Cause-Effect Graphs for Test Models
Based on UML and OCL

Stephan Weißleder, Dehla Sokenou
Table of Content

- Introduction to model-based testing
- Example: freight elevator
- Automatic test suite generation
 - Algorithm
 - Quality measurement with coverage criteria
- Relations between OCL expressions
- Introduction to cause-effect-graphs
- Using cause-effect-graphs to clarify OCL relationships
Model-Based Testing
Model-Based Testing

![Diagram of Model-Based Testing](image)
Model-Based Testing

- Requirements Specification
 - System Modeling
 - Base
 - Model
 - 1
 - ...
 - ...
 - System Implementation
 - System
Model-Based Testing
Model-Based Testing

- Requirements Specification → Test Specification
- System Modeling
- Test Case Specification → Test Modeling
- System Implementation

Stephan Weißleder, HU Berlin
Dehla Sokenou, GEBIT Solutions
Model-Based Testing

![Diagram of the Model-Based Testing process](image.png)
Model-Based Testing

Cause-Effect-Graphs for Test Models
Based on UML and OCL

Stephan Weißleder, HU Berlin
Dehla Sokenou, GEBIT Solutions
Example of a Freight Elevator

- **idle**
 - Conditions: \([\text{actualWeight} > \text{maxWeight}]\)
 - Transitions:
 - **removeWeight** \((w) / \text{subtractFromWeight}(w)\)
 - **insertWeight** \((w) / \text{addToWeight}(w)\)

- **button pressed**
 - Conditions: \([\text{actualWeight} <= \text{maxWeight}]\)
 - Transitions:
 - **pressButton** \((b, r) [(b <> \text{currentFloor}) \text{ and } (b > \text{basement} \text{ or } r > \text{minRank})]\)
 - **/setButton** \((b)\)

- **start moving**
 - Conditions: \([\text{actualWeight} = \text{minWeight}]\)
 - **/actualWeight** \((\text{minWeight})\)
 - \([\text{actualWeight} > \text{minWeight}]\)

- **move fast**
 - Transition: **reachFloor**

- **move slow**
 - Transition: **reachFloor**
Automatic Test Case Generation from UML and OCL

• Model-based test generation from behaviour specifications:
 – Search forward from initial node
 – Search backward from test goals
• Test goal:
 – Coverage criterion applied to a concrete model
 – Example: one state for All-States
• Generate abstract test case
 – Find a path
• Generate concrete test case
 – Find concrete input values
Automatic Test Case Generation from UML and OCL

- Generation of test cases:
 - Path from initial node to test goal contains conditions (e.g. OCL)
 - Due to conditions not each found path is feasible
 - Consequence: include conditions into search algorithm
 - Deal with the relations between OCL conditions along the path
Automatic Test Case Generation from UML and OCL

• Generation of Test Cases:
 – Classify all variables used in the OCL expressions
 • Which variables can change?
 – Algorithm - for each guard:
 • try to find postconditions that influence the result of the guard
 • Combine guard and postcondition to a new condition
 • If there are changeable variables in the condition: continue search
 – Basic Idea:
 • Transform conditions on system attributes into conditions on input parameters
 • Use them as input partitions
Quality of Test Suites

- Satisfying coverage criteria:
 - Algorithm generates tests that satisfy all guard conditions
 - Several coverage criteria also need negative cases:
 - Condition Coverage
 - Decision Coverage
 - MC/DC
 - Consequence:
 - Add test goals for transformed guard conditions
 - Find test cases that satisfy them

\[
\text{[actualWeight} > \text{minWeight]} \\
\text{[actualWeight} \leq \text{minWeight]}
\]
Classification of OCL Elements

- Why classify OCL elements at all?

Postcondition:

\[X = Y \text{@pre} \quad X := Y \]
\[Y := X \]
\[X := Z \]
\[Y := Z \]
Classification of OCL Elements

- Examples for Condition Transformations
 - Guard: $\text{guard} = \text{actualWeight} > \text{minWeight}$
 (passive) (passive)
 - Post: $\text{post} = \text{actualWeight} = \text{actualWeight}_{pre} + w$
 (active) (passive) (passive)
 - New: $\text{new} = \text{actualWeight}_{pre} + w > \text{minWeight}$
 - Satisfaction of guard condition is now influenced by input parameters

- Is this relationship easily visible?
- Supporting readability by using cause-effect-graphs?
Introduction to Cause-Effect-Graphs

- Graphical representation of
 - Logical expressions
 - Logical dependencies
- Easier to read than textual representation

Example: $C = A \lor B$
Introduction to Cause-Effect-Graphs

- \((b \not< currentFloor) \text{ and } (b > \text{basement or } r > \text{minRank})\)

 \[\begin{array}{c}
 A \quad B \quad C \\
 \end{array}\]

- \(E = \text{true}, \ F = \text{false}\)
Using Cause-Effect-Graphs to clarify OCL Relationships

- Expressing relationships between OCL expressions
- Guard: \([\text{actualWeight} > \text{minWeight}]\)
- Relation 1
 - Post of \text{addToWeight}: \text{actualWeight} = \text{actualWeight}@pre + w
 - New1: \text{actualWeight}@pre + w > \text{minWeight}
- Relation 2
 - Post of \text{subtractFromWeight}: \text{actualWeight} = \text{actualWeight}@pre - w
 - New2: \text{actualWeight}@pre - w > \text{minWeight}
- Combination
Discussion

- Improved readability by using cause-effect-graphs?
- Case studies needed
- Cause-Effect-Graphs are related to the test case
 - The order of input stimuli has effects on the cause-effect-graph
 - Examples:
 - Execute addToWeight AND removeFromWeight
 - Execute addToWeight two times
 - Result:
 - Adapt causes depending on the structure of the cause-effect-graph
- Include information about input events in cause-effect-graph?
- Same principle used in prototype ParTeG (http://parteg.sf.net)