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Abstract. Ökolopoly is a serious game developed by biochemist and pi-
oneer of networked thinking Frederic Vester with the goal of promoting
the understanding of interactions in complex systems. Since the strategy
game has a huge action space, it presents a challenge to Deep Reinforce-
ment Learning (DRL). In this article we explain how the board game
is made available as a reinforcement learning environment, we compare
different methods of making the large spaces manageable as well as dif-
ferent reward functions, and we shed light on the conditions under which
DRL agents in this case study are able to learn the game from self-play.

Keywords: Deep Reinforcement Learning · Large Action Space · Cy-
bernetics · Serious Games.

1 Introduction

Despite the overwhelming success of Deep Reinforcement Learning (DRL) in the
last decade, large action spaces can still pose a challenge for DRL algorithms [6].
The serious game Ökolopoly [17] is an example of an environment exhibiting
such a large action space. The game has its roots in cybernetics as it aims at
teaching the players how to steer circular causal processes. The game in its
internationalized computer simulation version Ecopolicy is cited as an example
for training systemic and long-term thinking in complex, interconnected systems
opposed to linear thinking in immediate, linear cause-effect terms. International
competitions in schools were held (“Ecopoliciade”) to train pupils the art of
thinking holistically [1, Sect. 2.2] [10, Sect. 3.2].

⋆ This research was supported by the research training group “Dataninja” (Trustwor-
thy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust
Data Analysis) funded by the German federal state of North Rhine-Westphalia.
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The combinatorial explosion of choices quickly leads to a large number of pos-
sible game states and a very large action space, making this game an interesting
test case for DRL algorithms [6].

In this paper we describe how the board game can be formalized as a Re-
inforcement Learning (RL) environment in OpenAI Gym [2]. Given this imple-
mentation, we investigate the following research questions:

RQ 1 Is it possible for RL agents to learn the game Ökolopoly from self-play?
RQ 2 Which components are essential for learning success (if any)?
RQ 3 Can the agent learn to propose only valid actions or is it necessary that

the environment transforms invalid actions to valid ones?

We explain and experimentally test different methods of approaching such large
action spaces. We will show which of these methods are essential for a DRL
agent to successfully learn the game and to what extent the agent can develop
an “understanding” of the underlying game mechanics. Our hope is that the
results from this Ökolopoly case study are also useful for other RL problems
with large action spaces.

The remainder of the paper is structured as follows: Section 2 will discuss
related work. In Sect. 3 we briefly describe the game of Ökolopoly. Section 4
contains technical information about how the game is translated from a board
game to the domain of RL as well as methods to treat the large action space
and different reward functions. Section 6 presents the experimental outcomes.
In Sect. 7 we answer the research questions and give a short conclusion.

2 Related Work

Large action spaces have been identified as one of the main challenges in RL [6].
Proposed solution techniques may factorize the action space into binary or
ternary subspaces [11], embed the discrete action space in a continuous one [5]
or use the technique of action elimination [18]. In our work we will use the first
two techniques as well. Instead of action elimination we use action normalization
(projection on valid actions, see Sect. 5.2). While the above-mentioned papers
investigate action spaces of size 102 − 104, the application studied in this work
has an action space of size 106 − 108 (see Sect. 3.3, depending on whether we
use action normalization or not).

The game of Ökolopoly has – to the best of our knowledge – not been solved
successfully by RL methods before.

Serious games in biology [15] and ecology [10] have a long tradition and
are often used for educational purposes. The use of RL for serious games is an
emerging research topic [4]. Dobrovsky et al [3] use interactive DRL to balance
in serious games the transfer of knowledge and the entertainment based on the
context information from gameplay. Another example are rehabilitation serious
games [9] where an RL-based approach is used to modify the difficulty of the
rehabilitation exercises.
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3 The Game of Ökolopoly

Designed by Frederic Vester and made available as board game in 1984 [16,17],
the game of Ökolopoly aims to raise awareness for and deepen the understanding
of acting in systems of complex interdependencies.

The game is conceived as a single-player turn-based strategy game. It models
the state of the imaginary country of Kybernetien with scores on eight interacting
departments or fields (such as Population, Quality of Life or Environment). The
player’s task is to lead the country to success by cleverly distributing available
action points to the fields and developing an understanding of the underlying in-
terdependencies. The fields are described in Tab. 1 with their minimal, maximal,
and starting values.

Table 1. The eight fields, number of rounds played, and available action points deter-
mining the state of the game. Five of these fields are directly actionable, i.e., they may
receive action points.

Field min max start value actionable
Sanitation 1 29 1 yes
Production 1 29 12 yes

Environment 1 29 13
Education (e) 1 29 4 yes

Quality of Life (q) 1 29 10 yes
Population Growth (g) 1 29 20 yes

Population (b) 1 48 21
Politics (p) −10 37 0
Rounds (r) 1 30 1

Action Points 1 36 8

3.1 One Turn of the Game

In each turn (or timestep in RL terms) the player chooses how to distribute the
available action points among the five fields Sanitation, Production, Education,
Quality of Life, and Population Growth, so that the respective field values are
incremented by those action points. Only for the field Production the player may
also choose to diminish its value; this, however, costs action points as well. There
is no minimum value of action points to use, i.e., the player may choose to save
some or all action points for the next round.

Once the action points are distributed, certain interdependency functions
between the fields, e.g., Gi(x), i = 1, . . . , 4 for field population growth g, where
x is any of the other fields,WK give rise to a number of automatic adjustments
(feedback effects). For example, if Education is e = 19, then Population Growth
changes by G1(e) = +3. The interdependency functions are deterministic, but
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complex and hard to memorize for a human player. Finally, the action points
available for the next round are assigned following the interdependency functions,
the round counter is increased by one, and the round ends.3

For higher values of Education e, the interdependency function G1(e) may
exhibit a number preceded by ±: in those cases the player can choose to diminish
or increase the field Population Growth g in the given range (e.g., if G1(e) = ±3
then any choice of ∆g ∈ {−3,−2,−1, 0, 1, 2, 3} is allowed). The reasoning behind
this rule is that a sufficiently educated population is able to steer its growth.

3.2 End of the Game

When one or more fields leave the allowed range (either due to the distribution
of action points or due to the automatic adjustments thereafter) or when 30
rounds are played, the game ends. At the end of the game, the balance score B
is computed as a function of the field Politics p, the value of the interdepency
function D(q), which is monotonically rising with Quality of Life q, and the
number of played rounds r:

B(p, q, r) =

{
10 [p+3D(q)]

r+3 if 10 ≤ r ≤ 30

0 otherwise
(1)

This means that a balance score of 0 is given, if the condition 10 ≤ r ≤ 30 is not
met. The game instructions define a score of over 20 as exceptionally good.

3.3 Observation and Action Spaces

Given Tab. 1, the observation space allows for 296 · 482 · 36 · 30 ≈ 1.48 × 1014

different states.
When distributing a ∈ {1, . . . , 36} available action points to the five fields,

there are in principle (a+ 1)5 possible combinations. But since a player cannot
distribute more action points than available, the number of valid combinations
is much smaller. Counting the number of valid and the number of possible com-
binations for all values of a, we find that there are 9.7× 106 valid combinations,
which are only 1.1% of all 9.1× 108 possible combinations.

This poses two challenges for any DRL agent: Firstly, even when restricting
the agent to valid actions (e.g., by sum normalization, see Box action wrapper
in Sect. 5.2), there is still a large number of 9.7 × 106 options. Secondly, if we
give the agent no information whether a possible action is valid or not (no action
wrapper), it has to learn by reinforcement feedback to suggest only valid combi-
nations (otherwise the episode will terminate immediately). This is a demanding
task given the small percentage of only 1.1% valid combinations.

3 An advanced version of the game provides optional “event cards” to be drawn every
five rounds. We ignore this advanced version in our implementation.
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Fig. 1. GUI for the RL environment

4 Implementation of the Game

In this section we briefly describe how the board game was implemented as an
OpenAI Gym [2] compatible RL environment. The code and GUI (Fig. 1) for
human-play were adapted from [13] and are available on Github4.

4.1 Representation of the Observation Space

The observation space is internally represented as a ten-dimensional object of
class MultiDiscrete containing the values of the eight fields, the number of
rounds played, and the currently available action points. The agent has therefore
full access to all information visible to the human player of the board game. As
different ranges are allowed in the different dimensions of the observation space
(the field Politics can even contain negative values which are not supported by
MultiDiscrete), allowed states are shifted accordingly (see first row of Tab. 2).

4.2 Representation of the Action Space

In a similar way the action space is encoded as a six-dimensional MultiDiscrete
object containing the number of action points assigned to each of the five fields.
The sixth number accounts for the possibility of modifying Population Growth
by up to ±5 points according to the value displayed in the field G1(e) at no extra
action point costs (see end of Sect. 3.1).

4 [Github link]
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4.3 Reward Functions

The basic reward function merely implements Eq. 1. This requires the agent to
perform a long streak of profitable actions, which is difficult to find by explo-
ration, before receiving any learning signal (only after the terminal step and if
it occurs after at least ten rounds). For this reason, we implemented and tested
different auxiliary reward structures, which additionally assign a return after
each step. These dense reward functions are described in detail in Sect. 5.3.

5 Methods

To assess the impact of different ways to handle the large observation and action
spaces and different reward structures on the success of training, we performed
experiments with different combinations of DRL algorithms and wrappers we
describe in the following. A summary of the different spaces and their imple-
mentation is given in Tab. 2.

5.1 Observation Wrappers

We consider three different observation wrapper choices that should enable the
algorithms to digest the huge observation space.

None We treat the observation space as a MultiDiscrete object.
Box Observation Wrapper In the case of MultiDiscrete observations,

the DRL agent does not have an intrinsic concept of distance between possible
values in each dimension of the observation space. To mitigate this problem, the
Box observation wrapper represents each of the eight fields, the current round
and the available action points as a value in a continuous Box reaching from the
minimum to the maximum of the respective observation.

Simple Observation Wrapper This observation wrapper subdivides each
dimension into just three possible values: low, medium, and high. This way each
field, the current number of rounds played, and the available action points are
represented each by one value in {0, 1, 2}. The state space is thereby reduced
to 310 = 59 049 different states. The observation wrapper is implemented as a
ten-dimensional MultiDiscrete object.

5.2 Action Wrappers

Similarly, we implemented and tested three different action wrapper choices to
simplify the action space.

None The action space is the unaltered MultiDiscrete object from Sect. 4.2.
Since there is no mechanism translating actions into legal moves, the validity of
an action is not ensured. In fact the overwhelming majority of points in this
action space do not correspond to valid moves.

Box Action Wrapper This wrapper transforms the discrete action space
into a continuous one of type Box. The elements of this six-dimensional vector
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range from [0,−1, 0, 0, 0,−1] to [1, 1, 1, 1, 1, 1] and have the meaning described in
Sect. 4.2. If more than the available action points should be distributed according
to the tentative action vector a′, the values are normalized by their absolute sum,
multiplied with the currently available action points n, and rounded to the next
integer:

ai =

⌊
a′i∑4

i=0 |a′i|
· n+ 0.5

⌋
for i = 0, . . . , 4

If, due to rounding effects, the sum of action points ai still exceeds n, the highest
element of vector a is decreased by one.5

Simple Action Wrapper Analogous to the Simple observation wrapper,
this action wrapper reduces the number of available discrete actions by dividing
the number of available action points in three equal or near-equal parts. These
blocks of action points can then be distributed among the five different fields in
the game. This distribution is encoded as a six-digit string: The first five digits
from the left assume values in {0, 1, 2, 3} which represent the number of action
point partitions assigned to the respective field (the sum of the first five digits
may therefore not exceed 3); the rightmost digit encodes whether action points
are added (0) or deducted (1) from Production6. In total there are 77 such strings
to represent legal moves. Thus, the number of available actions is largely reduced
and makes the problem better learnable because the agent has fewer actions to
disentangle. On the other hand, it is also less precise, because the agent might
distribute to a given field, e.g., no or at least one third of the action points. In
certain situations, this can cause episodes to break off, which could have been
avoided by a finer-grained distribution. The Simple Action Wrapper mimicks a
possible human strategy of being less precise but actionable in unknown complex
environments.WK

The action space is implemented as two-dimensional MultiDiscrete object
of which the first element contains the index of one of the 77 legal moves while
the second one contains the possibility of modifying Population Growth by up
to ±5. The total number of possible actions is therefore reduced to 77 ·11 = 847.

5.3 Reward Functions

We trained DRL agents using the score defined by the rules of the board game
(see Sect. 3.2) as well as two other reward functions that alleviate mentioned
problems related to this sparse reward structure.

Balance At intermediate timesteps no reward is given. Only the final step
yields a reward B computed according to Eq. 1.

PerRound This reward wrapper issues an additional constant reward Rc

after each intermediate step. After the episode’s last step the known reward B

5 The sixth dimension a′
5 ∈ [−1, 1] (modifier for Population Growth g, Sect. 3.1) is

multiplied by 5, rounded and then appended to a.
6 As an example the string 020101 encodes the following distribution of action points:

one third of the action points are added to Education, two thirds of the action points
are deducted (rightmost digit is 1) form Production.
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of Eq. 1 is added to the return. This should be an incentive for the agent to
reach a higher number of rounds, as the rules of the game suggest that between
10 and 30 rounds should be played. Different values for Rc will be investigated.
If not stated otherwise, we use Rc = 0.5,

Heuristic A heuristic that keeps Production and Population at healthy,
intermediate values (15 and 24 respectively) empirically seemed to be a good
strategy. To this end, the following auxiliary reward R is assigned after each
intermediate step:

R = s · (Rprod +Rpop)

with Rprod = 14− |15− Vprod|
Rpop = 23− |24− Vpop|

After the last step of each episode, the usual balance B from Eq. 1 is given as
reward. The scaling factor s allows to steer the agent to maximize the auxiliary
reward R and therefore the number of rounds (for higher values such as s = 1)
or to maximize the balance B (for smaller values of s, see Fig. 7). Where not
explicitly stated otherwise we use s = 1.

Table 2. Overview of action and observation space, wrappers and their representation

Space Wrapper Object

Observation
None MultiDiscrete([29,29,29,29,29,29,48,48,31,37])
Box Box(low=[1,1,1,1,1,1,1,-10,0,0], high=[29,29,29,29,29,29,48,37,30,36])

Simple MultiDiscrete([3,3,3,3,3,3,3,3,3,3])

Action
None MultiDiscrete([29,57,29,29,29,11])
Box Box(low=[0,-1,0,0,0,-1], high=[1,1,1,1,1,1])

Simple MultiDiscrete([77,11])

5.4 DRL Algorithms

During the experiments we trained agents with the on-policy algorithm PPO [14]
and the off-policy algorithms TD3 [7] and SAC [8] using their implementa-
tion provided by the Python DRL framework Stable-Baselines3 [12]. We use
the default hyperparameters of SB3; for the TD3 agents, Gaussian action noise
with σ = 0.1 is applied. While all mentioned algorithms are suited to han-
dle MultiDiscrete and Box observation spaces, not all are compatible with
MultiDiscrete action spaces (see Tab. 3).

5.5 Experimental Setup

As a consequence of Tab. 2 and Tab. 3, not every combination of wrapper and
algorithm is possible: we have 3 · 3 · 3 = 27 combinations for PPO, but only 9
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Table 3. Compatibility of mentioned algorithms and used action and observation space
representations

Observation Space Action Space
Algorithm MultiDiscrete Box MultiDiscrete Box

PPO ✓ ✓ ✓ ✓

SAC ✓ ✓ ✗ ✓

TD3 ✓ ✓ ✗ ✓

combinations for SAC and TD3 (only Box action wrappers). For our experiments
we train DRL agents with all available combinations of observation and action
wrappers and reward functions for 800 000 timesteps while logging the balance B
(Eq. 1), the number of played rounds r, and the reward as seen by the DRL
agent. After each completed training episode the agent plays one evaluation
episode using deterministic predictions according to its current training state.
As a measure of the agents’ performance we compute the averages and standard
deviations of balance B and played rounds r of the last 1 000 evaluation episodes.

We investigate the stability of the training process with respect to initial-
ization of the agents’ networks, the role of the different methods in handling
observation and action space, the impact of reward functions, and the strategy
of single agents.

6 Results

After examining the training history we examine our results regarding the role
of different representations of observation and action space as well as different
reward functions. We touch upon the possibility of steering the agents’ focus
by suitable choices of rewards and provide more insights regarding the agents’
performance in terms of balance and played rounds.

6.1 Stability of Training

To asses how critical the random initialization of the DRL agent’s networks is,
as an example we trained 5 PPO agents on the combination Box observation
wrapper, Box action wrapper, and PerRound reward Rc = 1 under identical
conditions except for a different seed of the DRL algorithm. As can be seen in
Fig. 2, the initialization has at most only marginal effect on the training process
and especially on the outcome.

6.2 Impact of Wrappers

To compare the training outcome of different combination of wrappers, we ex-
amine the average and standard deviation of agents’ performance across the last
1 000 training episodes in terms of played rounds and balance for all reward



10 R. C. Engelhardt et al.

0 2 4 6 8
timestep ×105

0

5

10

15

20

25

30
ba

la
nc

e 
B

0 2 4 6 8
timestep ×105

2

4

6

8

10

12

14

16

18

ro
un

ds
 r

0 2 4 6 8
timestep ×105

0

5

10

15

20

25

30

35

re
tu

rn

Seed
17 18 19 20 21

Fig. 2. Training curves of 5 differently seeded PPO agents (Box observation, Box action
wrapper, PerRound reward Rc = 0.5) encoded by color. (For better visualization a
Savitzky-Golay smoothing filter was applied.)
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Fig. 3. Average and standard deviation of number of played rounds and balance for the
last 1 000 evaluation episodes of PPO agents. Different reward functions are shown in
separate plots, while observation and action wrapper are encoded by color and marker.
The areas marked by colored backgrounds represent scores considered as increasingly
good by the rules of the game. (n.b. at (0, 0) the combination without observation
wrapper and UnclippedBox action wrapper, as well as all combinations without action
wrapper are hidden below the green diamond marker)
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Fig. 4. Average and standard deviation of number of played rounds and balance for
the last 1 000 evaluation episodes of SAC agents. The plots are structured as Fig. 3.
Tables 2 and 3 show why this plot contains fewer results. (n.b. the three diamond
markers at (0, 0) are overlapping in the leftmost plot)

functions that were used for training. The results are shown in Fig. 3 (PPO) and
Fig. 4 (SAC).

Without ensuring valid actions by the use of action wrappers and with only
sparse reward, the agents don’t receive a guiding learning signal and consequently
fail (three overlaying round markers at (0, 0) in the left plot of Fig. 3). With
action wrappers intrinsically allowing only valid moves, the agents accumulate
in a specific region of the multiobjective plot with exceptionally high score after
having played between 10 and 20 rounds. If PPO agents are rewarded with a
fixed positive amount Rc after each intermediate step, they are able to cope with
even large multidiscrete observation and action spaces, learn legal moves, and
find a suitable strategy, as shown in the central plot. While a clear clustering
by color or marker could not be observed here, the right plot shows the agents’
difficulties to find suitable actions by the accumulation of round markers in the
lower left side.

While PPO agents exhibit an overall remarkably good performance (Fig. 3),
SAC agents using Simple observation wrapper seem to struggle (Fig. 4). We
trained also TD3 agents with default hyperparameters and Gaussian action noise
with σ = 1. Since their results were inferior to PPO and SAC (only some TD3
combinations resulted in a balance above 10; most combinations have a balance
B ≈ 0 and rounds r < 10), we do not show these results in a separate figure.

The action wrappers serve a dual purpose: not only do they reduce the num-
ber of available actions, but they also ensure only valid actions can be performed.
To investigate which effect is predominant, all PPO and SAC agents were also
trained using a modified Box action wrapper. This UnclippedBox action wrapper
still represents the discrete action space as a continuous box space. But it does
not ensure that the intended distribution of action points is possible (i.e. does
not exceed the number of available action points). Figures 3 and 4 show how
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Fig. 5. Effect of different values of constant per-round reward Rc on PPO agents
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Fig. 6. Reason for episodes’ termination of the last 1 000 evaluation episodes during
training. Shown is a small subset of PPO agents from the set of about 140 pie charts
(see text).

the additional task of learning valid distributions of action points negates any
success in the case of a sparse reward. With dense rewards, UnclippedBox leads
to somewhat reduced performance but it is noteworthy that the agents learn to
perform mostly valid actions.

Investigating the agents’ gameplay further, Figure 6 shows statistics of rea-
sons for termination of the last 1 000 evaluation episodes during training. Due to
space restrictions, we can show here only 3 of about 140 pie charts from possible
combinations7. We can see that a variety of reasons leads to the termination of
episodes. What we want to demonstrate with Figure 6 is that many of them are
“positive” in the sense that they leave the range of possible values in a direction
that would commonly be considered desirable (e.g., “Quality of Life too high”).

7 The full set of pie charts is available at [GitHub-link].
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Fig. 7. Effect of different scaling of Heuristic reward on PPO agents.

6.3 Reward Shaping

The importance of a suitable reward function is well-known among RL practi-
tioners. This holds true also in the case of Ökolopoly. Not only does the reward
function have arguably the biggest effect on overall performance (see Fig. 3),
but also do the parameters of the single reward function itself play an important
role. In Fig. 5 we show the results of comparing three different values of the
constant per-round reward Rc. By changing this value we can tune the agent
towards surviving more rounds r (in case of higher values Rc) on one side or
towards prioritizing a higher balance B on the other.
Similarly, Fig. 7 shows the results for different values of scaling factor s.

6.4 Optimal Balance and Rounds

Looking at Fig. 5, one might ask why in the case Rc = 0.5 (where the incentive
is more on balance) the high balance results are not possible together with a
higher number of rounds: The average episode length does not exceed 17 rounds.
A similar observation is made in the ’Reward: Balance’ plots of Fig. 3 and Fig. 4.

The cause is visualized in Fig. 8: First, the balance B (for rounds r < 10 only
hypothetical) shows a local optimum roughly at r ≈ 15. Secondly, the number of
episodes with r ∈ [10, 15] is about 2000 times higher than the number of episodes
with r ∈ [20, 25], meaning that the average in Fig. 5, Rc = 0.5, is likely to be
below r ≈ 15. The agent has learned that it is not detrimental to stop an episode
after 10−15 rounds, because a longer lasting episode would not improve (or even
diminish) B. This is why the agent often stops quite early (after surpassing the
required 10 rounds) unless a special incentive (e.g., Rc = 1) tells it otherwise.
Missing: short mentioning of computation times, maybe small tableRE
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Fig. 8. Correlation of rounds r and balance B. Blue dots mark every pair (r,B) en-
countered by the PPO agent during training for the combination (Box observation
wrapper, Box action wrapper, reward Balance). Orange dots mark average for every
number of rounds.

7 Conclusion

In this article we described how we made cybernetic board game Ökolopoly ac-
cessible as a RL environment. Various ways of simplifying the large observation
and action spaces as well as different reward functions have been investigated.
We were able to show that in many of our combinations (wrapper, reward), the
DRL agents could successfully learn how to deal with the rather complex inter-
dependencies of the game. Our results show that DRL agents can consistently
learn the game from self-play (RQ 1). However, one of the following conditions
have to be met in order to be successful (RQ 2): (i) either an action wrapper
that inherently maps to only valid actions (Box or Simple) or (ii) a dense reward
function (PerRound or Heuristic).

If neither (i) nor (ii) is present, no learning occurs in this large action space.
We have shown that within the Box action wrapper not the mapping to contin-
uous space but the clipping to valid actions is essential. If, without any action
wrapper, only (ii) is present, we got the interesting result that the agent is able
to learn just by self-play to propose only valid actions (RQ 3).

We invite everyone to use our new open source RL environment Ökolopoly,
which is made available as a benchmark for researchers to test their methods for
handling large observation and action spaces.
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General discussion items
Other title suggestions: Case study for large action spaces – or – Ökolopoly:

A Cybernetic Strategy Game as Reinforcement Learning EnvironmentRE

Since the paper is written in English for an English audience: Why don’t you
call it Ecolopoly/Ecopolicy and simply explain that it’s based on the original
German Ökolopoly?ML

That’s a good point. We discussed this in one meeting early on and decided to
stick to the German original title because Ecopolicy is a commercially distributed
computer game. (On the other hand we also decided to not show any GUI (as it
adds no scientific value and is but a clone of a commercially available computer
game) and this decision was reverted.)RE

Just as in idea: we write multiple times how the absence of an action wrapper
creates the additional challenge to discover valid actions. Maybe it would be nice
to show that. RE
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Fig. 9. Training curves to show delay in the absence of action wrappers that enforce
valid actions. First word in legend refers to observation, second one for action wrapper
Nice idea, but I think the plots are a little too complex for the average conference
reader (and we probably have no space left) (and it is hard to disentangle all the
curves w/o color). – But since you show them, I am just curious: Any idea why the red
curves (unclipped box) are so bad in case ’Heuristic’? Even worse than ’None’? WK

Now that I have more or less the final text there is definitely not the space to show
this plot. I tried a lot of versions to encode the three family of wrappers but I fear
this was the best. The colors show best how the different combination of wrappers give
rise to different characteristics in the learning curve (these cluster way better than the
results). Of course I could leave out unclippedbox but decided to not do that because
of the interesting results. I have no explanation for the even worse performance of the
unclippedboxRE
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To preserve the conversations:
4.1 Representation of the Observation Space The observation space is internally
represented as a ten-dimensional object of class MultiDiscrete containing the
values of the eight fields, the number of rounds played, and the currently available
action points. The observation space is therefore fully visible to the agent, who
has the same information as a human player of the board game. / The agent
has therefore full access to all information visible to the human player of the
board game / All information available to the human player of the board game is
therefore fully visible for the agent.RE I would actually say that you could briefly
state what this "according" translation actually is. I suspect you shift the politics
points to be 0-47? I think you have the space to state that explicitly and maybe
it helps someone. Otherwise, if you want to omit the implementation detail but
have more than one sentence you could reason why it is important to provide the
last two dimensions of the observation in addition to the eight fields (although
I guess that’s kind of obvious). Or you could explain, and that might actually
be relevant, why you opted for MultiDiscrete rather than Box (which, as I’ve
stated many times, would have been my intuitive choice).ML As different ranges
are allowed in the different dimensions of the observation space (the field Politics
can even contain negative values which are not supported by MultiDiscrete),
allowed states are shifted accordingly (see first row of Tab. 2).RE

To preserve conversation on Simple Action Wrapper:
I could imagine that restricting action point distribution to these partitions has
an impact on how well the game can be played - perhaps moves that would
be smart at a certain time step are not available anymore. In essence you re-
strict yourself to a subset of regular available moves. So there are two effects
that impact your experimental performance results: One, which you actually
mean to study, is that this wrapper makes the problem easier to understand for
an algorithm. The other is what I described, that the achievable performance
might be better/worse for e.g. random strategies or best strategies due to these
restrictions. It’s probably hard to disentangle these two effects based on your
experimental outcomes. Still, is there anything you can say about this?MLThis
is a very interesting and valid point. Actually this wrapper does three things:
ensuring valid moves, reducing the number of actions, and removing the ability
to play with fine-grained actions. I don’t see a way to disentangle these effects
now. We do something similar for the Box action wrapper, when we report re-
sults for the UnclippedBox wrapper. (Now that I think about it, the latter was
meant as a quick sidenote-investigation but in the end all combinations (except
TD3, which we don’t show anyway) have been trained with UnclippedBox, too.
Maybe it’s confusing we don’t explain it here...)RE I like the points brought up
here. I would further argue that the simple action wrapper represents in itself
a possible human strategy, which disengages the possibility of being too precise
while choosing an action so that the exploration is made easier for the agent
while he navigates in a more complex observation space.RR I suggest the follow-
ing wording to summarize the interesting discussion brought up here:WK Thus,
the number of available actions is largely reduced and makes the problem bet-
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ter learnable because the agent has fewer actions to disentangle. On the other
hand, it is also less precise, because the agent might distribute to a given field,
e.g., no or at least one third of the action points. In certain situations, this can
cause episodes to break off, which could have been avoided by a finer-grained
distribution. The Simple Action Wrapper mimicks a possible human strategy of
being less precise but actionable in unknown complex environments.
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