The Testing and Test Control Notation

Ina Schieferdecker

Agenda

- Introduction
- Overview on TTCN-3
- An Example
- Test Execution
- Outlook
TTCN-3

- A standardized alternative to proprietary test systems
 - Developed by a large group of testing experts
 - Used by a growing community
 - Proven by tools
 - Maintained at ETSI
- A test specification and implementation language
 - Test and Testing Control Notation = TTCN-3
 - Multipart standard covering
 - Testing concepts
 - Semantics
 - Presentation formats
 - Execution interfaces

TTCN-3

- Applicable for all kinds of black-box and grey-box testing for reactive and distributed systems, e.g.
 - Fixed and mobile telecommunication (ATM, GSM, GPRS, UMTS)
 - Internet (IPv6, SIP)
 - Middleware platforms (CORBA, CCM, EJB, Web Services)
 - Embedded systems (automotive, avionics)
 - Programming interfaces (Java, XML)
- Applicable to many kinds of testing
 - Development, system, integration, interoperability, scalability …
 - And also conformance testing
- As a test solution in industrial software development and for standardized test suites
Main Aspects of TTCN-3

- Triple C
 - Configuration: Dynamic concurrent test configurations with test components
 - Communication: Various communication mechanisms (synchronous and asynchronous)
 - Control: Test case execution and selection mechanisms

- Improved
 - Harmonized with ASN.1
 - Module concept

- Extendibility via attributes, external function, external data

- Well-defined syntax, static and operational semantics

- Different presentation formats

Overview on TTCN-3

```cpp
; testcase myTestcase () runs on NTType system TDIType
mydefaul t = activate (otherwise fail);

; connect(PTC_ISAP1:CP_ISAP1, mmc:CP_ISAP1);
; map(PTC_ISAP1: ISAPl, system: TSI_ISAP1);
; PTC_ISAP1.start(func_PTC_ISAP1());
PTC_ISAP1.start(func_PTC_ISAP1());
Synchronization();
all component done;
log("Correct Termination");
```

21st TAV, June 2004, Berlin
I. Schieferdecker: TTCN-3
TTCN-3 and Software Testing

Based Black-Box Testing
Component-Based Test System

TTCN-3 Test Case

SUT

TC

MTC

TCs

TTCN-3 – Test Verdicts

- Test verdicts: none < pass < inconc < fail < error
- Each test component has its own local verdict, which can be set (setverdict) and read (getverdict).
- A test case returns a global verdict

Verdict returned by the test case when it terminates
Basic Elements of TTCN-3

- **Module** covers declarations and control
- **Templates** (test data description) and matching mechanisms (pattern matching)
- **Test configurations**
 - Formally defined interfaces to the SUT
 - Dynamic creation of test component
 - Concurrency to describe distributed test setups
- **Test cases**
 - Small (complete) separate compilable programs
 - Share (type and data) information
- **Test verdicts**

An Example

![Automated Teller Machine Diagram](image-url)

Test System

- **Main Test Component (MTC)**
- **System Under Test (SUT)**
- **Parallel Test Component (PTC)**
The TTCN-3 Module

```tcl
module ATM_Test {

modulepar {
    float maxDurOfTC_Par;
    account_Type validAccount_Par;
    card_Type validCard_Par;
    integer validPin_Par, validAmount_Par;
    float maxDurOfTC_par

    external const float TestExecutionTime;
    ...
}
```

Test Data: Types and Ports

```tcl
type port hardwareInterface_PType message {
    out authenticationData_Type, operationHMI_Type;
    in authenticationComplete_Type, operationComplete_Type,
        status_Type
}

type record authenticationData_Type {
    card_Type card,
    integer pin
}

type record authenticationComplete_Type {
    boolean success,
    reason_Type reason
}

type enumerated reason_Type {
    noReason,
    unknown,
    ...
}
```
Test Data: Templates

type record operationHWI_Type {
 HWI_ops operation,
 integer argument
}

template operationHWI_Type
validWithdrawalOp_Template := {
 operation := withdrawal,
 argument := validAmount_Par
}

Test Configuration: Components

// Component Type for Hardware Emulator

type component hardwareEmulator_CType {
 port hardwareInterface_PType hwiCom;
 port testCoordination_PType coHWE;
 timer testCaseGuard := maxDurOfTC_par;
}

// Component Type for Bank Emulator

type component bankEmulator_CType {
 port networkInterface_PType niCom;
 port testCoordination_PType coBE;
}

// Component Type for the Test System Interface

type component ATM_Interface_CType {
 port hardwareInterface_PType hwiSUT;
 port networkInterface_PType niSUT;
}
Test Behavior: send/receive

```plaintext
hwICom.send(validWithdrawalOp_Template);

alt {
    [] hwICom.receive(operationComplete_Type: {withdrawal, true, ?})
        { setverdict(pass); };
    [] hwICom.receive(operationComplete_Type: ?)
        -> value erroneousWithdrawal
        { setverdict(fail); };
    [] ...
}
```

Test Behaviour: Test Case

```plaintext
testcase validWithdrawal {inout reason Type Reason}
runs on hardwareEmulator CType system ATM_Interface CType {
...
    var bankEmulator CType BE_PTC:=bankEmulator CType.create;

    map(theSystem:nisUT, BE_PTC:nCom);
    connect(self:coHWE, BE_PTC:coBE);
    map(theSystem:hwisUT, self:hwICom);
    BE_PTC.start(BE_validWithdrawal());

testCaseGuard.start; // start guarding timer

    result :=
        authentication(validCard_Par, validPin_Par, reason);
...
```

Overall Picture

System Interfaces → Derivation of test data structure → TTNCN-3

System under Test

Adaptor acc. to the mapping rules → Compilation to Executable Tests → Test Component

The Execution Interfaces

Test System User

TM: Management

TE: Test Execution

SA: System Adaptor

PA: Platform Adaptor

SUT: System Under Test

TRI – TTCN-3 Runtime Interfaces

TCI – TTCN-3 Control Interfaces

21st TAV, June 2004, Berlin

I. Schieferdecker: TTCN-3
Local and distributed test setups

The Tool Chain

TTthree free for education
www.testingtech.de
Upcoming TTCN-3

- MockUp end of 2004: mainly error correction
- New version v3.1.1 in 2005
 - Better structuring: packages, core language extensions and profile
 - Possibly support for
 - Real-time and performance testing
 - Logging
 - Object-oriented data
 - External applications
 - Etc.

Summary

- TTCN-3 as the new standardized test specification and implementation language
- TTCN-3 has applications e.g. for
 - Telecommunication (e.g. mobile communication and Internet)
 - Software (e.g. object and component based systems, middleware platforms, Web services)
 - Control systems in automotive, transportation and avionics
- TTCN-3 has many tool vendors and users
- TTCN-3 is a continuously maintained and enhanced test technology
Thank You!

Any Questions?