
Sample-based Rule Extraction for Explainable
Reinforcement Learning ⋆

Raphael C. Engelhardt1[0000−0003−1463−2706],
Moritz Lange2[0000−0001−7109−7813], Laurenz Wiskott2[0000−0001−6237−740X], and

Wolfgang Konen1[0000−0002−1343−4209]

1 Cologne Institute of Computer Science, TH Köln, Germany
{Raphael.Engelhardt,Wolfgang.Konen}@th-koeln.de

2 Institute for Neural Computation, Faculty of Computer Science, Ruhr-University
Bochum, Germany {Moritz.Lange,Laurenz.Wiskott}@ini.rub.de

Abstract. In this paper we propose a novel, phenomenological approach
to explainable Reinforcement Learning (RL). While the ever-increasing
performance of RL agents surpasses human capabilities on many prob-
lems, it falls short concerning explainability, which might be of minor
importance when solving toy problems but is certainly a major obsta-
cle for the application of RL in industrial and safety-critical processes.
The literature contains different approaches to increase explainability of
deep artificial networks. However, to our knowledge there is no simple,
agent-agnostic method to extract human-readable rules from trained RL
agents. Our approach is based on the idea of observing the agent and
its environment during evaluation episodes and inducing a decision tree
from the collected samples, obtaining an explainable mapping of the en-
vironment’s state to the agent’s corresponding action. We tested our
idea on classical control problems provided by OpenAI Gym using hand-
crafted rules as a benchmark as well as trained deep RL agents with
two different algorithms for decision tree induction. The extracted rules
demonstrate how this new approach might be a valuable step towards
the goal of explainable RL.

Keywords: Reinforcement learning · Explainable RL · Rule learning.

1 Introduction

One of the biggest downsides of powerful Deep Reinforcement Learning (DRL)
algorithms is their opacity. The well-performing decision making process is buried
in the depth of artificial neural networks, which might constitute a major bar-
rier to the application of Reinforcement Learning (RL) in various areas. While
methods exist especially in the field of computer vision to increase explainability
of deep networks, a general, simple and agent-agnostic method of extracting hu-
man understandable rules from RL agents remains to be found. With this paper
⋆ Supported by the German Ministry of Culture and Science of the State of North

Rhine-Westphalia.

2 R. C. Engelhardt et al.

we propose a possible candidate for such a method and present results for classic
control problems.

Instead of trying to specifically explain the inner mechanism of a trained
RL agent, we approach the problem from a phenomenological perspective by
constructing a set of simple, explainable rules, which imitate the behavior of the
black-box RL agent. Our method consists of three steps:

1. A DRL agent is trained, and – for simpler problems – handcrafted (HC) poli-
cies are developed to solve the problem posed by the studied environment.

2. The agent (henceforth called “oracle”) acting according to either HC rules or
the trained policy is evaluated for a set number of episodes. At each timestep
the state of the environment and action of the agent are logged.

3. A Decision Tree (DT) is induced from samples collected in the previous step.

The resulting tree is evaluated by applying its policy in a number of episodes and
subsequently comparing average and standard deviation of the episodes’ returns
with the ones achieved by the oracle.

This approach has notable advantages:

– It is conceptually simple, as it translates the problem of explainable RL into
a supervised learning setting.

– DTs are fully transparent and (at least for limited depth) offer a set of easily
understandable rules.

– The approach is oracle-agnostic: it does not rely on the agent being trained
by a specific RL algorithm, or any algorithm at all. A large enough training
set of state-action pairs is sufficient.

This paper is structured in the following manner: In Section 2 we briefly
discuss existing methods for improving explainability of RL. Section 3 explains
in detail how our new approach works. Our experimental results are presented
in Section 4.

2 Related Work

Over the years, several methods for rule deduction from other resources have
been developed. Predicate invention [9,10], a subfield of inductive logic pro-
gramming, is a well-known and established method for finding new predicates or
rules from given examples and background knowledge in the symbolic domain.
It is, however, difficult to apply to the non-symbolic domain (e.g. continuous
observation and action spaces, continuous inputs and outputs of deep learning
neural networks).

Rule extraction from opaque AI models has been widely studied in the
context of explainable AI. There are many approaches, but none of the ex-
isting methods has proven conclusive for all applications. One method, called
DeepRED [19], aims to translate feedforward networks layer-by-layer into rules
and to simplify these rules. But the feedforward networks used in RL models do

Sample-based Rule Extraction for Explainable Reinforcement Learning 3

not always directly output policies (actions). Instead they output values or Q-
functions, which are transformed by the surrounding RL mechanism into policies.
Therefore, surrogate networks or policy networks, which transform the inputs
directly into policies would have to be trained based on existing RL oracles in
order to apply DeepRED.

Another paradigm for generating explainable models is imitation learning
[13,14] where a model with reduced complexity is learnt by guidance of a DRL
oracle. The oracle serves as a form of expert demonstration for the desired be-
havior. Our approach is a form of imitation learning, as is the recent proposal
by Verma et al. [17].

Verma et al. [17] propose a generative rule induction scheme, called Pro-
grammatically Interpretable RL (PIRL), through Neurally Directed Program
Synthesis (NDPS). The key challenge is that the space of possible policies is
vast and nonsmooth. This is addressed by using the DRL network to guide a
local search in the space of programmatically synthesized policies. These policies
are formed by a functional language that combines domain-specific operators and
input elements. In the domain of classic control problems, these operators can
for example mimic the well-known operators from PID control. As a result, this
interesting method is able to generate complex yet interpretable rules. We will
compare our results with those from [17]. Our approach differs from [17] insofar
as it generates simpler rules (only one input per predicate) if we use traditional
DTs like CART (of course at the price of a simpler policy space).

The method we describe in this paper is arguably closest to the mimic learn-
ing approach by Liu et al. [6]. Our approach differs to theirs in that it learns
the policy directly rather than a Q-function. It does not require Q-values but
merely recorded states and actions. Finally we use well-known simple decision
trees instead of the more complex Linear Model U-trees.

Coppens et al. [4] also use trees for policy learning, but train hierarchical
filters to obtain trees with stochastic elements. While we provide explainabil-
ity through interpretable rules, Coppens et al. visualize the filters and perform
statistical analysis of action distributions.

3 Methods

Our method makes use of different RL environments, DRL training algorithms
and DT induction techniques, which we briefly describe in the following.

3.1 Environments

We test our approach on four classic control problems made available as RL
environments by OpenAI Gym [3]:

MountainCar In this environment, first described by Moore [8, Chapter 4.3],
a car initially positioned in a valley is supposed to reach a flag positioned on top
of the mountain to the right as fast as possible. As the force of the car’s motor

4 R. C. Engelhardt et al.

is insufficient to simply drive up the slope, it needs to build up momentum by
swinging back and forth in the valley.

– Observation space: continuous, two-dimensional: car’s po-
sition x ∈ [−1.2, 0.6], car’s velocity v ∈ [−0.07, 0.07]

– Action space: discrete, acceleration to the left, no acceler-
ation, acceleration to the right, encoded as 0, 1, 2

– Reward: −1 for each timestep as long as flag is not reached
(flag is positioned at x = 0.5)

– Start state: x0 random uniform in [−0.6,−0.4], v0 = 0
– Time limit: t = 200
– Solved if R ≥ −110 over 100 evaluation episodes

Fig. 1:
MountainCar
environment.
Taken from [3]

MountainCarContinuous has the identical setup and goal as the discrete
version described above. However, the action space is continuous and the reward
structure is changed to favor less energy consumption. The differences to the
discrete MountainCar are:

– Action space: continuous acceleration a ∈ [−1, 1]
– Reward: −0.1 · a2 for each timestep as long as the flag (x = 0.45) is not

reached, additional +100 when the goal is reached
– Time limit: t = 1000
– Solved if R ≥ 90 over 100 evaluation episodes

MountainCarContinuous has the extra challenge that the cumulative reward of 0
(car stands still) is a local maximum.

CartPole described by Barto et al. [1, Chapter 5], consists of a pole balancing
upright on top of a cart. By moving left or right, the cart should keep balancing
the pole in an upright position for as long as possible, while maintaining the lim-
its of the one-dimensional track the cart moves on. For better comparability with
results of Verma et al. [17] mentioned in Section 2 we mostly use CartPole-v0.

– Observation space: continuous, four-dimensional: car’s po-
sition x ∈ [−4.8, 4.8], car’s velocity v ∈ (−∞,∞), pole’s
angle θ ∈ [−0.42, 0.42] (in radians) and pole’s angular ve-
locity ω ∈ (−∞,∞)

– Action space: discrete, accelerate to the left (0) or to the
right (1)

– Reward: +1 for each timestep as long as θ ∈ [−0.21, 0.21]
and x ∈ [−2.4, 2.4]

– Start state: x0, v0, θ0, ω0 random uniform in [−0.05, 0.05]
– Time limit: t=200 (CartPole-v0) or t=500

(CartPole-v1)
– Solved if R ≥ 195 (CartPole-v0) or ≥ 475 (CartPole-v1)

over 100 evaluation episodes

Fig. 2: CartPole
environment.
Taken from [3]

Sample-based Rule Extraction for Explainable Reinforcement Learning 5

Pendulum The goal of this environment is to swing up an inverted pendulum,
attached to an actuated hinge and keep it in this unstable equilibrium. The goal
is the same as in CartPole, but Pendulum is more challenging, because the initial
position can be at any angle and several swing-ups may be needed. (CartPole
initializes at an near-upright position.) We use Pendulum-v0.

– Observation space: continuous, three-dimensional:
(cos θ, sin θ, ω) with pendulum angle θ (from positive
y-axis) and its angular velocity ω.

– Action space: continuous, torque a ∈ [−2, 2] applied to
pendulum

– Reward: −(θ2 + 0.1 · ω2 + 0.001 · a2) at each timestep
– Start state: θ0 ∈ [−π, π], ω0 ∈ [−1, 1] (random uniform)
– Time limit: t = 200
– No official solved-condition is given for this environment

Fig. 3: Pendulum
environment.
Taken from [3]

3.2 Oracles

The samples on which we train the DTs are produced by two “families” of oracles,
which we explain in the following.

Deep Reinforcement Learning agents For the training of agents we use
DRL algorithms as implemented in the RL Python framework Stable Base-
lines3 [12]. Specifically, we work with DQN [7], PPO [15] and TD3 [5].

We apply all three algorithms to all environments, but show later on in
Section 4 only the most successful one out of three. It should be noted that the
environments are not necessarily easy for DRL: For example, on MountainCar,
DQN succeeds but PPO does not. Vice versa, on CartPole, PPO succeeds but
DQN does not.

Handcrafted policies For three problems, we present simple deterministic
policies (HC), which serve a triple purpose: they constitute a proof of existence
for simple, well-performing rules, they may be used as a surrogate for an oracle
and they serve as a benchmark for our core idea. They enable us to validate
our approach. The fourth problem Pendulum currently has no HC policy. In the
following, we briefly explain the HC rules for the different environments:

– MountainCar is solved by the rule set presented in Figure 4a. The intuition
behind it is as follows: The velocity is zero if and only if we are in the start-
ing step of an episode. If v = 0, we push the car left or right, depending on
the car’s position relative to −0.4887. This constant was found empirically,
it minimizes the number of swing-ups needed. In all other cases with v ̸= 0
we push the car further in the direction of its current velocity to build up
momentum. – We will later see that this HC rule can be applied to Moun-
tainCarContinuous as well.

6 R. C. Engelhardt et al.

– CartPole: The following intuition motivates the rule set defined in Figure 4b.
Once the pole is in the upright position (both absolute angle |θ| and absolute
angular velocity |ω| are small) it merely needs to maintain its state. In these
cases the CartPole environment imitates ‘no action’ (which is not available)
by executing the opposite of the previous action. The previous action is made
available as an additional observable. If the absolute angle |θ| is small but
absolute angular velocity |ω| large, the action reduces |ω|. In all other cases
the cart is pushed in the direction in which the pole leans, which means that
the pole comes closer to the upright position.

v = 0

x ≤ −0.4887

right left

v < 0

left right

true false

(a) MountainCar

|θ| < 0.08

|ω| < 0.4

aprev < 0.5

right left

ω > 0

right left

θ < 0

left right

true false

(b) CartPole

Fig. 4: HC policies for MountainCar, MountainCarContinuous, and CartPole

3.3 Decision Trees

For the induction of DTs we rely on two different algorithms:

– Classification and Regression Trees (CART) as described by Breiman et
al. [2] and implemented in [11]. We use the classification or the regression
form depending on whether the environment’s action space is discrete or
continuous, respectively.

– Oblique Predictive Clustering Trees (OPCT) as described in [16].

We chose OPCT as one representative of the whole class of oblique DTs
(trees with slanted lines, such as CART-LC, OC1 and HHCART). We tested
also HHCART [18] and found it to give similar results to OPCT.

4 Results

We present in this section first the results on the four selected environments in-
dividually. Section 4.5 gives a summarizing table and discusses common findings.

Sample-based Rule Extraction for Explainable Reinforcement Learning 7

1 2 3 4 5 6 7 8 9
depth

150

140

130

120

110

100

90

R

Oracle (HC)
CART
OPCT

(a) HC oracle

1 2 3 4 5 6 7 8 9
depth

150

140

130

120

110

100

90

R

Oracle (DQN)
CART
OPCT

(b) DQN oracle

Fig. 5: MountainCar. Performance comparison with different depths of trained
DTs on samples produced by HC and DQN oracles.

4.1 MountainCar-v0

Our results for the MountainCar environment are as follows. The HC rule reaches
an average return of R = −106 ± 13.3 As shown in Figure 5a, CART matches
the oracle’s performance at depth 3. OPCT only yields oracle-like performance
at depths of at least 6, no longer considered to be easily interpretable. Trained
with the DQN algorithm, the oracle yields a return of R = −101 ± 10. Again,
CART has similar returns for depth ≥ 3 (Figure 5b).

Given the two-dimensional state space of this environment, the characteristics
of oracle and DT can be compared visually (see Figure 6). Since the HC rule is
formulated as a DT, it can be easily compared with the DT induced by CART
from samples. Even if the trees in Figure 4a and 7a are structured differently, the
underlying rules are extremely similar. The latter shows how CART circumvents
its inability to represent a predicate such as v = 0.

If we induce DTs from samples of a deep learning oracle DQN, it is not
a priori clear that similar rules emerge. As an example Figure 7b shows the
‘CART from DQN’ rules at depth 3. It is interesting to note that the left sub-
tree mainly contains leaves with action ‘left’. If we replaced the ‘no acceleration’
leaf with ‘left’, a much simpler tree, structurally similar to Figure 7a, would
result with virtually same return R = −105 ± 6. The tree has just inserted
the ‘no acceleration’ leaf to mimic the DQN samples, but it turns out not to
be important for the overall return. It is noteworthy that the simplified tree is
again structurally similar to both trees in Figures. 7a & 4a related to the HC
policy.

3 We report the average mean return ± average standard deviation of returns for the 5
repetitions with different seeds.

8 R. C. Engelhardt et al.

(a) HC oracle

(b) DQN oracle

Fig. 6: MountainCar. Comparison between oracle and DT samples. Each point
in the coordinate system represents the state of the environment at a timestep.
The corresponding decision of the oracle or the induced DT is represented by
the marker’s color.

4.2 MountainCarContinous-v0

The continuous version of MountainCar is successfully solved by a TD3-trained
DRL agent reaching a score of R = 91 ± 2. CART at depth 3 is able to repro-
duce this performance (see Figure 8b). The performance of OPCT is somewhat
weaker, but also almost satisfactory. The behaviours of oracle and trees can be
compared in Figure 9.

Given the structural similarity between the discrete and continuous version
of MountainCar, it seems reasonable to apply the same HC rule, that solved the
discrete version. With a performance of R = 91± 1 in fact, the HC rule is able
to solve the continuous version as well. Our approach proves successful in that
CART is able to reproduce the performance and to extract the known HC rule
(neglecting minor numerical differences, the extracted DT is the same as the one
shown in Figure 7a). OPCT could not reach the oracle’s performance at depth 3
(see Figure 8a). Even at depth 1 both DTs show fairly good performance: CART
finds a simplified version of the HC rule by splitting the state space at v ≈ 0
and pushing the car in the direction of v.

Sample-based Rule Extraction for Explainable Reinforcement Learning 9

v ≤ −0.000003060

left v ≤ 0.000006278

x ≤ −0.4880

right left

right

true false

(a) Induced from HC samples

v ≤ −0.00002476

x ≤ −0.8492

v ≤ −0.01360

left no acceleration

left

v ≤ 0.01315

x ≤ −0.4148

right left

right

true false

(b) Induced from DQN samples

Fig. 7: MountainCar. DTs induced by CART from samples of different oracles

1 2 3 4 5 6 7 8 9
depth

20

40

60

80

100

R

Oracle (HC)
CART
OPCT

(a) HC oracle

1 2 3 4 5 6 7 8 9
depth

20

40

60

80

100

R

Oracle (TD3)
CART
OPCT

(b) TD3 oracle

Fig. 8: MountainCarContinuous. Performance comparison with different depths
of trained DTs on samples produced by HC and TD3 oracles.

4.3 CartPole-v0

The CartPole environment is in a sense more challenging than the previous ones
since it has four input dimensions. Interpretable models are less easy to visualize.
On CartPole, we test our approach with a HC oracle and with a PPO oracle.

Our HC oracle, taking into consideration the action of the previous timestep,
reaches a perfect score of R = 200± 0 (Figure 12). At depth 3, both CART and
OPCT solve or nearly solve this environment with returns of R = 200 ± 0 and
R = 192 ± 15, respectively, when trained on samples generated with said HC
agent. The DRL oracle based on PPO performs as well as the HC oracle. In this
case, the inputs are just the original CartPole variables x, v, θ, ω (no previous
action aprev). Both DT algorithms replicate the perfect score from depth 3 on.

Example rule sets found by depth-3 CART from HC and PPO agents are
shown in Figure 10. The tree in Figure 10a is structurally different from the HC
rule it is derived from (Figure 4b). But upon careful inspection it becomes clear
how it actually represents the same decision process, which explains the equal
performance.

10 R. C. Engelhardt et al.

Fig. 9: MountainCarContinous. Comparison between TD3, CART, and OPCT.

aprev ≤ 0.5000

θ ≤ −0.08001

left ω ≤ −0.3997

left right

θ ≤ 0.08000

ω ≤ 0.4000

left right

right

true false

(a) CART based on HC oracle

ω ≤ −0.001188

ω ≤ −0.07954

left θ ≤ 0.001407

left right

ω ≤ 0.08131

θ ≤ −0.001822

left right

θ ≤ −0.03933

left right

true false

(b) CART based on PPO agent

Fig. 10: CartPole. DTs induced by CART algorithm from samples of HC and
PPO oracles. Note how, given the encoding of action ‘left’ and ‘right’ as 0 and 1,
respectively, the condition of the root node in (a) effectively checks whether or
not the previous action was ‘left’.

Figure 10b is interesting in its own right: By careful inspection we see that
the middle branches can be combined into the rule ‘If |ω| < 0.08 then apply
action left or right depending on θ < 0 or ≥ 0, respectively’ In other words, for
small angular velocities push just in the direction where the pole is leaning. The
outer branches mean: For larger |ω| push into the direction that reduces |ω|.4
We can summarize these findings as a new rule set (Figure 11), which is even
simpler than the one in Figure 4b.

This new HC rule derived from ‘CART based on PPO agent’ has perfect
performance R = 200 when applied to the environment CartPole-v0 and it
has a higher performance R = 499 on CartPole-v1, where the algorithm in
Figure 4b reaches only R = 488.

As shown in Figure 12b, OPCT trained on samples from PPO oracle reaches
perfect performance at a depth of 1. This means it solves the CartPole problem
with one single rule, shown in Figure 13. While oblique DTs are generally more
difficult to interpret, sign and magnitude of the coefficients might provide some

4 The condition ω > 0.08 ∧ θ < −0.04 is neglected here, since it can be assumed to
appear very seldom: Positive ω will normally lead to positive θ.

Sample-based Rule Extraction for Explainable Reinforcement Learning 11

|ω| < 0.08

θ < 0

left right

ω < 0

left right

true false

Fig. 11: CartPole. Simplified rule set derived from the ‘CART based on PPO
agent’ tree shown in Figure 10b.

1 2 3 4 5 6 7 8 9
depth

25

50

75

100

125

150

175

200

R

Oracle (HC)
CART
OPCT

(a) HC oracle

1 2 3 4 5 6 7 8 9
depth

25

50

75

100

125

150

175

200

R

Oracle (PPO)
CART
OPCT

(b) PPO oracle

Fig. 12: CartPole. Performance comparison with different depths of trained DTs
on samples produced by HC and PPO.

helpful insights: In Figure 13, θ has by far the largest coefficient, indicating that
the model is most sensitive to this variable. The sign of θ will decide in most
cases whether action left or right is chosen.

Interestingly, also the CART-induced tree performs quite well at depth 1
and 2 (better than its counterpart trained on HC-samples at this depth). The
respective tree decides solely on the basis of the sign of ω. The good performance
shows that the PPO-samples are easier to segment by linear cuts than the HC-
samples. This may be due to the fact that PPO avoids the non-linear function | · |
(needs two cuts in a DT) and the extra input aprev (needs another cut).

4.4 Pendulum-v0

Now we turn to the environment where our method so far is not able to produce
good DTs at low depth: On the Pendulum environment a DRL oracle using
TD3 reaches a good performance of R = −154 ± 85. The pole is stabilized in
its unstable upright position in nearly every episode. Both tested DTs fail to
reach TD3 oracle’s performance at reasonable depths (see Figure 14). While the

12 R. C. Engelhardt et al.

2.788x− 1.843v + 41.16θ + 1.870ω < −0.0080

left right

true false

Fig. 13: Single rule solving the CartPole problem. This rule was found by OPCT
based on PPO samples.

1 2 3 4 5 6 7 8 9
depth

1400

1200

1000

800

600

400

200

R

Oracle (TD3)
CART
OPCT

Fig. 14: Pendulum. Performance comparison with different depths of trained DTs
on samples produced by HC and TD3 oracles.

performance clearly increases with the depth of the DTs, such trees no longer
satisfy the criterion of explainability.

The original Pendulum-v0 environment represents the angle as cos(θ) and
sin(θ). We kept this representation throughout the experiments. For better vi-
sualization and without loss of information, we map (cos(θ), sin(θ)) back to the
angle θ itself. In Figure 15, the difference between the performances of oracle
and DTs is reflected in the samples they produce: The TD3 oracle has learned
to stabilize the pole in an upright position (θ ≈ 0) as can be seen from the white
areas (absence of samples) for (θ ≈ 0, |ω| > 0) in the left part of Figure 15. The
DTs fail to do so: there are many samples with |ω| > 0 in region θ ≈ 0, meaning
that the pole will rotate fast through the upright position.

It is an open question why our method is not able to produce good DTs at
low depth for this environment. We speculate that the complex functional rela-
tionship between input space and continuous action space might be responsible
for this. If we compare the TD3 picture in the left part of Figure 15 with the
other continuous-action environment MountainCarContinuous in the left part of
Figure 9, we see in the former intricate overlaps of many different action levels
while in the latter mainly two action levels appear that can be separated by a
few cuts. This argument is supported by the fact that DTs with higher depths
(more complex functions) come closer to the oracle’s performance in Figure 14.

Sample-based Rule Extraction for Explainable Reinforcement Learning 13

Fig. 15: Pendulum. Comparison between TD3 oracle, CART, and OPCT sam-
ples.

This does not mean that there is no simple explainable model: It might be
that there exists another representation of the input space (yet to be found!)
where the desirable action levels fall into simpler regions.

4.5 Comparison of Approaches

We summarize all obtained results in Table 1. All oracles meet the solved con-
dition of the environments and all DTs of only depth 3 meet it as well or come
at least close (with the exception of the Pendulum environment).

With two slightly different optimization schemes, Verma et al. [17, App. A,
Tab. 6] report two numbers, which we report in row [Verma] of Table 1. The
rules extracted by means of our method exhibit better performance than the
rules obtained by the PIRL approach of Verma et al. [17]. Furthermore, we
could not reproduce these results: When we apply the rules explicitly stated
in [17, App. B, Figs. 9 & 10] to the respective environments, we obtain only the
lower results shown in rows [Verma_R] of Table 1. Finally, the rules given in
[17] are not easy to interpret.

Given their capacity to find optima in a broader class of splits, OPCT models
were expected to map DRL oracles’ behaviours better (at lower depth) than
CART, which is limited to axis-parallel cuts. These expectations are not fulfilled
by our results. OPCT often only had a similar or lower performance than CART
at the same depth level. In the rare cases where OPCT is better than CART
(e.g. CartPole at depth 1, Figure 12), the single OPCT rule obtained (Figure 13)
is compact, but still difficult to interpret.

5 Conclusion

In this paper we provide a new method of extracting plain, human-readable
rules from DRL agents. The method is simple, provides transparent rules and
is not specific to any particular kind of oracle. We show that for the problems
MountainCar, MountainCarContinuous and CartPole our approach is able to

14 R. C. Engelhardt et al.

Table 1: Results for combinations of environment, oracle and DT algorithm.
The DTs are of depth 3 in all cases. Reported are the average mean return R
± average standard deviation of returns σ for 5 repetitions with different seeds,
each evaluated for 100 episodes. Agents with R ≥ Rsolved are said to solve an
environment. See main text for the meaning of rows [Verma] and [Verma_R].

Environment (Rsolved) Oracle Oracle’s R± σ DT DT’s R± σ

MountainCar-v0
(−110)

HC −106.42± 13.57
CART −107.46± 13.47
OPCT −122.80± 15.55

DQN −101.13± 10.45
CART −105.29± 6.11
OPCT −109.63± 22.06

[Verma] −143.9, −108.1
[Verma_R] −162.6± 3.8

MountainCarCont.-v0
(90)

TD3 91.40± 2.19
CART 91.08± 2.16
OPCT 81.89± 23.93

HC 90.51± 1.33
CART 90.60± 1.33
OPCT 84.20± 23.38

CartPole-v0
(195)

HC 200.00± 0.00
CART 200.00± 0.00
OPCT 192.30± 15.20

PPO 200.00± 0.00
CART 200.00± 0.00
OPCT 200.00± 0.00

[Verma] 143.2, 183.2
[Verma_R] 106.0± 16.9

Pendulum-v0 TD3 −154.17± 85.02
CART −1241.24± 80.38
OPCT −1258.98± 136.37

extract simple rule sets, which perform as well as the oracles they are based on.
Our method currently has its limitations in the Pendulum environment, where it
is so far not possible to automatically extract simple and well-performing rules.

We show in several cases that the automatically induced trees are ‘under-
standable’ in the sense that they are similar or equivalent to handcrafted rule
sets that we provided as benchmarks.

Another aspect is that given the transparency of the extracted rule sets,
these can later be inspected and possibly optimized or simplified (MountainCar,
discussion of Figure 7b). In another case (CartPole, CART induced from DRL
oracle PPO, Figure 10b), we could simplify the tree and obtain an even simpler
and better-performing handcrafted rule than the previously known one.

Future work will consist in determining the reason for the failure of the
method when applied to the Pendulum problem. The method should then be
improved and applied to more complex environments. We also want to study in
all these environments the unsupervised learning of representations, which are
then fed into DTs as additional features.

We hope that this work and our future research will help to establish better
explainable models in the field of deep reinforcement learning.

Sample-based Rule Extraction for Explainable Reinforcement Learning 15

References

1. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst., Man, Cybern. 13(5),
834–846 (1983). https://doi.org/10.1109/TSMC.1983.6313077

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification And Regres-
sion Trees. Routledge (1984)

3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym (2016), http://arxiv.org/abs/1606.01540

4. Coppens, Y., Efthymiadis, K., et al.: Distilling deep reinforcement learning poli-
cies in soft decision trees. In: Proc. IJCAI 2019 workshop on explainable artificial
intelligence. pp. 1–6 (2019)

5. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: Dy, J., Krause, A. (eds.) Proc. 35th ICML. pp. 1587–1596.
PMLR (2018)

6. Liu, G., et al.: Toward interpretable deep reinforcement learning with linear
model U-trees. In: Berlingerio, M., et al. (eds.) Machine Learning and Knowl-
edge Discovery in Databases. LNCS, vol. 11052, pp. 414–429. Springer (2019).
https://doi.org/10.1007/978-3-030-10928-8_25

7. Mnih, V., Kavukcuoglu, K., et al.: Playing Atari with deep reinforcement learning
(2013), http://arxiv.org/abs/1312.5602

8. Moore, A.W.: Efficient memory-based learning for robot control. Tech. rep., Uni-
versity of Cambridge (1990)

9. Muggleton, S.: Predicate invention and utilization. J. Exp. Theor. Artif. Intell.
6(1), 121–130 (1994). https://doi.org/10.1080/09528139408953784

10. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning
of higher-order dyadic datalog: Predicate invention revisited. Machine Learning
100(1), 49–73 (2015). https://doi.org/10.1007/s10994-014-5471-y

11. Pedregosa, F., Varoquaux, G., et al.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12(85), 2825–2830 (2011)

12. Raffin, A., Hill, A., et al.: Stable-baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learning Research 22(268), 1–8 (2021)

13. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: Proc. 14th Int. Conf. Artif. Intell. Stat.
vol. 15, pp. 627–635 (2011)

14. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences 3(6), 233–242 (1999). https://doi.org/10.1016/S1364-6613(99)01327-3

15. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017), http://arxiv.org/abs/1707.06347

16. Stepišnik, T., Kocev, D.: Oblique predictive clustering trees. Knowledge-Based
Systems 227, 107228 (2021). https://doi.org/10.1016/j.knosys.2021.107228

17. Verma, A., Murali, V., et al.: Programmatically interpretable reinforcement learn-
ing. In: Dy, J., Krause, A. (eds.) Proc. 35th ICML. pp. 5045–5054. PMLR (2018)

18. Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART:
An oblique decision tree. Computational Statistics & Data Analysis 96, 12–23
(2016). https://doi.org/10.1016/j.csda.2015.11.006

19. Zilke, J.R., et al.: DeepRED – rule extraction from deep neural networks. In:
Calders, T., et al. (eds.) Int. Conf. on Discovery Science. pp. 457–473. Springer
(2016). https://doi.org/10.1007/978-3-319-46307-0_29

https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/TSMC.1983.6313077
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-030-10928-8_25
https://doi.org/10.1007/978-3-030-10928-8_25
http://arxiv.org/abs/1312.5602
https://doi.org/10.1080/09528139408953784
https://doi.org/10.1080/09528139408953784
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1016/S1364-6613(99)01327-3
https://doi.org/10.1016/S1364-6613(99)01327-3
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.knosys.2021.107228
https://doi.org/10.1016/j.knosys.2021.107228
https://doi.org/10.1016/j.csda.2015.11.006
https://doi.org/10.1016/j.csda.2015.11.006
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29

	Sample-based Rule Extraction for Explainable Reinforcement Learning

