51 847.09 680.630 680.6303 680.6300
m 1378.29 3953.97 680.630 NA 680.6300
avg 9594.52 4515.67 680.630 680.6381 680.6300
w 218444.86 11623.82 680.630 680.6538 680.6300

(Continued on next page)

Fachhochschule Köln
Cologne University of Applied Sciences

71

Table 4.10: Best (b), median (m) mean (avg) and worst (w) results and their standard deviation
(sd) determined in 30 independent runs with different approaches. Average number of function
evaluations (fe).(continued)

Fct. Optimum SACOBRA-R COBRA [34] ISRES [38] RGA 10% [6] COBYLA [31]

sd 4.0E+04 487.05 3.2e-13 0.0066 3.7e-10(2)
fe 300 100 271200 388453 8973.4

G10 7049.2480

b 7049.2480 8238.78 7049.248 7049.2607 7050.3
m 7049.2492 18031.74 7049.248 NA 7064.8
avg 7059.25 17498.57 7049.25 7049.5659 8085.5
w 7250.98 25086.88 7049.27 7051.6857 11259.7
sd 3.8E+01 892.28 3.2e-03 0.5699 1.9e+03(22)
fe 300 100 348800 572629 270840.2

G11 0.75

b 0.75 NA 0.75 0.75 0.75
m 0.75 NA 0.75 NA 0.75
avg 0.75 NA 0.75 0.75 0.77
w 0.75 NA 0.75 0.75 1.4
sd 1.3E-11 NA 1.1e-16 0.0 0.12
fe 100 NA 137200 7215 11788.7

In order to evaluate the results gained by self-adaptive COBRA-R (SACOBRA-R),
we compared our results for the G-functions with the results obtained by means of
several other approaches. The improved stochastic ranking evolutionary strategy
(ISRES) [38], genetic algorithm combined with a repair mechanism (RGA) [6] and
two other surrogate assisted approaches COBYLA [30] and Regis’ COBRA [34] are
used in this study. The algorithms ISRES and RGA are population based strategies.
Although these methods can successfully be performed on many optimization prob-
lems, the high number of required function evaluations makes them inappropriate
for expensive optimization tasks. Table 4.10 lists statistics on the final solutions
found by 5 different optimization means including SACOBRA-R. Also, the averaged
number of function calls is listed in the same table as fe.

The solutions found by our approach are close to what is gained with ISRES and
RGA for 7 problems out of 11, with the difference that the SACOBRA-R needs a
much smaller amount of function evaluations. For instance, the optimum of G01 is
found by SACOBRA-R with a similar accuracy as ISRES, but our approach required
to call the real functions 3500 times less than ISRES. G04, G05, G06, G07, G08 and
G11 are also problems which can be solved by SACOBRA-R with a very limited
number of function evaluations and good accuracy. The best solutions found for the
problems G03 and G10 are also competing with ISRES and RGA, but our overall

4.1. G-PROBLEM TEST SUITE 72

results on these two functions are weaker in comparison with ISRES and RGA. This
is due to the existence of several unfortunate starting initial designs. We believe
that increasing the probability of random initialization of the internal optimizer by
choosing larger values for Pmax and T (Equation 4.8) can help to improve on the
worst results for these problems. Although SACOBRA-R cannot obtain as good
results as ISRES and RGA in approaching G03 and G10, the median error achieved
by RGA, ISRES and SACOBRA-R are similar. Our approach accomplished this by
1000 times less function evaluations than ISRES and RGA.

On the other hand, SACOBRA-R fails to minimize G02 and G09 due to the
complexity of their objective functions to be modeled by our surrogate approach.
It seems like the evolutionary based algorithms can successfully find the optimum
of G02 and G09 within approx. 350000 iterations. Our approach is not the only
algorithm which fails to optimize these two functions. COBRA [34] and COBYLA
also perform poor in optimizing the G02 problem. The reason for the bad results
achieved by the COBRA [34] can be similar to what we faced by applying SACOBRA-
R, so that a problem with many local optima cannot be addressed with the current
model based approaches. COBYLA is a local optimizer, therefore, we cannot expect
too much from such a technique to find the global optimum of a problem like G02
with many local optima. There is no embedded trick defined for COBYLA approach
for escaping a local optimum. Although, COBYLA performs many iterations before
terminating the search on G02 (in average 97391.28 iterations), the results are not
promising. This approach appears to be successful for solving the G09 problem, but
2 solutions out of 30 have a infeasibility level of > 10−8. Also, COBYLA needs
thousands of real function evaluations to solve G09.

In many cases SACOBRA-R is outperforming COBYLA in terms of averaged
required function evaluations. The results from G05, G06 and G07 achieved by
COBYLA need a relatively low number of evaluations but still SACOBRA-R is a
better approach since all 30 runs can locate a feasible point in the neighborhood of
the real optimum. COBYLA fails to find a feasible point for G05, G06 and G07,
respectively, 7, 3 and 6 times out of 30.

In general, we can claim that the SACOBRA-R optimization algorithm outper-
forms other techniques for 7 G-problems out of 11 tested ones because of finding
good feasible solutions within very small number of function evaluations. For 2
other problems (G03, G10) SACOBRA-R has intermediate performance because of
the early stagnation of several trials. We should also state that SACOBRA-R fails
to minimize 2 of the tested G-problems (G02, G09) out of 11.

Fachhochschule Köln
Cologne University of Applied Sciences

73

4.2 MOPTA 2008

The MOPTA 2008 benchmark (MOPTA08) by Jones [19] is a simplified version of
a high-dimensional real-world mass optimization problem which arises in the auto-
motive industry: The problem is described by d = 124 variables and 68 constraints.
MOPTA08 is an expensive problem where, in reality, only 60 points can be computed
within 24 hours. It is desirable to find the optimum in less than a month which means
the problem should be solved after 30× 60 ≈ 15 · d iterations. We believe, that such
a highly constrained large scaled problem depicts the ideal benchmark to assess the
capability of the COBRA-R optimization framework.

A promising solver for MOPTA08 should be able to either find a fully feasible
solution with an objective value of smaller than 225 after 15 · d iterations, or should
have a fast convergence to the feasible point with objective value of 228 or less in
about 8 · d function evaluations [19].

The simulation of MOPTA08 was provided by Jones as a FORTRAN program.
One point is given as starting point which is feasible and has the objective value
of 251.07. All input parameters are normalized to [0, 1]. The constraint values are
meaningfully scaled, e. g., a constraint value si of 0.05 indicates that the constraint
is violated by a percentage of 5%. Unlike many G-problems, MOPTA08 does not
require to be rescaled and modified because input space and constraint values are
normalized. But, MOPTA08 still remains challenging due to the high dimensional
space and the large number of constraints.

Jones suggests Powell’s COBYLA [31] as a promising approach to solve
MOPTA08 efficiently, although our initial tests with COBYLA showed that it
is difficult for COBYLA to resolve all of the constraint violations. Figure 4.17 illus-
trates the COBYLA optimization process for MOPTA08. We used the COBYLA
implementation in R [17] from the nloptr package.

As it is shown in Figure 4.17, COBYLA most of the time returns infeasible points.
In the first 1000 iterations the objective value improves dramatically from 251 to 228,
but after the first 1000 iterations it does not improve anymore. This poor perfor-
mance may be the result of the underpenalization [37]. The term underpenalization
is used for the situations where small penalty factors result in ignoring the influence
of constraints. The inaccuracy of the linear approximation could be another possible
reason for weak performance of COBYLA.

4.2. MOPTA 2008 74

●●●●●●●●●●●●●

●●

●●●●

●●
●●

225

230

235

240

245

250

255

0 500 1000 1500 2000 2500 3000 3500

 function evaluation

ob
je

ct
iv

e
va

lu
e

 > 5 violations

 1−5 violations

 feasible

COBYLA Optimization for MOPTA08

Figure 4.17: COBYLA optimization process for MOPTA08. These results were generated by
using the COBYLA implementation from the nloptr package in R. The parameters are all set as
default. Red: the solutions with more than 5 violated constraints. Yellow: the solutions with 1 up
to 5 violated constraints. Green: no constraint is violated (feasible point).

4.2.1 Performance of COBRA-R with different Internal Op-
timizers

Since a feasible starting point is provided for MOPTA08, Biased and Optimized
initialization described in 2.4.3 are more desirable to be used in comparison with
random initialization. Our initial tests showed that Optimized initialization is bet-
ter in the case of MOPTA08. Therefore, we selected this approach for the further
experiments. On the other hand, the achieved results on the G-functions showed
that the choice of a relatively large value in the set of the distance requirement cy-
cle can be helpful for the problems which require more exploration. However, this

Fachhochschule Köln
Cologne University of Applied Sciences

75

is not necessarily true for all types of problems. We started our first tests with
Ξ = Ξ1 = {0.3, 0.01, 0.001, 0.0005}.

As it is described in [20] and Section 2.4.3, the COBRA-R framework is fully
flexible to adapt or change different parameters and also it is possible to embed
new algorithms as internal optimizer or penalty handling techniques. We used dif-
ferent internal optimizers like ISRES [38] from the nloptr package, HJKB [14] and
NMKB [27] from the dfoptim package to investigate the performance of the COBRA-
R with different internal optimizers for the MOPTA08 problem.

In general, the usage of ISRES as the internal optimizer of COBRA-R for high
dimensional problems such as MOPTA08 is not practical, since ISRES is a population
based strategy and as a consequence, not computationally efficient. Figure 4.18
shows that ISRES as the internal optimizer totally fails in optimizing MOPTA08.
COBRA-R(ISRES) returns either feasible points with large objective or infeasible
points. This may be due to the fact that we set the maximum function evaluation
of the internal optimizer to 10000 and this is indeed not enough for ISRES to solve
a 124 dimensional problem. ISRES needs about 350000 function evaluations for
solving most of the G-problems with much smaller dimensions and less number of
constraints than MOPTA08. Increasing the maximum number of evaluations for the
internal optimizer is not a choice due to the high computational time.

The performance of NMKB, HJKB and COBYLA as internal optimizer in the
COBRA-R framework was shown in an earlier study [20]. In Figure 4.19 (left), we can
see the best ever feasible point found so far in every iteration. At the first glance,
COBRA-R(COBYLA) appears to be the worst with late and slow improvement,
while COBRA-R(HJKB) outperforms the other two approaches. But a closer look
at the results reveals that COBRA-R(COBYLA) is improving the objective value,
although with slightly violated solutions, as illustrated in Figure 4.19 (right). We as-
sume, that points with small infeasibility are somewhere very close to the borders of
the feasible region. Therefore, we consider that some levels of infeasibility can be per-
mitted. If we tolerate only a small violation (< 0.5%), then COBRA-R(COBYLA)
has the fastest improvement. The left and right curves regarding COBRA-R(HJKB)
and COBRA(NMKB) in Figure 4.19 are identical which implies that these two algo-
rithms did not produce any point with 0.5% infeasibility.

HJKB and NMKB are both unconstrained optimization algorithms and as it is
described in Section 2.4.3 they handle the constrained subproblem by a static penalty
approach. The penalty coefficient changes and gets adapted over the whole optimiza-
tion process and remains constant during the internal optimization loop. This can
be considered as a weak point. We believe, that the observed early stagnation in
Figure 4.19 occurred for COBRA-R(HJKB) and COBRA-R(NMKB) is due to over-

4.2. MOPTA 2008 76

●●
●●
●●

●●●
●
●●●●●●●●

●
●
●
●●●●●●●●

●
●●●

●

●
●●●●●●

●

●●●●
●
●●
●●●
●●●●●

●
●●●
●●●●●●

●
●

●

●●
●●
●●●●●●●●

●
●●●●●●●●●

●●●●●●●●●
●

●

●●●●●

●●● ●●●●●

225

275

325

0 200 400 600 800 1000

 function evaluation

ob
je

ct
iv

e
va

lu
e

 > 5 violations

 1−5 violations

 feasible

COBRA−R(ISRES) Optimization Process for MOPTA08

Figure 4.18: COBRA-R optimization process for MOPTA08 with ISRES as the internal optimizer.
The process fails to optimize MOPTA08 because ISRES typically needs a large number of function
evaluations in order to solve an optimization problem –especially for high dimensional problems.

Table 4.11: Distance Requirement Cycles used in COBRA-R SACOBRA-R optimization frame-
works.

Ξname DRC
Ξl {0.3, 0.05, 0.001, 0.0005, 0.0}
Ξs {0.001, 0.0}
Ξ1 {0.3, 0.01, 0.001, 0.0005}
Ξ2 {0.01, 0.001, 0.0005}

Fachhochschule Köln
Cologne University of Applied Sciences

77

 Tolerance = 0 Tolerance = 0.005

●

●

●

●

●
●

●
●

optim = 222.23

●

●

●

●
●

●

● ●

optim = 222.23
222.23

225.00

230.00

235.00

240.00

245.00

250.00

500 1000 1500 2000 500 1000 1500 2000

 number of function evaluations

be
st

 f
ea

si
bl

e
ob

je
ct

iv
e

●

 COBRA−R (COBYLA)
 COBRA−R (HJ)
 COBRA−R (NM)

COBRA−R Optimization for MOPTA08 Problem

Figure 4.19: Left: objective value of the ever best fully feasible point found in every iteration by
COBRA-R with HJKB, NMKB and COBYLA as internal optimizers. Right: the best objective
value of the points with infeasibility of < 0.5% found in every iteration by COBRA-R with HJKB,
NMKB and COBYLA as internal optimizers. The best known objective for MOPTA08 is shown with
a horizontal line, this point is determined by COBRA [34] after 4000 iterations. The curves regarding
COBRA-R(HJKB) and COBRA-R(NMKB) are identical but COBRA-R(COBYLA) drops down
after tolerating a small amount of infeasibility.

4.2. MOPTA 2008 78

penalization [37] which happens in a case that the penalty coefficients are too large
that only the constraints are taken into account and the impact of the objective value
is ignored. Figure 4.19 also indicates that the points returned by COBRA-R(HJKB)
and COBRA-R(NMKB) are mostly feasible but they do not improve the objective
value too often.

4.2.2 Repairing infeasible for MOPTA08

Based on what we observed in the last section, COBRA-R(COBYLA) outperforms
the other tested algorithms if the points with a small infeasibility (up to 0.5%) are
accepted or if a repairing algorithm could guide the infeasible points close to the
feasible boundaries to the feasible region. Since we are using surrogate models, a
repair algorithm only imposes one extra function evaluation for each repair. In [21],
a new gradient based repair algorithm is proposed and embedded in the COBRA-R
framework. The performance of the proposed repair algorithm ”RI-2” was compared
with another gradient based repair proposed by Chootinan in [6]. This repair method
which we called ”CHO”, is used originally in combination with a Genetic Algorithm
in [6]. But in COBRA-R, the repair algorithms are embedded in a way that they
attempt to repair the infeasible points returned by internal optimizer on the surrogate
models only if the maximum constraint violation is smaller than 0.1. After a point
is returned by the repair algorithm, the real function is called to evaluate the new
result.

In Figure 4.20, all of the curves except COBRA-Regis are results of the COBRA-
R optimization with COBYLA as internal optimizer. Different curves are indicating
results with different types of repairing approaches and different distance require-
ment cycles (4.11). As it was mentioned before, COBRA [34] uses an interior point
algorithm from MATLAB’s Fmincon as the internal optimizer, and also there is no
repair approach embedded in the COBRA framework from Regis [34]. All runs with
COBRA-R(COBYLA) generate the initial population using Optimized initialization
approach described in Section 2.4.3. But Regis produces the initial population in
a biased manner [34], e. g., apart from the starting point, d other individuals are
selected on each positive coordinates with 0.005 distance from the given starting
point.

In an earlier study [21], it is shown that COBRA-R combined with the ”RI-2”
repair algorithm outperforms COBRA-R with CHO repair algorithm in order to solve
MOPTA08. In the following we present the results of COBRA-R(COBYLA) with
RI2 repair algorithm and a different distance requirement cycle Ξ2. The newly tested
distance requirement cycle is identical to what is called local distance requirement

Fachhochschule Köln
Cologne University of Applied Sciences

79

●
●

●

●
●

●
●

●

●

●

optim = 222.23

225

230

235

240

245

250

500 1000 1500 2000

 number of function evaluations

be
st

 f
ea

si
bl

e
ob

je
ct

iv
e

●●

RIMODE=none, Ξ=Ξ1

RIMODE=CHO, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ2

COBRA−Regis, Ξ=Ξ2

COBRA−R Optimization for MOPTA08 Problem

Figure 4.20: Different optimization processes for MOPTA08. All curves except the black one
are the result of COBRA-R(COBYLA) optimization and are average over 10 independent runs.
The bounds around the curves are representing the best and worst values among the 10 runs.
(RIMODE=none): no repair algorithm is used during the optimization process. (RIMODE=RI2):
the repair algorithm proposed in [21] is utilized. (RIMODE=CHO): the repair algorithm proposed
in [6] is applied during the COBRA-R(COBYLA) optimization process. Ξ1 and Ξ2 are different
sets of distance requirements (DRC) from Table 4.11. The points of the black curve are results
achieved by COBRA-LOCAL in [34]. The distance requirement cycle in COBRA-LOCAL is Ξ2

with no repair algorithm. The initialization phase is separated by a dashed vertical line. After the
initialization phase is completed, the COBRA-R(COBYLA)[RI-2,Ξ2] algorithm – indicated by the
magenta curve – outperforms all the other algorithms during the optimization process. Figure 4.21
represents a zoomed version of this figure for the last iterations

4.2. MOPTA 2008 80

optim = 222.23

optim = 222.23

222.5

223.0

223.5

224.0

224.5

225.0

1000 1250 1500 1750 2000

 number of function evaluations

be
st

 f
ea

si
bl

e
ob

je
ct

iv
e

●●

RIMODE=none, Ξ=Ξ1

RIMODE=CHO, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ2

COBRA−Regis, Ξ=Ξ2

COBRA−R Optimization for MOPTA08 Problem

Figure 4.21: Different optimization processes for MOPTA08, zoomed into the last iterations to
have a clear view of the final values in 2000-th iteration. The average and the best solution found
by COBRA-R(COBYLA) – with RI-2 repair algorithm and Ξ2 – has a smaller objective value than
all other shown approaches.

cycle by Regis [34]. The fact that larger moves by the CHO repair algorithm yields in
the worst results made us come up with this idea that maybe for MOPTA08 smaller
moves are preferable due to the high number of constraints. We believe that the
benefits of COBRA-R in comparison with what Regis reports in [34, 33] as the best
results for MOPTA08 is not due to the different selection of DRC but because of
the other components. Therefore, a new set of distance requirements Ξ2 was tested
which was similar to Ξ1 only the largest value in the cycle (0.3) is omitted.

Fachhochschule Köln
Cologne University of Applied Sciences

81

0

1000

2000

0

1000

2000

R
I−

2
C

H
O

0 2 4 6 8 10 12 14 16 18 20
number of violated constraints

 Before repair
 After repair

Repairing Performance on MOPTA08 Problem

Figure 4.22: Repairing performance in reducing the number of the violated constraints for
MOPTA08 problem. Before performing any repair mechanism, often many constraints are violated
(In average 8-9 constraints). This figure clearly shows that the RI-2 mechanism can reduce the
number of the violated constraints to zero in many cases or reduce them to smaller numbers while
the Chootinan repair mechanism can rarely eliminate all of the constraints violations. Even after
applying the Chootinan repair the average number of the violated constraints remains relatively
high (5-6 constraints are violated most of the time after performing the Chootinan repair).

COBRA-R(COBYLA) with RI-2 and a distance requirement cycle of Ξ2 is shown
as the magenta curve in Figure 4.20. It is apparent that after the initialization phase,
the results represented by the magenta curve are better than the others and also
better than COBRA-Regis. Therefore, COBRA-R with the proposed RI-2 approach
is clearly outperforming COBRA-Regis for the same set of distance requirement
cycles. In the early iterations the difference is very significant. In order to have
a better view on the final values we replotted the Figure 4.20 with a zoom on the
last 1000 iterations (see Figure 4.21). The best and the averaged result achieved by
COBRA-R(COBYLA) with RI-2,Ξ2 after 2000 iterations is clearly better than the
result from COBRA-Regis.

4.2. MOPTA 2008 82

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

400 800 1200 1600 2000

 function evaluation

lo
g(

S(
x)

−
f(

x)
)

●

●

●

RIMODE=CHO, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ2
●

●●
●●●
●●
●
●
●
●●
●●
●
●

●

●●●●●●●

●

●●
●
●
●●●

●●
●●●

●

●
●

●●

●
●
●

●
●●

●

●
●
●
●
●●
●
●

●
●●
●●

●
●●
●●
●
●●
●

●

●
●
●
●
●
●
●

●

●
●
●

●●

●●

●
●●●
●
●
●●

●

●●
●
●
●
●
●
●
●
●
●●●

●

●
●
●
●

●●
●

●
●

●
●
●
●

●

●

●
●●●
●●●●
●

●
●●●
●
●●●●●●●

●●

●

●●
●●

●
●
●

●
●

●
●

●

●●

●●

●

●

●

●●●●●
●●

●●
●●●
●
●
●

●●

●

●
●
●
●●●
●●●●●
●
●●
●●
●●●●●
●
●

●
●
●●●●
●
●
●

●

●●●
●
●
●●
●●●●●
●
●
●●

●
●
●

●●

●
●
●

●●

●
●

●

●

●
●

●

●●

●

●

●●

●

●
●●●●
●
●
●

●

●
●
●
●
●
●
●●●

●
●●●
●
●●●
●
●
●
●●●●●●●●●●

●●
●●
●

●
●

●

●

●

●
●
●
●

●
●
●
●●●
●●●●●
●
●●●●●●●●●●

●

●●●

●

●●
●●

●

●
●●●●
●

●

●

●

●
●
●
●

●
●●●●
●●
●●●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●●
●
●●●●●
●
●●
●
●●●●●●●

●

●

●
●

●
●●
●

●●●

●
●
●
●

●

●

●●●●

●

●●
●

●●
●
●

●

●
●
●
●●

●
●●
●
●
●
●●
●
●
●

●

●
●

●

●

●●

●
●

●●

●

●

●
●
●
●
●
●
●
●●
●
●
●●

●

●
●

●●
●●

●●
●
●●●●●●
●
●
●●
●

●

●

●●
●
●

●

●
●
●
●●●
●●●
●●
●●●

●
●●

●

●
●●●
●
●

●
●●
●

●

●●●

●
●

●

●
●
●●●

●

●●
●

●
●●
●●●●
●●●
●●
●
●
●●
●

●
●
●●
●
●●●
●●
●●●
●
●

●

●

●●●
●●

●
●

●●●
●

●●

●●
●
●

●●●
●●
●●
●●●
●●●
●
●
●
●
●●
●
●
●

●

●●

●

●●

●

●

●●●●●

●

●
●●

●

●

●
●●
●
●●
●

●

●
●●●
●
●

●

●
●●●●●●
●
●
●
●●
●●
●●●●●
●
●●●●●●
●

●
●●

●

●
●●

●
●
●

●
●

●

●
●

●
●●●●●●●

●
●●●●●●●●

●
●●
●

●
●●●●●
●
●●
●
●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●●●
●
●●
●
●●
●
●
●●
●●●●●●●

●●
●
●
●●●●

●●●

●
●
●
●●

●

●
●●●

●

●
●●●

●

●●

●

●

●

●

●●
●●
●
●

●●

●

●●
●
●

●

●
●

●

●●
●

●

●●
●

●

●
●●
●
●
●
●
●

●●
●
●

●●
●●
●

●

●●

●

●
●
●
●●
●

●

●
●
●
●
●●

●

●
●●●●

●

●

●

●
●●●●●

●
●
●
●
●
●●

●
●
●

●

●
●
●●
●

●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●●●

●●
●●
●●●
●
●

●
●

●

●
●
●
●●●●
●●●●
●
●●
●
●
●

●
●

●●
●
●●

●
●

●
●●
●

●●●

●

●
●●

●●
●●
●●
●●●●●●

●
●

●

●

●
●

●
●●●

●●

●

●●
●

●

●
●

●

●●

●

●
●

●●

●●●●
●
●●
●

●

●
●●●
●
●

●

●
●●●●●●
●

●●
●●
●●
●●●●●
●

●
●●●●●●
●
●●
●●
●
●

●

●●

●
●

●

●●
●
●●●●●●●●●●●●●●●

●●
●●
●

●
●●●
●
●
●
●●
●

●

●
●

●

●

●

●●●
●

●
●●●
●
●●●●

●

●

●

●

●●●

●
●

●

●
●●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.001

0.010

0.100

1.000

400 800 1200 1600 2000

 function evaluation

m
ov

e
le

ng
th

●

●

●

RIMODE=CHO, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ1

RIMODE=RI2, Ξ=Ξ2

Figure 4.23: Left: RBF approximation error of fitness function per iteration. Assume, S
(k)
0 is the

RBF approximation of the fitness in the kth iterate, on the y-axis the absolute difference of the
true fitness function value for the ~xk and the predicted value with the kth surrogate is shown in

a logarithmic scale, log(|S(k)
0 (~xk) − f(~xk)|). Right: Move length in the input space per iteration.

Consider ~xk is the new iterate in kth iteration, on the y-axis the Euclidean distance of ~xk from
~xk−1 in the logarithmic scale is shown log(||~xk − ~xk−1||).

Figure 4.22 clearly shows that the RI-2 mechanism can reduce the number of
the violated constraints to zero in many cases or reduce them to smaller numbers
while the Chootinan repair mechanism can rarely eliminate all of the constraints
violations. Even after applying the Chootinan repair the average number of the
violated constraints remains relatively high (5-6 constraints are violated most of the
time after performing the Chootinan repair).

The main difference between Chootinan and Chen’s repair method and RI-2 is
the different update of the search point. While RI-2 tries to explore new points in
the feasible parallelepiped, Chootinan and Chen’s update procedure can result in
larger steps in the search space. Although this may lead to quick fixes of constraint
violations, it can also induce possible new violations of constraint functions [21].
This is the case for the MOPTA08 problem with 68 constraints. As it is shown in
Figure 4.22, CHO is not successful in reducing the number of violated constraints

Fachhochschule Köln
Cologne University of Applied Sciences

83

for MOPTA08. On the other hand, in the last test with smaller Ξ2 we show that
the overall performance is enhanced. Figure 4.23 (right) illustrates the length of the
moves in the input space in every iteration for three approaches. By length of the
move, we mean distance of every new infill point from the one before ||~xk − ~xk−1||.
Comparing the blue and green curves in Figure 4.23 (right) clarifies our claim that
the Chootinan repair makes longer moves. Also, it is apparent that the average
move length during the optimization procedure with Ξ2 is smaller than a COBRA-R
procedure with Ξ1. It is interesting to see how the approximation error in Figure 4.23
(left) is proportional to the length of the moves in the input space.

84

Chapter 5

Conclusion and Future work

5.1 Conclusion

Solving black-box constrained optimization problems under severely limited budgets
is a demanding task for the existing minimization techniques. Although several
surrogate assisted approaches have been proposed in the last few years with the
aim of reducing the real function evaluations, the progress in this direction is not
significant. One of the most promising algorithms for addressing such demands is
proposed by Regis in [34] which utilizes the RBF interpolation for modeling both
objective and constraint functions and attempts to solve constrained subproblem
on the surrogate models. However, COBRA can accomplish promising results for
the MOPTA08 problem with 124 dimensions and 68 constraints, the minimization
results reported for the G-problems are not competing with what is achieved by other
approaches like variants of evolutionary algorithms.

In this study, we investigated the performance of the COBRA-R [20] optimization
framework which is a re-implementation of Regis’ COBRA [34] in R with several
contrasts listed below:

• The COBRA-R framework is implemented in R unlike COBRA which is pro-
grammed in MATLAB.

• The internal optimizer can be selected by the user among COBYLA, HJKB,
NMKB and ISRES instead of using Fmincon from MATLAB.

• The initialization phase can be done by one of the following approaches: LHS,
Biased, Optimized while in Regis’ COBRA [34] the initialization is done either
randomly by the LHS approach or in a biased manner.

• Regis uses d + 1 individuals for the initial population, whereas we assign a
larger size for the initial design (≥ 3 · d).

Fachhochschule Köln
Cologne University of Applied Sciences

85

• Embedding the repair infeasible algorithm [21] to move the solutions with a
small infeasibility found by the internal optimizer into the feasible region.

G-problems with widely varying features impose various challenges to the
COBRA-R algorithm. In order to answer the first research question [Q.1] we
can refer to Table 4.2 which listed a summary of the challenges imposed by the
test functions G01 to G11. In general, the demands to solve the G-problems can
be categorized in to three classes: 1. Complex or tough objective or constraint
functions to be modeled with a cubic RBF interpolation approach, 2. Numerical
issues appeared in training a cubic RBF model for simple functions but with large
values in the input space, 3. Difficulty to select a suitable distance requirement cycle
for different problems with various sizes of search space and feasible space.

For the first experiments handling the different challenges is done by manual
parameter tuning and modification of tough objective or constraint functions of dif-
ferent G-problems. After assigning the suitable parameter setting listed in Table 4.1,
based on the gained results shown in Table 4.4 we can answer [Q.2] positively for
10 out of 11 tested G-problems. Some problems only need very few function eval-
uations after the initialization to reach the optimum with an error smaller than
10−6. COBRA-R with tuned parameters needs less than 60 iterations to solve G01
and G11. In general, except from G02 which is a tough problem to be solved with
surrogate assisted techniques due to many local optima in 20 dimensions, all other
tested G-problems could be solved with less than 500 function evaluations. Suit-
able variants of evolutionary algorithms to address constrained problems can solve
the G-problems within thousands of function evaluations; therefore, the reduction of
real function evaluations by COBRA-R is significant whereas, the final error is also
reasonably small.

The positive answer to [Q.3] can be directly illustrated in Figure 4.3, 4.4 and 4.5.
Comparing the median optimization error obtained by COBRA and COBRA-R
within 100 iterations shows that our approach is performing better for all the tested
G-problems. Only for the G03MOD problem in Figure 4.6, it is shown that both
algorithms cannot achieve good results with 100 function evaluations. But we also
show that COBRA-R is capable of getting close to the optimum after 400 iterations
with the median error of < 10−5. The main reason for the improvement of COBRA-
R is due to the use of a manually tuned parameter setting for each problem unlike
COBRA [34] which uses one parameter setting for handling all G-problems. The
distance requirement cycle suggested by Regis appears to have elements that are too
large for many of the G-problems with a tiny feasible region ρ or large fitness range
FR. On the other hand, some problems need more exploration, so larger elements in
the DRC are desirable. The improved results achieved for G10 were due to different

5.1. CONCLUSION 86

approaches used to modify the steep constraints. Regis in [34] utilizes a logarithmic
transformation to modify steep functions. But we used a linear transformation to
map all constraint values to the range of -1 to 1. When all the constraints are varying
in a similar range then none of the constraints are underpenalized or overpenalized.
The manually tuned parameters for G-problems are listed in Table 4.5.

In order to improve the overall performance of COBRA-R, we introduced three
new extensions to be combined with the COBRA-R framework:

a: Input space rescaling.

b: Random start algorithm (Algorithm 1).

c: Parameter/function(s) adaptation step (Algorithm 2).

We called the extended COBRA-R framework with the three listed extensions as
”self-adaptive COBRA-R” or ”SACOBRA-R”.

Before the initialization phase of SACOBRA-R, it is decided whether according
to the bounds of the problem the input space should be rescaled to [0, 1]d.

The random start algorithm is a step before the optimization on the surrogates
(see Figure 4.9). In this step the starting point which will be passed to the internal
optimizer is selected. Most of the time the starting point is the best solution found
so far during the optimization process. But with a low probability a random point
in the search space is passed to the internal optimizer as the starting point of the
search on the surrogates. We investigated whether this algorithm can improve the
worst-case results and assist the search to escape from a possible local optimum. The
G01 problem provides a test-bed where the functionality of the proposed approach
can be evaluated (see Figure 5.1). Overall, the worst case error is improved for 6
problems after applying the random start algorithm. Therefore, we can answer [Q.4]
positively.

The parameter/function(s) adaptation algorithm is proposed with the aim of
reducing the sensitivity of the COBRA-R optimization to parameter selection and
function modification. This algorithm is performed after the initialization phase and
utilizes the information gained from 3 · d individuals located randomly in the search
space in the initialization phase. This algorithm includes three main parts:

1. Transformation of the objective function if FR is extremely large.

2. Normalization of the constraints if the constraint ratio GR is large.

3. If the objective function range FR is large, replacement of the default distance
requirement cycle Ξl with a DRC including only two small elements Ξs.

Fachhochschule Köln
Cologne University of Applied Sciences

87

● ● ● ● ● ●

●

●

●

● ● ●

1e
−09

1e
−07

1e
−05

1e
−03

1e
−01

1e
+01

42 52 62 72 82 92 102

 function evaluation

lo
g(

f(
x)

−
f(

x*
))

●

●

SACOBRA−R

COBRA−R

G01 problem (d=13, m=9)

Figure 5.1: Impact of random start algorithm on G01

The results shown in Table 4.7 are achieved by self-adaptive COBRA-R initial-
ized with one configuration for all G-problems. So, the answer of [Q.5] question
according to these results is positive for 9 cases out of 11. All G-problems can be
approached reasonably well with self-adaptive COBRA-R except G02 and G09 which
are tough problems in terms of modeling their objective function with RBF inter-
polation trained on very limited amount of individuals. It is worthwhile to mention
that although self-adaptive COBRA-R cannot always achieve as good results as man-
ually tuned COBRA-R, it eliminates the need for adjusting functions and tuning the
DRC parameter. For black-box optimization problems a parameter-free optimization
algorithm is desirable.

Additionally, a high dimensional highly constrained benchmark (MOPTA08) was
used to evaluate COBRA-R. We answer the question posed in [Q.6] positively by
referring to Figure 4.20 and 4.21. It is shown that COBRA-R found a better feasible
solution for MOPTA08 in comparison with Regis’s COBRA [34]. The improvement

5.2. FUTURE WORK 88

can be due to using the combination of the optimized initialization, COBYLA as the
internal optimizer and the RI-2 repair mechanism.

5.2 Future Work

Although we have accomplished a reduction of the sensitivity of the COBRA-R algo-
rithm to the parameter selection, there is still considerable scope for improvements.
At present, the best internal optimizer embedded in our optimization framework is
COBYLA, but we have shown that COBYLA is not the best choice for the internal
optimizer when the problems have many local optima. ISRES could be a practical
alternative for problems in low dimensions. Further investigation on a more generic
solver for the internal optimizer can be considered for future work. According to the
No Free Lunch Theorem for optimization [44], a solver can be appropriate for a group
of problems but not effective on many others. Therefore, looking for an intelligent
way of selecting the internal optimizer, is another interesting field to be investigated
in future work.

We are planning to evaluate our optimization framework with more high di-
mensional, real-world benchmarks, for example the engineering examples evaluated
in [34]. We believe that evaluating our framework with more real-world problems
brings a better insight into the existing weaknesses of our algorithm, so we can have
the opportunity to do further improvements. It is also interesting to test the ability
of the self-adaptive COBRA-R on the same problems but in a noisy environment.
However, we believe this can be a challenge for the current version of the algorithm.

Investigations in future could concentrate on the improvement of the surrogate
approach in different means. On the one hand, we observed that in several cases the
failure of the optimization process was due to the weak model. On the other hand, to
our knowledge, RBF models are one of the best approaches in terms of computational
time, even in high dimensions. Hence, investigation on the performance of different
kinds of radial basis functions in our framework is one of the main tasks we will
follow.

89

Bibliography

[1] Arnold, D., Hansen, N.: A (1+1)-CMA-ES for Constrained Optimisation. In:
Soule, T., Moore, J.H. (eds.) Proceedings of the 14th International Conference
on Genetic and Evolutionary Computation. pp. 297–304. ACM (2012)

[2] Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press,
Oxford, UK (1996)

[3] Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In:
Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference
on Genetic Algorithms, San Diego, CA, USA. pp. 2–9. Morgan Kaufmann (1991)

[4] Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S.: Constrained Efficient
Global Optimization with Support Vector Machines. Structural and Multidisci-
plinary Optimization 46(2), 201–221 (2012)

[5] Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, New
York, NY, USA (2003)

[6] Chootinan, P., Chen, A.: Constraint handling in genetic algorithms using a
gradient-based repair method. Computers & Operations Research 33(8), 2263–
2281 (2006)

[7] Coello, C.A.C.: Constraint-handling using an evolutionary multiobjective opti-
mization technique. Civil Engineering and Environmental Systems 17, 319–346
(2000)

[8] Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering opti-
mization problems. Computers in Industry 41(2), 113–127 (2000)

[9] Deb, K.: An efficient constraint handling method for genetic algorithms. Com-
puter Methods in Applied Mechanics and Engineering 186(24), 311–338 (2000)

BIBLIOGRAPHY 90

[10] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edn. (1989)

[11] Ho, Y.C., Pepyne, D.: Simple explanation of the no free lunch theorem of
optimization. In: Zhu, I.J., et al. (eds.) Proceedings of the 40th IEEE Conference
on Decision and Control, 2001. vol. 5, pp. 4409–4414. IEEE, Piscataway, NJ
(2001)

[12] Hoffmeister, F., Bäck, T.: Genetic algorithms and evolution strategies: Simi-
larities and differences. In: Schwefel, H.P., Männer, R. (eds.) Parallel Problem
Solving from Nature, Lecture Notes in Computer Science, vol. 496, pp. 455–469.
Springer Berlin Heidelberg (1991)

[13] Holmström, K., Quttineh, N.H., Edvall, M.: An adaptive radial basis algorithm
(arbf) for expensive black-box mixed-integer constrained global optimization.
Optimization and Engineering 9(4), 311–339 (2008)

[14] Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical
problems. J. ACM 8(2), 212–229 (1961)

[15] Jakobsson, S., Patriksson, M., Rudholm, J., Wojciechowski, A.: A method for
simulation based optimization using radial basis functions. Optimization and
Engineering 11(4), 501–532 (2010)

[16] Jiao, L., Li, L., Shang, R., Liu, F., Stolkin, R.: A novel selection evolution-
ary strategy for constrained optimization. Information Sciences 239(0), 122–141
(2013)

[17] Johnson, S.G.: The NLopt nonlinear-optimization package, [Online. Last Ac-
cessed 28.02.2015]

[18] Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

[19] Jones, D.: Large-Scale Multi-Disciplinary Mass Optimization in the Auto
Industry. Modeling and Optimization: Theory and Applications Confer-
ence (MOPTA) (2008)

Fachhochschule Köln
Cologne University of Applied Sciences

91

[20] Koch, P., Bagheri, S., Foussette, C., Krause, P., Bäck, T., Konen, W.: Con-
strained optimization with a limited number of function evaluations. In: Hoff-
mann, F., Hllermeier, E. (eds.) Proceedings 24. Workshop Computational Intel-
ligence. pp. 119–134. Universitätsverlag Karlsruhe (2014), young Author Award
GMA-CI

[21] Koch, P., Bagheri, S., Konen, W., Foussette, C., Krause, P., Bäck, T.: A
new repair method for constrained optimization. In: Jimnez-Laredo, J.L. (ed.)
Proceedings of the 17th Genetic and Evolutionary Computation Conference.
GECCO’15, vol. (submitted) (2015)

[22] Kramer, O., Schwefel, H.P.: On Three New Approaches To Handle Constraints
Within Evolution Strategies. Natural Computing 5(4), 363–385 (2006)

[23] Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation, Studies in
Computational Intelligence, vol. 147. Springer Berlin Heidelberg (2008)

[24] Luersen, M.A., Le Riche, R.: Globalized nelder-mead method for engineering
optimization. In: Topping, B.H.V., Bittnar, Z. (eds.) Proceedings of the Third
International Conference on Engineering Computational Technology. pp. 165–
166. ICECT’03, Civil-Comp press, Edinburgh, UK (2002)

[25] Michalewicz, Z., Nazhiyath, G.: Genocop III: a co-evolutionary algorithm for
numerical optimization problems with nonlinear constraints. In: IEEE Inter-
national Conference on Evolutionary Computation. vol. 2, pp. 647–651 vol.2.
IEEE., Piscataway, NJ (1995)

[26] Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained Pa-
rameter Optimization Problems. Evolutionary Computation 4(1), 1–32 (1996)

[27] Nelder, J.A., Mead, R.: A simplex method for function minimization. The Com-
puter Journal 7(4), 308–313 (1965)

[28] Pham, H.: Reduction of function evaluation in differential evolution using near-
est neighbor comparison. Vietnam Journal of Computer Science pp. 1–11 (2014)

[29] Poloczek, J., Kramer, O.: Local SVM Constraint Surrogate Models for Self-
adaptive Evolution Strategies. In: Timm, I.J., Thimm, M. (eds.) KI 2013: Ad-
vances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 8077,
pp. 164–175. Springer Berlin Heidelberg (2013)

BIBLIOGRAPHY 92

[30] Powell, M.J.D.: The Theory of Radial Basis Function Approximation in 1990,
pp. 105–210. Oxford University Press, USA (1992)

[31] Powell, M.: A direct search optimization method that models the objective
and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P.
(eds.) Optimization And Numerical Analysis, pp. 51–67. Kluweer Academic,
Dordrecht (1994)

[32] Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucher, P.K.:
Surrogate-based analysis and optimization. Progress in Aerospace Sciences 41,
1–28 (2005)

[33] Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimiza-
tion involving expensive black-box objective and constraint functions. Comput-
ers & OR 38(5), 837–853 (2011)

[34] Regis, R.G.: Constrained optimization by radial basis function interpolation for
high-dimensional expensive black-box problems with infeasible initial points.
Engineering Optimization 46(2), 218–243 (2014)

[35] Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the
global optimization of expensive functions. European Journal of Operational
Research 182(2), 514–535 (2007)

[36] Regis, R.G., Shoemaker, C.A.: A quasi-multistart framework for global opti-
mization of expensive functions using response surface models. J. Global Opti-
mization 56(4), 1719–1753 (2013)

[37] Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Transactions on Evolutionary Computation 4, 284–294 (2000)

[38] Runarsson, T., Yao, X.: Search biases in constrained evolutionary optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews 35(2), 233–243 (2005)

[39] Schwefel, H.P.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., New York, USA (1993)

[40] Singh, H., Ray, T., Smith, W.: Surrogate assisted simulated annealing (sasa)
for constrained multi-objective optimization. In: Evolutionary Computation
(CEC), 2010 IEEE Congress on. pp. 1–8 (July 2010)

Fachhochschule Köln
Cologne University of Applied Sciences

93

[41] Stein, M.: Large sample properties of simulations using latin hypercube sam-
pling. Technometrics 29(2), 143–151 (1987)

[42] Takahama, T., Sakai, S.: Constrained optimization by applying the α con-
strained method to the nonlinear simplex method with mutations. IEEE Trans-
actions on Evolutionary Computation 9(5), 437–451 (2005)

[43] Wang, G.G., Dong, Z., Aitchison, P.: Adaptive response surface method – a
global optimization scheme for computation-intensive design problems. Journal
of Optimization and Engineering 33, 707–734 (2001)

[44] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

94

Fachhochschule Köln
Cologne University of Applied Sciences

95

Appendix A

Algorithms

Algorithm 3 Optimization algorithm Nelder-Mead. Input: initial simplex repre-
sented by ~P1, ~P2, . . . , ~Pn+1 for an n-dimensional problem, termination criteria. Out-
put: the best point with the lowest objective value, found by the algorithm.

1: f(~P) : objective function to be minimized.
2: α : Reflection coefficient.
3: γ : Expansion coefficient, which is greater than 1.
4: β : Contraction coefficient, which from 0 to 1.
5: ~Pw : Worst point in the current population.
6: ~Pb : Worst point in the current population.
7: P̄ : Centroid of the all current points except the worst one.

8: while Termination criteria is not satisfied do
9: Reflection: ~Pr = (1 + α)P̄ − ~Pw

10: if f(~Pr) < f(~Pw) then
11: replace ~Pw with ~Pr
12: if f(~Pr) < f(~Pb) then
13: Expansion
14: end if
15: else
16: ContractionNshrink
17: end if
18: end while

1: function Expansion
2: ~Pe = γ ~Pr + (1− γ)P̄
3: if f(~Pe) < f(~Pb) then
4: replace ~Pw with ~Pe
5: else
6: replace ~Pw with ~Pr
7: end if
8: end function

9: function ContractionNshrink
10: ~Pc = β ~Pw + (1− β)P̄
11: if f(~Pw) < f(~Pc) then
12: Shrink the simplex toward Pc
13: else
14: replace ~Pw with ~Pc
15: end if
16: end function

96

Algorithm 4 Optimization algorithm Hooke-Jeeves.
Input: ~x = {x1, x2, ..., xd} ∈ Rd, termination criteria. Output: the best point found
by the algorithm.

1: f(~x) : objective function to be minimized.
2: ε : Step size in exploratory moves.
3: α : Acceleration in pattern move.
4: iter := 0 : Number of real function evaluations.
5: ~x best := ~x : Assign initial point as the best known point so far.

1: function Main(~x best)
2: while Termination criteria are not

met do
3: ~xnew = Explore(~x best)
4: if f(~xnew) < f(~x best) then
5: ~x best ←Exploit(~x best, ~xnew)
6: else
7: ε← ε/2
8: end if
9: end while

10: return ~x best

11: end function

12: function Explore(~x best)
13: for i = 1, . . . , d do
14: ~x temp ← ~x besti + ε
15: if f(~x temp) < f(~xnew) then
16: iter ← iter + 1
17: ~xnew ← ~x temp

18: else
19: ~x temp ← ~x besti − ε
20: if f(~x temp) < f(~xnew) then
21: iter ← iter + 1
22: ~xnew ← ~x temp

23: end if
24: end if
25: end for
26: return ~xnew

27: end function

28: function Exploit(~x best, ~xnew)
29: ~x pMove = ~xnew + α(~xnew − ~x best)
30: if f(~x pMove) < ~xnew then
31: iter ← iter + 1
32: ~x best ← ~x pMove

33: else
34: ~x best ← ~xnew

35: end if
36: return ~x best

37: end function

97

Erklärung

Ich versichere, die von mir vorgelegte Arbeit selbständig verfasst zu haben.
Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten
Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht.
Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind
angegeben. Die Arbeit hat mit gleichem Inhalt bzw. in wesentlichen Teilen noch
keiner anderen Prüfungsbehörde vorgelegen.

(Ort, Datum) Samineh Bagheri

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Related Work
	1.2 Thesis Outline

	2 Methods
	2.1 No Free Lunch Theorems for Optimization
	2.2 Unconstrained Optimization Techniques
	2.2.1 Point Based Strategy
	2.2.2 Population Based Strategies

	2.3 Constraint Handling Techniques
	2.3.1 Death Penalty
	2.3.2 Penalty Functions
	2.3.3 Stochastic Ranking
	2.3.4 Multiobjective Optimization
	2.3.5 Repair Algorithms

	2.4 Surrogate Assisted Optimization
	2.4.1 COBYLA (Linear Approximation)
	2.4.2 COBRA (RBF)
	2.4.3 COBRA-R (RBF)

	3 Research Questions
	4 Experimental Analysis
	4.1 G-problem Test Suite
	4.1.1 Challenges of Optimization on the G-problems
	4.1.2 Performance of COBRA-R with tuned Parameters
	4.1.3 Performance of Self-Adaptive COBRA-R
	4.1.4 Comparing the Performance of SACOBRA-R and COBRA-R
	4.1.5 Comparison with other Techniques

	4.2 MOPTA 2008
	4.2.1 Performance of COBRA-R with different Internal Optimizers
	4.2.2 Repairing infeasible for MOPTA08

	5 Conclusion and Future work
	5.1 Conclusion
	5.2 Future Work

	Bibliography
	A Algorithms

