
Nondeterministic Coverage Metrics as Key Performance Indicator
for Model- and Value-based Testing

David Faragó (farago@kit.edu)
Karlsruhe Institute of Technology, Institute for Theoretical Computer Science

Abstract. Putting measures such as KPIs simply on top of testing or the whole software development
process can easily be misleading. A better solution is a paradigm shift to value-based software engineering,
which integrates value considerations into software engineering and offers a broader and more technical
view on KPIs. Coverage metrics are such a technical view and a very important KPI.
This paper combines value-based testing and model-based testing of nondeterministic systems and
introduces new coverage metrics for this (e.g., quantified nondeterminism). Therewith, the quality of test
suites are raised and value-based testing gets strongly supported, e.g., by new KPIs from nondeterministic
coverage metrics and better requirements-based and risk-based testing.

Keywords. Value-based software engineering, value-based testing, key performance indicators, re-
turn on investment, model-based testing, coverage metrics, nondeterminism, quantification

1 Introduction

Testing already consumes up to 50% of the software
development costs ([1]), so it needs to be financed
and managed efficiently on all hierarchy levels. To
enable sensible decisions, especially in higher man-
agement, conscise information is needed. Key Perfor-
mance Indicators (KPIs) deliver such: They are mea-
sures which evaluate the progress and degree of perfor-
mance of a particular activity from certain viewpoints.
So the value of all software development activities is
mapped onto some measures. But conscisely quanti-
fying complex systems is very difficult. Hence often
wrong KPIs or too few dimensions are considered (cf.
[2]), or interpreted wrongly (e.g. work in progress, cf.
[15,13]). So they mislead management into bad de-
cisions. In testing, for instance, defect detection per-
centage (i.e. bugs fixed / total bugs found) does not
factor in the severity of bugs. Hence it cultivates (es-
pecially in combination with the KPI Lines of code
per day) quick and dirty coding and fixing many little
bugs afterwards. More meaningful KPIs, e.g., return
on investment (ROI) (cf. Section 2.2), sprint burn-
down (cf. [14]) or coverage metrics (cf. Section 3),
require more context, i.e., a broader and deeper, more
technical view on software engineering.

Hence Section 2.2 will give this broader view by
introducing value-based testing. It will motivate look-
ing into the following technical details: Coverage met-
rics (cf. Section 3), model-based testing (MBT) and
nondeterminism (cf. Section 4), and finally, Section 5
investigates how and which coverage metrics help for
model-based testing and for KPIs. Section 6 gives a
summary.

2 Value-based Software Engineering

2.1 Introduction

Value is more than money, it is the relative economic
and utilitarian worth. With this general definition, ev-

eryone strives in his decisions and actions to maximize
his (personal) value. When KPIs are being used, busi-
ness value of all development and testing activities are
mapped onto some measures, so that higher manage-
ment can sensibly steer the software development de-
partment. In contrast, value-based software engineer-
ing (VBSE) integrates business value considerations
into the full range of software engineering principles
and on all hierarchy levels. It offers means to better
downstream value to all parties. Therefore, everyone
involved – manager, executive, analyst, process en-
gineer, software engineer, and tester – better under-
stands the implications of their own decision. Thus all
actions and decisions are monitored and synchronized
to maximize the corporate values made explicit - they
are enhanced to being value-based (VB). Hence com-
mon mischiefs, e.g., development only striving for el-
egant design while marketing only valuing large func-
tionality, are avoided.

So this paradigm shift investigates the value of all
software development activities, how to measure, in-
crease and enforce it. For this, the VBSE Agenda (cf.
[4,2]) integrates value considerations into the software
development process as well as management activities
closely related to software development:
– VB requirements engineering identifies success-

critical stakeholders and prioritize requirements
accordingly.

– VB architecting finds architectural solutions ac-
cording to the prioritized requirements, and sup-
ports traceability back to them.

– VB design and development further refines the ar-
chitecture and objectives. For this, traceability is
important, to guarantee that the value considera-
tions are really inherited.

– VB verification and validation (V&V) firstly
checks that the previous activities really followed
the value objectives. Secondly, the value consider-
ations are applied to V&V itself by prioritization.

Two prominent techniques for VB V&V are risk-
based and value-based testing.

– VB planning and control integrates value consid-
erations into classical planing and control, and
also contains techniques to plan and control the
value itself (e.g., multi-attribute planing and de-
cision support).

– VB risk management identifies, analyses and miti-
gates risks, and helps in prioritizations. It includes
many VB techniques, for instance from risk-based
analysis and predictability, risk-based simulation,
risk-based testing and agile methods (cf. [10]).

– VB quality management prioritizes quality fac-
tors, e.g., by multi-attribute decision support
techniques or VB approaches to security.

These elements reinforce each other and are enhanced
by the contributions of this paper (cf. Section 6).

2.2 Value-based Testing

The value of test cases is usually a Pareto distribu-
tion, i.e., 80% of the value is covered by 20% of the
test cases (cf. [6]). Hence a value-neutral approach,
which treats each artifact (e.g., path, scenario or re-
quirement) equally important, is not efficient. Value-
based testing aligns the test process and investments
with the given value objectives by prioritizing the test
basis and testware (e.g., requirements and test cases).

That way, testing can maximize its return on in-
vestment (ROI), i.e., the KPI (benefits - costs)/costs.
The cost of testing (cf. [12]) can be partitioned into:
– the costs of conformance, for achieving quality,

which includes prevention costs (e.g., for extended
prototyping and modeling tools) and appraisal
costs (e.g., for test execution).

– the costs of non-conformance, incurred because of
a lack of quality, which includes internal failure
costs (e.g., for defect fixing) and external failure
costs (e.g., for technical support).

The benefit of testing are:
– either short-term, e.g., saved rework because of

early bug detection and reduction of uncertainty
in planning by assessing risks;

– or long-term, by detecting the strengths and weak-
nesses of the development process.

Hence, a good ROI in testing means that costs of
conformance + internal failure costs ≤ savings in ex-
ternal failure costs (cf. [3]). VB testing mainly reduces
costs of conformance by prioritization. Using the more
formal MBT approach (cf. Section 4) helps to detect
bugs early, so internal failure costs are reduced. Addi-
tionally, using nondeterminism can enhance bug pre-
vention, i.e., reduce prevention costs, since the mod-
els can be more abstract and designed even earlier.
Coverage metrics (cf. Section 3) improve test selec-
tion, resulting in fewer and more meaningful tests and
therefore also decreasing the KPI execution time per
test case, i.e., the appraisal costs.

The following practices are essential for putting
value-base testing into effect:
– Requirements-based testing, to assure that the re-

quirements are completely and accurately covered.
Since they capture the business values agreed
upon, this helps in VB testing. Requirements can
be prioritized by associating weights to them.
The best implementation of requirements-based
testing is deriving black-box tests from the re-
quirements (cf. [2]). This can be done automat-
ically using MBT with the requirements included
in the specifications. This automation also em-
powers traceability from tests to the original re-
quirements, as well as early verification of re-
quirements. The important prioritization of re-
quirement tests can be put into effect by appro-
priate coverage criteria, which can factor in the
weights of the requirements. Hence requirements-
based testing is risk-oriented.

– Risk-based testing deals with risk exposure, which
is (probability of loss) · (size of loss). These val-
ues are not only useful to prioritize tests, but give
important feedback - not only at the end of test-
ing, but permanently as a KPI. It indicates, be-
sides the progress of the project, areas that po-
tentially contain errors and need to improve. By
knowing the probability that a bug occurs, and
its resulting loss, its fix can be prioritized. Sec-
tion 5 will show how MBT with coverage metrics
and quantification of nondeterminism implements
risk-based testing.

– Iterative and concurrent testing copes with chang-
ing requirements and risks, caused by insights
from development and testing, or from changing
business values. Fast and flexibly responding to
these changes is very important and the cause for
most modern development processes being highly
iterative. MBT’s conscise models support fast and
flexible changes (cf. [10]). Nondeterminism also
helps since it enables leaving undecided points
open in the model (e.g., returning a Collection
and later refining it to a specific List). This avoids
unnecessary rework and reduces the initial effort,
hence further increasing the ROI.

3 Coverage metrics

Coverage metrics are the percentage of the code or
the (functional or requirements) specification that the
executed tests have covered so far. Depending on
what artifacts should be covered, different metrics are
formed, e.g., state(ment), transition, Modified Condi-
tion/Decision, or LCSAJ coverage(cf. [16,8]).

These metrics originate from white-box testing, but
since formal specifications contain control flow, data
and conditions, they can be applied at specification
level, too. If the source code is present, it can still be
used for additional coverage metrics. Which coverage
criterion is best on the specification level varies, e.g.,

MC/DC needs not be as powerful as is often expected
(e.g. MUMCUT detects more fault classes, cf. [18]).

A coverage metric is a KPI for testing: It can be
used in management to decide whether and where
quality assurance needs to improve and as exit crite-
rion, either agreed upon in the test plan, or demanded
by a required certificate (like DO178B). During devel-
opment, a coverage metric informs about the progress.
It can be used as exit criterion, and afterwards to raise
confidence that the implementation is complete.

But a coverage metric can also have deep technical
influence: When tests are being generated (manually
or automatically), each test case should contribute as
much as possible towards the goal of reaching the de-
sired coverage. So the coverage metric helps prioritiz-
ing for test selection (cf. Section 5). Hence guidance
by coverage metrics in test generation is absolutely
value-based.

4 Model-based Testing of Nondeter-
ministic Systems

4.1 Introduction

Model-based testing (MBT) originates from black box
conformance testing, i.e., checking that the system un-
der test (SUT) conforms to its functional specification.
If this reference behavior is given in a formal language,
MBT can automatically generate conformance tests.
The formal specification is often a Labelled Transi-
tion System (LTS) of some kind. MBT can automate
all kind of tests: unit, integration, system and accep-
tance tests. For unit tests, MBT’s models must be suf-
ficiently refined to give details at source code level. For
acceptance testing, requirements must be integrated
into the model. Nondeterminism helps in specifying
requirements, cf. Section 4.2. Section 4.3 describes the
possible methods that MBT can apply.

4.2 Nondeterminism

Complex (e.g. distributed) SUTs (seemingly) behave
nondeterministically, i.e., react varyingly after apply-
ing a fixed stimulus, e.g., occasionally with an excep-
tion. The reason are lower levels, such as the operat-
ing system and network, that are not under the testers
control and too complex to model and monitor.

A tester can cope with this by also using non-
determinism when specifying the SUT, to cover all
possible behaviors, for instance with the test code
if (NetworkException) {} else {}.

Nondeterminism can be specified more concisely
when MBT with formal specifications are used. It
helps to model more efficiently via abstraction, i.e.,
describing several behaviors without having to care
which one occurs (e.g. what data is present in the un-
derlying database).

The possible input choices, i.e., the input transi-
tions from a given state, are the nondeterminism that

is controllable by the tester. Uncontrollable nondeter-
minism, i.e., nondeterminism of the SUT, is
– either nondeterminism of the LTS itself: multiple

identical labels from one state, or unobservable,
internal transitions. These are often the result of
composition.

– or multiple different outputs from one state.

4.3 Model-based Testing Methods
To generate tests, MBT
1. traverses paths through the graph of the specifi-

cation. These paths are considered as test cases:
The SUTs inputs on the paths are the stimuli, i.e.
drive the SUT, the outputs are the oracles, i.e.
check that the SUT behaves conformly.

2. If the test cases are too abstract for execution,
they are refined to the SUT’s technical level.

3. These tests are then executed.
4. The results are finally analyzed, leading to the

verdicts pass, fail and inconclusive or the like.
MBT methods can be categorized depending on how
they intertwine these steps:

Off-the-fly MBT, used mainly by older tools, e.g.,
TGV and Spec Explorer (cf. [5]), only performs the
first two steps. Thus test execution and evaluation is
done subsequently with classical tools (e.g., a TTCN
framework). Since a priori test generation does not
know which nondeterministic choices the SUT will
take, all choices have to be considered. If many long
branches are discarded because the SUT does not ac-
tually follow them, off-the-fly is very inefficient. Other
dynamic adaptations to the test generation are not
possible either.

On-the-fly MBT, applied by many newer tools, e.g.,
TorX, UPPAAL TRON and also Spec Explorer (cf.
[5,17]), uses the other extreme of strict simultaneity,
i.e., all four steps are performed in lockstep for each
single transition. Hence the exploration and test gen-
eration can be guided by the observations made of
the SUT for preceding stimuli, but guidance itself and
therefore test selection is strongly weakened. Thus all
current tools explore the specification randomly (cf.
[8] for details about the tools’ coverage capabilities
and their application). That might be the reason why
nondeterministic coverage criteria for guidance have
not been looked at closely. The results of doing this in
Section 5, however, are not only useful for lazy on-the-
fly MBT (see next paragraph), they also give general
insight, can be applied to VBSE and to some extent
for on-the-fly MBT.

Lazy on-the-fly MBT, currently developed by the
author1, takes the happy medium: It executes sub-
paths of the model lazily on the SUT, i.e., only when
there is a reason to, e.g., when a test goal, a certain
depth, an inquiry to the tester, or some nondetermin-
istic choice of the SUT is reached. Hence the method
can backtrack within subgraphs of the model (cf. [9]).

1 funded by Deutsche Forschungsgemeinschaft (DFG)

While backtracking, the method can harness dynamic
information from already executed tests, e.g., nonde-
terministic coverage criteria (cf. Section 5). All on-
the-fly tools have difficulties with guidance, hence this
is the solution. Its improved test selection results in
fewer, more meaningful and more flexible (and hence
reproducible despite nondeterminism) tests.

5 Coverage metrics for model-based
testing of nondeterministic systems

In MBT, coverage metrics help to guide the traver-
sal through the specification graph, such that the
newly generated tests really contribute to reaching
the desired coverage. For simpler systems, this has
been practiced, e.g., via off-the-fly MBT and transi-
tion coverage. For more complex systems, two diffi-
culties arise: Firstly, if the complete model cannot be
built a priori, but only during on-the-fly MBT, the
coverage metrics can only make statements about test
progress on the part of the graph already traversed.
This is to some extent improved using lazy on-the-fly,
but an accurate measure in percentage related to the
full graph is generally still not possible. The larger the
explored graph gets, though, the more accurate the
percentage becomes. Some parts of the graph might
have to be re-executed multiple times, hence the per-
centage can become completely accurate. Secondly,
since nondeterminism of the SUT cannot be controlled
by the tester, some behavior might (almost) never be
reached. Therefore, coverage criteria must be consid-
ered with a grain of salt and a desired level of clas-
sical coverage might not at all be achievable. To try
to probe the different behaviors, test segments must
be executed repeatedly. But how often? This section
looks at modified coverage criteria that are suited for
nondeterminism of the SUT: Section 5.1 for determin-
istic LTSs, Section 5.2 also for nondeterministic LTSs.

5.1 For deterministic LTSs
Coverage metrics for deterministic LTSs are easier
than for nondeterministic LTSs since each trace leads
to exactly one state, not a set of possible states.
Uncontrollable nondeterminism via outputs is still
present, so classical coverage metrics (e.g., transition)
are not very meaningful, e.g., they can be misleading
or not at all achievable.

To probe the possible different behaviors, test seg-
ments must be executed multiple times, but how
often? Spec Explorer simply re-executes a constant
number of times (without the automata being un-
wound explicitly), so counting how often a state s
(with s ∈ S, the set of all states) is visited is suffi-
cient. But this method does not give any information
about the nondeterminism, and hence can also not
adapt to it.

A solution that is still simple but more reveal-
ing is to measure the coverage of nondeterminism of
the SUT via a mixture of statement and transition

coverage, by what the author generally defines as n-
choices coverage metrics: They measure the percent-
age of visited states with multiple outputs (so called
nondeterministic states) where at least n output
choices have been traversed: |{nondeterministic s ∈
S| at least n different output transitions of s have
been traversed}/|{nondeterministic s ∈ S|s has at
least n output transitions}. This is a strong gener-
alization of [11]. So 1-choices coverage is closest to
the classical statement coverage and measures how
many nondeterministic states “have been visited”
(and left via an output transition). For 1-choices
to be sensible, S must be known from the begin-
ning of testing. 2-choices checks how many nonde-
terministic states really behave nondeterministically
in the SUT. If we have special knowledge or con-
straints of the SUT, n > 2 might also be use-
full, as well as all-choices := |{nondeterministic s ∈
S| all different output transitions of s have been
traversed}/|{nondeterministic s ∈ S}. So all-choices
measures to what degree the specified output really
occurs in the SUT, i.e., how much underspecification
we have (cf. [9]). Just as classical coverage metrics,
these are also related, e.g., 100% transition coverage
6⇐⇒ 100% all-choices 6⇐⇒ 100% 2-choices 6⇐⇒ 100%
1-choices.

Although these coverage metrics give information
about nondeterminism and can be used as exit crite-
ria, they are in general not flexible enough to guide the
state space traversal such that nondeterministic states
are visited optimally often for high coverage of the
possible nondeterministic choices. The best solution
is quantification of nondeterminism: By counting for
all relevant artifacts (e.g., states and transitions) the
number of times they are traversed or used (similar to
the usual code instrumentation in white-box testing),
the relevant probabilities can be approximated, e.g.,
P [t] = count(t)/count(s) that a transition t = s→ s′

is taken when being in s.
Note that the probabilities used in Spec Ex-

plorer are not quantification for the nondeterministic
choices, computed on the fly, but must somehow be
provided by the tester and are used for prioritization.

In the author’s approach, weights and probabilities
are orthogonal: On the one hand, weights are associ-
ated to requirements. Requirements are used for test
generation and can be traced back to. The weights
can be used for automatic prioritization, such that
more important requirements are tested earlier and
more intensely. Size of loss can also be inferred from
the weights, or associated to the requirements as ad-
ditional value. On the other hand, in our quantifi-
cation technique, probability is the quantified non-
determinism of the SUT and approximated on-the-
fly. These probability distributions over the nondeter-
ministic output choices can be used to compute the
probability of reaching some state or requirement, by
interpreting the transition system as Markov chain.
The missing probabilities for the input labels are im-

plicitely set to one since their choice is under the con-
trol of the MBT tool. Thus coverage metrics can factor
in both probabilities and the weights (e.g., P [reaching
requirementi] · Weight[requirementi]) when used for
guidance. These values are not only useful for guid-
ance, but also as approximation for other probability
values, such as reaching some error, probability of loss
or risk exposure. Hence they can be used as KPI and
for requirements-based and risk-based testing, e.g., to
reduce planning uncertainty and to guarantee lower
variance of quality.

In seldom cases, an input behavior model that mim-
ics a user or application domain is available. Then
it makes sense to build a complete Markov chain for
KPIs and to use this input model to drive testing,
instead of using our guidance.

In conclusion, quantification strongly helps guid-
ance and VBSE, in particular as KPI and for
requirements-based and risk-based testing. But can
this quantification be generalized for nondeterminis-
tic LTSs in the following section?

5.2 For nondeterministic LTSs
Because of nondeterminism of the LTS, we are not in
a single state during traversal, but in a set of possi-
ble states Scurrent ⊆ S. Hence, coverage criteria mea-
sure only possibly covered artifacts (such as states or
transitions), since maybe a different path was taken.
Therefore, coverage metrics are much less meaning-
ful and rather complex. E.g. in Figure 1, state cov-
erage is non-monotonic: After traversing b, the pos-
sibly covered states are S, but after ba3, they are
{init, s2, s3} (S.

Fig. 1. Transition system with non-monotonic, mis-
leading coverage metric

If the metric is also used as guidance, this becomes
very misleading: The trace a1a2 · · · an would definitely
visit all n states, but transition b is prefered since
thereafter all S is possibly covered, although only init
and one further state have actually been visited.

Using on-the-fly determinization alternatively, e.g.,
coverage metrics on the state space 2S instead of S, is
not useful, since it gives almost no information about
the coverage of the original artifacts, e.g., single states.
Hence, we need to look into Scurrent and also quantify
the possible coverage of states. This uses the quantifi-
cation (in Pvisit below) from Section 5.1 and is similar
to random walks: ∀s ∈ Scurrent : P ′covered[s] := 1−(1−
Pcovered[s])(1−Pvisit[s from Scurrent]) = Pcovered[s]+
(1 − Pcovered[s]) · Pvisit[s from Scurrent], with values
set to 0 at the beginning. Therefore, the coverage
gain of the last test step was Σs∈Scurrent

P ′covered(s)−

Pcovered(s) = Pvisit[s from Scurrent] · Σs∈Scurrent
(1 −

Pcovered(s)).
So for nondeterministic LTSs, quantification be-

comes very complex: Probability values are created
on-the-fly and immediately used for successive quan-
tifications and for guidance. Hence the method may
be with a high propagation of uncertainty. It might
even turn out that quantification for nondeterminis-
tic LTSs is too costly or too rough an approximation.
But the benefit is large, as in Section 5.1, so this cur-
rent research topic is worth looking into.

In conclusion: Research and industry have realized
that nondeterminism has become necessary to cope
with the complexity, so the emerging testing tools in-
tegrate it. But the tools can still be improved by us-
ing better coverage metrics that incorporate nonde-
terminism (cf. [7]), e.g., n-choices coverage or quan-
tification. For nondeterministic LTSs, quantification
is complex and a current research topic.

6 Summary

For today’s complex software, testing and KPIs are
also becoming very complex and difficult to handle.
VBSE helps to focus on the business values, and to
enforce them. Many aspects of VBSE are supported
by MBT of nondeterministic systems with coverage
criteria:
– Flexible modelling (with nondeterminism) helps

VB requirements engineering, VB architecting,
VB design and development and VB quality man-
agement to formalize their artifacts and priorities.
The use of the prioritized artifacts can then be au-
tomated.

– VB testing and VB planning and control can also
largeley be automated via MBT. The priorities
are factored in by new coverage metrics, which
also function as new KPIs. Traceability back to
the requirements is facilitated by MBT, too.

– VB risk management is supported by the benefits
from the points above and by coverage metrics
that use quantification.

But not only VBSE improves, also the quality of the
test-suite, i.e., shorter and fewer tests are sufficient,
more revealing, and also increase reproducibility.

References
1. Boris Beizer. Software testing techniques (2nd ed.). Van Nos-

trand Reinhold Co., New York, NY, USA, 1990.
2. Stefan Biffl, Aybke Aurum, Barry Boehm, Hakan Erdogmus,

and Paul Grnbacher, editors. Value-Based Software Engineer-
ing. Springer, Berlin, 2006.

3. Rex Black. Managing the Testing Process: Practical Tools
and Techniques for Managing Hardware and Software Test-
ing. John Wiley & Sons, Inc., NY, USA, 2nd edition, 2002.

4. Barry Boehm. Value-based software engineering: reinventing.
SIGSOFT Softw. Eng. Notes, 28:3–, March 2003.

5. Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner. Model-based Testing of
Reactive Systems, volume 3472 of LNCS. Springer, 2005.

6. J. Bullock. Calculating the value of testing. Software Testing
and Quality Engineering, pages 56–62, June 2000.

7. Margus Veanes et al. Model-based testing of object-oriented
reactive systems with spec explorer. In Formal Methods and
Testing, pages 39–76. Springer, 2008.

8. David Faragó. Coverage criteria for nondeterministic systems.
testing experience, The Magazine for Professional Testers,
pages 104–106, September 2010.

9. David Faragó. Improved underspecification for model-based
testing in agile development. Volume P-179 - Proceedings of
the Second International Workshop on Formal Methods and
Agile Methods, September 2010.

10. David Faragó. Model-based testing in agile software devel-
opment. In 30. Treffen der GI-Fachgruppe Test, Analyse
& Verifikation von Software (TAV), Testing meets Agility,
Softwaretechnik-Trends, 2010.

11. Gordon Fraser and Franz Wotawa. Test-case generation and
coverage analysis for nondeterministic systems using model-
checkers. In ICSEA, page 45. IEEE Computer Society, 2007.

12. F. M. Gryna. Quality and Costs, Juran’s Quality Handbook.
McGraw-Hill, 1999.

13. KPI Library. http://kpilibrary.com/home/. (November 2010).
14. Roman Pichler. Agile Product Management with Scrum: Cre-

ating Products That Customers Love. Addison-Wesley, 2010.
15. Jeff Smith. The K.P.I. Book. Insight Training & Development

Limited, 2001.
16. Andreas Spillner and Tilo Linz. Basiswissen Softwaretest:

Aus- und Weiterbildung zum Certified Tester – Foundation
Level nach ISTQB-Standard. dpunkt, 3. edition, 2005.

17. Mark Utting and Bruno Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann, 1 edition, 2007.

18. Yuen-Tak Yu and Man Fai Lau. A comparison of MC/DC,
MUMCUT and several other coverage criteria for logical deci-
sions. Journal of Systems and Software, 79(5):577–590, 2006.

	Nondeterministic Coverage Metrics as Key Performance Indicator for Model- and Value-based Testing
	eserved@d = *emph David Faragó (farago@kit.edu)

