
Ökolopoly: Case Study on Large Action Spaces in
Reinforcement Learning⋆

Raphael C. Engelhardt1[0000−0003−1463−2706], Ralitsa Raycheva, Moritz
Lange2[0000−0001−7109−7813], Laurenz Wiskott2[0000−0001−6237−740X], and

Wolfgang Konen1[0000−0002−1343−4209]

1 Cologne Institute of Computer Science, Faculty of Computer Science and
Engineering Science, TH Köln, Gummersbach, Germany
{Raphael.Engelhardt,Wolfgang.Konen}@th-koeln.de

2 Institute for Neural Computation, Faculty of Computer Science, Ruhr-University
Bochum, Bochum, Germany

{Moritz.Lange,Laurenz.Wiskott}@ini.rub.de

Abstract. Ökolopoly is a serious game developed by biochemist Fred-
eric Vester with the goal to enhance understanding of interactions in com-
plex systems. Due to its vast observation and action spaces, it presents
a challenge for Deep Reinforcement Learning (DRL). In this paper, we
make the board game available as a reinforcement learning environment
and compare different methods of making the large spaces manageable.
Our aim is to determine the conditions under which DRL agents are
able to learn this game from self-play. To this goal we implement various
wrappers to reduce the observation and action spaces, and to change the
reward structure. We train PPO, SAC, and TD3 agents on combinations
of these wrappers and compare their performance. We analyze the con-
tribution of different representations of observation and action spaces
to successful learning and the possibility of steering the DRL agents’
gameplay by shaping reward functions.

Keywords: Deep reinforcement learning · Large action space · Cyber-
netics · Serious games

1 Introduction

Despite the overwhelming success of Deep Reinforcement Learning (DRL) in the
last decade, large action spaces can still pose a challenge for DRL algorithms [7].
The serious game Ökolopoly [19] is an example of an environment exhibiting
such a large action space. The game has its roots in cybernetics as it aims at
teaching the players how to steer circular causal processes. The game in its in-
ternationalized computer simulation version Ecopolicy is cited as an example for
training systemic and long-term thinking in complex, interconnected systems as
⋆ This research was supported by the research training group “Dataninja” (Trustwor-

thy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust
Data Analysis) funded by the German federal state of North Rhine-Westphalia.

2 R. C. Engelhardt et al.

opposed to linear thinking in terms of immediate, simple cause-effect relation-
ships. International competitions in schools were held (“Ecopoliciade”) to train
pupils the art of thinking holistically. [1, Sect. 2.2] [12, Sect. 3.2]

The combinatorial explosion of choices quickly leads to a large number of pos-
sible game states and a very large action space, making this game an interesting
test case for DRL algorithms [7].

In this paper we describe how the board game can be formalized as a Re-
inforcement Learning (RL) environment following OpenAI Gym [2] standards.
Given this implementation, we investigate the following research questions:

RQ 1 Is it possible for RL agents to learn to play the game Ökolopoly from
self-play?

RQ 2 Which components are essential for successful learning (if any)?
RQ 3 Can the agent learn to propose valid actions or is it necessary that the

environment transforms invalid actions into valid ones?

We explain and experimentally test different methods of approaching such large
action spaces. We will show which of these methods are essential for a DRL
agent to successfully learn to play the game and to what extent the agent can
develop an “understanding” of the underlying game mechanics. Our hope is that
the results from this Ökolopoly case study are also useful for other RL problems
with large action spaces.

The remainder of the paper is structured as follows: Section 2 will discuss
related work. In Sect. 3 we briefly describe the game of Ökolopoly. Section 4
contains technical information about how the game is translated from a board
game to the domain of RL as well as methods to treat the large observation and
action spaces, and different reward functions. Section 6 presents the experimental
outcomes. In Sect. 7 we answer the research questions and give a short conclusion.

2 Related Work

Large action spaces have been identified as one of the main challenges in RL [7].
Proposed solution techniques may factorize the action space into binary or
ternary subspaces [13], embed the discrete action space in a continuous one [6],
or use the technique of action elimination [20]. In our work we will use the first
two techniques as well. Instead of action elimination we use action normalization
(projection onto valid actions, see Sect. 5.2). While the above-mentioned papers
investigate action spaces of size 102 − 104, the application studied in this work
has an action space of size 106 − 108 (see Sect. 3.3, depending on whether we
use action normalization or not). Huang and Ontañón [11] thoroughly describe
and evaluate invalid action masking, a technique to restrict large, discrete action
spaces to valid actions only. This is achieved by considering the logits produced
by policy gradient algorithms and substituting those corresponding to invalid
actions by a large negative number.

Serious games in biology [17] and ecology [12] have a long tradition and are
often used for educational purposes or for collective problem-solving in science,

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 3

as in Foldit [3]. The use of RL for serious games is an emerging research topic [5].
Dobrovsky et al. [4] use interactive DRL to balance the transfer of knowledge
and the entertainment in serious games based on the context information from
gameplay. Another example are rehabilitation serious games [10] where an RL-
based approach is used to modify the difficulty of the rehabilitation exercises.

The game of Ökolopoly has—to the best of our knowledge—not been learned
successfully by RL methods before.

3 The Game of Ökolopoly

Designed by Frederic Vester and made available as board game in 1984 [18,19],
the game of Ökolopoly aims to raise awareness for and deepen the understanding
of acting in systems of complex interdependencies.

The game is conceived as a single-player, turn-based strategy game. It models
the state of the imaginary country of Kybernetien with scores on eight interacting
departments or fields (such as Population, Quality of Life or Environment). The
player’s task is to lead the country to success by cleverly distributing available
action points to the fields and developing an understanding of the underlying in-
terdependencies. The fields are described in Tab. 1 with their minimal, maximal,
and starting values.

Table 1. The eight fields, number of rounds played, and available action points deter-
mining the state of the game. Five of these fields are directly actionable, i.e., they may
receive action points.

Field Min Max Start Value Actionable
Sanitation 1 29 1 yes
Production 1 29 12 yes

Environment 1 29 13
Education (e) 1 29 4 yes

Quality of Life (q) 1 29 10 yes
Population Growth (g) 1 29 20 yes

Population (b) 1 48 21
Politics (p) −10 37 0
Rounds (r) 1 30 1

Action Points 1 36 8

3.1 One Turn of the Game

In each turn (or timestep in RL terms) the player chooses how to distribute the
available action points among the five fields Sanitation, Production, Education,
Quality of Life, and Population Growth, so that the respective field values are

4 R. C. Engelhardt et al.

incremented by those action points. Only for the field Production the player may
also choose to diminish the value, at the cost of action points, too. There is no
minimum value of action points to use, i.e., the player may choose to save action
points for the next round.

Once the action points are distributed, certain interdependency functions
between the fields, e.g., Gj(x), j = 1, . . . , 4 for the field population growth g,
where x is any of the other fields, give rise to a number of automatic adjustments
(feedback effects). For example, if Education is e = 19, Population Growth
changes by G1(e) = +3. The interdependency functions are deterministic, but
complex and hard to memorize for a human player. Finally, the action points
available for the next round are assigned following the interdependency functions,
the round counter is increased by one, and the round ends.3

For higher values of Education e, the interdependency function G1(e) may ex-
hibit a number preceded by ±: in those cases the player can choose to diminish or
increase the field Population Growth g in the given range at no additional cost of
action points (e.g., if G1(e) = ±3 then any choice of ∆g ∈ {−3,−2,−1, 0, 1, 2, 3}
is allowed). The reasoning behind this rule is that a sufficiently educated popu-
lation is able to steer its growth.

3.2 End of the Game

When one or more fields leave the allowed range (either due to the distribution
of action points or due to the automatic adjustments thereafter), or when 30
rounds are played, the game ends. At the end of the game, the balance score B
is computed as a function of the field Politics p, the value of the interdepency
function D(q), which is monotonically rising with Quality of Life q, and the
number of played rounds r:

B(p, q, r) =

{
10 [p+3D(q)]

r+3 if 10 ≤ r ≤ 30

0 otherwise
(1)

This means that a balance score of 0 is given, if the condition 10 ≤ r ≤ 30 is not
met. The game instructions define a score of over 20 as exceptionally good.

3.3 Observation and Action Spaces

Given Tab. 1, the observation space allows for 296 · 482 · 36 · 30 ≈ 1.48 × 1015

different states.
When distributing a ∈ {1, . . . , 36} available action points to the five fields,

there are in principle (a+ 1)5 possible combinations. Since a player cannot dis-
tribute more action points than available, the number of valid combinations is
much smaller. Counting the number of valid and the number of possible combi-
nations for all values of a, we find that there are 9.7 × 106 valid combinations,
which are only 1.1% of all 9.1× 108 possible combinations.
3 An advanced version of the game provides optional “event cards” to be drawn every

five rounds. We ignore this advanced version in our implementation.

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 5

Fig. 1. GUI for the RL environment

This poses two challenges for any DRL agent: Firstly, even when restricting
the agent to valid actions (e.g., by sum normalization, see Box action wrapper in
Sect. 5.2), there is still a large number of 9.7× 106 options. Secondly, if we give
the agent no information on whether a possible action is valid or not (no action
wrapper), it has to learn by reinforcement feedback to suggest valid combinations
(otherwise the episode will terminate immediately). This is a demanding task
given the small percentage of only 1.1% valid combinations.

4 Implementation of the Game

In this section we briefly describe how the board game was implemented as an
OpenAI Gym [2] compatible RL environment. The code and GUI for human-play
(Fig. 1) were adapted from [15]. Implementation, experiments, and additional
material are available on Github4.

4.1 Representation of the Observation Space

The observation space is internally represented as a ten-dimensional object of
class MultiDiscrete containing the values of the eight fields, the number of
rounds played, and the currently available action points. The agent has therefore
full access to all information visible to the human player of the board game. As
different ranges are allowed in the different dimensions of the observation space
(the field Politics can even contain negative values which are not supported by
MultiDiscrete), allowed states are shifted accordingly (see first row of Tab. 2).

4.2 Representation of the Action Space

In a similar way the action space is encoded as a six-dimensional MultiDiscrete
object containing the number of action points assigned to each of the five fields.
4 https://github.com/WolfgangKonen/oekolopoly_v1

https://github.com/WolfgangKonen/oekolopoly_v1

6 R. C. Engelhardt et al.

The sixth number accounts for the possibility of modifying Population Growth
by up to ±5 points according to the value of G1(e) (see end of Sect. 3.1).

4.3 Reward Functions

The basic reward function merely implements Eq. 1. This requires the agent to
perform a long streak of profitable actions, which is difficult to find by explo-
ration, before receiving any learning signal (only after the terminal step and if
it occurs after at least ten rounds). For this reason, we implemented and tested
different auxiliary reward structures, which additionally assign a reward after
each intermediate step. These dense reward functions are described in detail in
Sect. 5.3.

5 Methods

To assess the impact of different ways to handle the large observation and action
spaces and different reward structures on the success of training, we performed
experiments with different combinations of DRL algorithms and wrappers we
describe in the following. A summary of the different spaces and their imple-
mentation is given in Tab. 2.

5.1 Observation Wrappers

We consider three different observation wrapper choices that should enable the
algorithms to digest the huge observation space.

None We treat the observation space as a MultiDiscrete object.
Box Observation Wrapper In the case of MultiDiscrete observations,

the DRL agent does not have an intrinsic concept of distance between possible
values in each dimension of the observation space. To mitigate this problem, the
Box observation wrapper represents each of the eight fields, the played rounds,
and the available action points as a value in a continuous Box reaching from the
minimum to the maximum of the respective observation.

Simple Observation Wrapper This observation wrapper subdivides each
dimension into just three possible values: low, medium, and high. This way each
field, the current number of rounds played, and the available action points are
represented each by one value in {0, 1, 2}. The state space is thereby reduced
to 310 = 59 049 different states. The observation wrapper is implemented as a
ten-dimensional MultiDiscrete object.

5.2 Action Wrappers

Similarly, we implemented and tested three different choices for the action wrap-
per to simplify the action space.

None The action space is the unaltered MultiDiscrete object from Sect. 4.2.
Since there is no mechanism translating actions into legal moves, the validity of

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 7

an action is not ensured. In fact, the overwhelming majority of points in this
action space do not correspond to valid moves.

Box Action Wrapper This wrapper transforms the discrete action space
into a continuous one of type Box. The elements of this six-dimensional vector
range from [0,−1, 0, 0, 0,−1] to [1, 1, 1, 1, 1, 1] and have the meaning described in
Sect. 4.2. If more than the available action points should be distributed according
to the tentative action vector a′, the values are normalized by their absolute sum,
multiplied with the currently available action points n, and rounded to the next
integer:

ai =

⌊
a′i∑4

i=0 |a′i|
· n+ 0.5

⌋
for i = 0, . . . , 4

If, due to rounding effects, the sum of action points ai still exceeds n, the
highest element of vector a is decreased by one5.

Simple Action Wrapper Analogous to the Simple observation wrapper,
this action wrapper reduces the number of available discrete actions by dividing
the number of available action points into three equal or near-equal parts. These
blocks of action points can then be distributed among the five different fields in
the game. This distribution is encoded as a six-digit string: The first five digits
from the left assume values in {0, 1, 2, 3} which represent the number of action
point partitions assigned to the respective field (the sum of the first five digits
may therefore not exceed 3); the rightmost digit encodes whether action points
are added (0) or deducted (1) from Production6. In total there are 77 such strings
to represent legal moves. The action space is implemented as two-dimensional
MultiDiscrete object whose first element contains the index of one of the 77
legal moves while the second one contains the possibility of modifying Population
Growth by up to ±5. The total number of possible actions is therefore reduced to
77·11 = 847. On the other hand, actions are less precise. In certain situations, this
can lead to premature episode termination, which could have been avoided by a
finer-grained distribution. The Simple action wrapper mimicks a possible human
strategy of being less precise but actionable in unknown complex environments.

5.3 Reward Functions

We trained DRL agents using the score defined by the rules of the board game
(see Sect. 3.2) as well as two other reward functions which alleviate mentioned
problems related to this sparse reward structure.

Balance At intermediate timesteps no reward is given. Only the final step
yields a reward B computed according to Eq. 1.

PerRound This reward wrapper issues an additional constant reward Rc

after each intermediate step. After the episode’s last step the known reward B

5 The sixth dimension a′
5 ∈ [−1, 1] (modifier for Population Growth g, Sect. 3.1) is

multiplied by 5, rounded, and then appended to a.
6 As an example the string 020101 encodes the following distribution of action points:

one third of the action points are added to Education, two thirds of the action points
are deducted (rightmost digit is 1) from Production.

8 R. C. Engelhardt et al.

from Eq. 1 is added to the return. This should be an incentive for the agent to
reach a higher number of rounds, as the rules of the game suggest that between
10 and 30 rounds should be played. Different values for Rc will be investigated.
If not stated otherwise, we use Rc = 0.5.

Heuristic A heuristic that keeps Production and Population at healthy,
intermediate values (15 and 24 respectively) empirically seemed to be a good
strategy. To this end, the following auxiliary reward R is assigned after each
intermediate step:

R = s · (Rprod +Rpop)

with Rprod = 14− |15− Vprod|
Rpop = 23− |24− Vpop|

After the last step of each episode, the usual balance B from Eq. 1 is given as
reward. The scaling factor s allows to steer the agent to maximize the auxiliary
reward R and therefore the number of rounds (for higher values such as s = 1)
or to maximize the balance B (for smaller values of s, see Fig. 7). Where not
explicitly stated otherwise, we use s = 1.

Table 2. Overview of action and observation space wrappers and their representation

Space Wrapper Object

Observation
None MultiDiscrete([29,29,29,29,29,29,48,48,31,37])
Box Box(low=[1,1,1,1,1,1,1,-10,0,0], high=[29,29,29,29,29,29,48,37,30,36])

Simple MultiDiscrete([3,3,3,3,3,3,3,3,3,3])

Action
None MultiDiscrete([29,57,29,29,29,11])
Box Box(low=[0,-1,0,0,0,-1], high=[1,1,1,1,1,1])

Simple MultiDiscrete([77,11])

5.4 DRL Algorithms

For the experiments we trained agents with the on-policy algorithm PPO [16] and
the off-policy algorithms TD3 [8] and SAC [9] using their implementation pro-
vided by the Python DRL framework Stable-Baselines3 [14]. We use the default
hyperparameters of SB3; for the TD3 agents, Gaussian action noise with σ = 0.1
is applied. While all mentioned algorithms are suited to handle MultiDiscrete
and Box observation spaces, not all are compatible with MultiDiscrete action
spaces (see Tab. 3). The computational effort varies noticeably depending on
the algorithm. The elapsed real time to train an agent (no observation wrapper,
Box action wrapper, PerRound reward with Rc = 0.5) for 800 000 timesteps was
680.0± 2.1 s for PPO, 13 216.2± 115.8 s for SAC, and 11 786.5± 55.5 s for TD3
(three repetitions)7.
7 Timing experiments were performed on a system with Intel® Core™i7-1185G7 CPU

and 16 GB RAM.

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 9

Table 3. Compatibility of mentioned algorithms and used action and observation space
representations.

Observation Space Action Space
Algorithm MultiDiscrete Box MultiDiscrete Box

PPO ✓ ✓ ✓ ✓

SAC ✓ ✓ ✗ ✓

TD3 ✓ ✓ ✗ ✓

5.5 Experimental Setup

As a consequence of Tab. 2 and Tab. 3, not every combination of wrapper and
algorithm is possible: we have 3 · 3 · 3 = 27 combinations for PPO, but only 9
combinations for SAC and TD3 (only Box action wrappers). For our experiments
we train DRL agents with all available combinations of observation and action
wrappers and reward functions for 800 000 timesteps while logging the balance B
(Eq. 1), the number of played rounds r, and the reward as seen by the DRL
agent. After each completed training episode the agent plays one evaluation
episode using deterministic predictions according to its current training state.
As a measure of the agents’ performance we compute the averages and standard
deviations of balance B and played rounds r of the last 1 000 evaluation episodes.

We investigate the stability of the training process with respect to initial-
ization of the agents’ networks, the role of the different methods in handling
observation and action space, the impact of reward functions, and the strategy
of single agents.

6 Results

After inspecting the training history we examine our results regarding the role
of different representations of observation and action space as well as different
reward functions. We touch upon the possibility of steering the agents’ focus
by suitable choices of rewards and provide more insights regarding the agents’
performance in terms of balance and played rounds.

6.1 Stability of Training

To assess how critical the random initialization of the DRL agent’s networks is,
as an example we trained 5 PPO agents on the combination Box observation
wrapper, Box action wrapper, and PerRound reward Rc = 0.5 under identical
conditions except for a different seed of the DRL algorithm. As can be seen in
Fig. 2, the initialization has at most only marginal effects on the training process
and especially on the outcome.

10 R. C. Engelhardt et al.

0 2 4 6 8
timestep ×105

0

5

10

15

20

25

30
ba

la
nc

e
B

0 2 4 6 8
timestep ×105

2

4

6

8

10

12

14

16

18

ro
un

ds
 r

0 2 4 6 8
timestep ×105

0

5

10

15

20

25

30

35

re
tu

rn

Seed
17 18 19 20 21

Fig. 2. Training curves of 5 differently seeded PPO agents (Box observation, Box action
wrapper, PerRound reward Rc = 0.5) encoded by color. (For better visualization a
Savitzky-Golay smoothing filter was applied.)

0 5 10 15 20 25 30
rounds r

0

5

10

15

20

25

30

35

ba
la

nc
e

B

Reward: Balance

0 5 10 15 20 25 30
rounds r

Reward: PerRound Rc = 0.5

0 5 10 15 20 25 30
rounds r

Reward: Heuristic s = 1.0
PPO Average last 1000 episodes

Wrappers
observation
none
box
simple

action
none
box
unclippedbox
simple

Fig. 3. Average and standard deviation of number of played rounds and balance for the
last 1 000 evaluation episodes of PPO agents. Different reward functions are shown in
separate plots, while observation and action wrapper are encoded by color and marker.
The areas marked by colored backgrounds represent scores considered as increasingly
good by the rules of the game. (N.b. at (0, 0) the combination without observation
wrapper and UnclippedBox action wrapper (blue diamond), as well as all combinations
without action wrapper (circles) are hidden below the green diamond marker.)

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 11

0 5 10 15 20 25 30
rounds r

0

5

10

15

20

25

30
ba

la
nc

e
B

Reward: Balance

0 5 10 15 20 25 30
rounds r

Reward: PerRound Rc = 0.5

0 5 10 15 20 25 30
rounds r

Reward: Heuristic s = 1.0
SAC Average last 1000 episodes

Wrappers
observation
none
box
simple

action

box
unclippedbox

Fig. 4. Average and standard deviation of number of played rounds and balance for
the last 1 000 evaluation episodes of SAC agents. The plots are structured as in Fig. 3.
Tables 2 and 3 show why this plot contains fewer results. (N.b. the three diamond
markers at (0, 0) are overlapping in the leftmost plot.)

6.2 Impact of Wrappers

To compare the training outcomes of different combination of wrappers, we ex-
amine the average and standard deviation of the agents’ performance across the
last 1 000 evaluation episodes during training in terms of played rounds and
balance. The results are shown in Fig. 3 (PPO) and Fig. 4 (SAC).

Without ensuring valid actions by the use of action wrappers and with only
sparse reward, the agents do not receive a sufficient learning signal and conse-
quently fail (three overlaying round markers at (0, 0) in the left plot of Fig. 3).
With action wrappers intrinsically allowing only valid moves, the agents accumu-
late in a specific region of the multiobjective plot with exceptionally high score
after having played between 10 and 20 rounds. If PPO agents are rewarded with
a fixed positive amount Rc after each intermediate step, they are able to handle
even large multidiscrete observation and action spaces, learn legal moves, and
find a suitable strategy, as shown in the central plot. While a clear clustering
by color or marker could not be observed here, the right plot shows the agents’
difficulties to find suitable actions by the accumulation of round markers in the
lower left side.

While PPO agents exhibit an overall remarkably good performance (Fig. 3),
SAC agents using the Simple observation wrapper seem to struggle (Fig. 4). We
also trained TD3 agents with default hyperparameters and Gaussian action noise
with σ = 1. Since their results were inferior to PPO and SAC (only some TD3
combinations resulted in a balance above 10; most combinations have a balance
B ≈ 0 and rounds r < 10), we do not show these results.

The action wrappers serve a dual purpose: not only do they reduce the num-
ber of available actions, they also ensure only valid actions can be performed.
To investigate which effect is predominant, all PPO and SAC agents were also
trained using a modified Box action wrapper. This UnclippedBox action wrapper

12 R. C. Engelhardt et al.

10 15 20 25 30
rounds r

0

5

10

15

20

25

30

35

ba
la

nc
e

B

Rc = 0.50

10 15 20 25 30
rounds r

Rc = 0.75

10 15 20 25 30
rounds r

Rc = 1.00
PPO Average last 1000 episodes Reward: PerRound

Wrappers
observation
none
box
simple

action
none
box
simple

Fig. 5. Effect of different values of constant per-round reward Rc on PPO agents

93%
7%

observation: None
action: Box

reward: Heuristic (s = 1.0)

Maximum number of rounds
Quality of Life too high

34%

66%

observation: None
action: Simple

reward: PerRound (Rc = 1.0)

Minimum amount of actionpoints
Population too high

12%

11%

77%

observation: Simple
action: Box

reward: PerRound (Rc = 0.75)

Maximum number of actionpoints
Politics too high
Quality of Life too high

Fig. 6. Reasons for episodes’ termination of the last 1 000 evaluation episodes during
training. Shown is a small subset of PPO agents from the set of about 140 pie charts.

still represents the discrete action space as a continuous box space, but it does
not ensure that the intended distribution of action points is possible (i.e., does
not exceed the number of available action points). Figures 3 and 4 show how
the additional task of learning valid distributions of action points negates any
success in case of a sparse reward. With dense rewards, UnclippedBox leads to
somewhat reduced performance but it is noteworthy that the agents learn to
perform valid actions.

Investigating the agent’s gameplay further, a variety of different reasons for
episode’s termination emerge, many of which are “positive” in the sense that
they leave the range of possible values in a direction that would commonly be
considered desirable (e.g., “Quality of Life too high”). For three agents taken
as examples, Fig. 6 shows statistics of reasons for termination of the last 1 000
evaluation episodes during training8.

8 The full set of pie charts is available in the Github repository.

https://github.com/WolfgangKonen/oekolopoly_v1

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 13

10 15 20 25 30
rounds r

0

5

10

15

20

25

30

35

ba
la

nc
e

B

s = 0.01

10 15 20 25 30
rounds r

s = 0.1

10 15 20 25 30
rounds r

s = 1.0
PPO Average last 1000 episodes Reward: Heuristic

Wrappers
observation
none
box
simple

action
none
box
simple

Fig. 7. Effect of different scaling of Heuristic reward on PPO agents.

Fig. 8. Correlation of rounds r and balance B. Blue dots mark every pair (r,B) encoun-
tered by the PPO agent during training for the combination Box observation wrapper,
Box action wrapper, reward Balance. Orange dots mark the average for every number
of rounds.

6.3 Reward Shaping

The importance of a suitable reward function is well-known among RL practi-
tioners. This holds true also in the case of Ökolopoly. Not only does the reward
function have arguably the biggest effect on overall performance (see Fig. 3),
but also do the parameters of the single reward function itself play an important
role. In Fig. 5 we show the results of comparing three different values of the
constant per-round reward Rc. By changing this value we can tune the agent
towards surviving more rounds r (in case of higher values Rc) on one side or
towards prioritizing a higher balance B on the other.
Similarly, Fig. 7 shows the results for different values of the scaling factor s of
the Heuristic reward.

6.4 Optimal Balance and Rounds

Looking at Fig. 5, one might ask why in the case Rc = 0.5 (where the incentive
is more on balance) the high balance results are not possible in combination

14 R. C. Engelhardt et al.

with a higher number of rounds. The average episode length does not exceed 17
rounds. A similar observation is made in the ‘Reward: Balance’ plots of Fig. 3
and Fig. 4.

The correlation is visualized in Fig. 8: Firstly, the balance B (for rounds
r < 10 only hypothetical) shows a local optimum roughly at r ≈ 15. Secondly, the
number of episodes with r ∈ [10, 15] is about 2 000 times higher than the number
of episodes with r ∈ [20, 25], meaning that the average in Fig. 5, Rc = 0.5, is
likely to be below r ≈ 15. The agent has learned that it is not detrimental to
stop an episode after 10 − 15 rounds, because a longer lasting episode would
not improve (or even diminish) B. This is why the agent often stops quite early
(after surpassing the required 10 rounds) unless a special incentive (e.g., Rc = 1)
tells it otherwise.

7 Conclusion

In this article we described how we made the cybernetic board game Ökolopoly
accessible as an RL environment. Various ways of simplifying the large observa-
tion and action space as well as different reward functions have been investigated.
We were able to show that in many of our combinations, the DRL agents could
successfully learn how to deal with the rather complex interdependencies of the
game. Our results show that DRL agents can consistently learn to play the game
from self-play (RQ 1). However, at least one of the following conditions have to
be met in order to be successful (RQ 2): (i) an action wrapper that inherently
maps to valid actions (Box or Simple) or (ii) a dense reward function (PerRound
or Heuristic) are applied.

If neither (i) nor (ii) is fulfilled, no learning occurs in this large action space.
We have shown that within the Box action wrapper not the mapping to contin-
uous space but the clipping to valid actions is essential. We got the interesting
result that even in the absence of action wrappers, the agent can learn by self-
play to propose valid actions, given a dense reward structure (RQ 3).

We invite everyone to use our new RL environment Ökolopoly, which is made
available as a benchmark for researchers, to test their methods for handling large
observation and action spaces.

References

1. Bosch, O., Nguyen, N., Sun, D.: Addressing the Critical Need for ’New Ways of
Thinking’ in Managing Complex Issues in a Socially Responsible Way. Business
Systems Review 2, 48–70 (2013)

2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym (2016). https://doi.org/10.48550/arXiv.1606.01540

3. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M.,
Leaver-Fay, A., Baker, D., Popović, Z., players, F.: Predicting protein struc-
tures with a multiplayer online game. Nature 466(7307), 756–760 (2010).
https://doi.org/10.1038/nature09304

https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.1038/nature09304

Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning 15

4. Dobrovsky, A., Borghoff, U.M., Hofmann, M.: Improving adaptive gameplay in
serious games through interactive deep reinforcement learning. Cognitive infocom-
munications, theory and applications pp. 411–432 (2019)

5. Dobrovsky, A., Wilczak, C.W., et al.: Deep reinforcement learning in serious games:
Analysis and design of deep neural network architectures. In: Moreno-Díaz, R.,
et al. (eds.) Computer Aided Systems Theory – EUROCAST 2017. pp. 314–321
(2018). https://doi.org/10.1007/978-3-319-74727-9_37

6. Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J.,
Mann, T., Weber, T., Degris, T., Coppin, B.: Deep reinforcement learning in large
discrete action spaces (2015). https://doi.org/10.48550/arXiv.1512.07679

7. Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C.,
Gowal, S., Hester, T.: Challenges of real-world reinforcement learning: defini-
tions, benchmarks and analysis. Machine Learning 110(9), 2419–2468 (2021).
https://doi.org/10.1007/s10994-021-05961-4

8. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: Dy, J., Krause, A. (eds.) Proc. 35th Int. Conf. on Machine
Learning, PMLR. vol. 80, pp. 1587–1596 (2018)

9. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Dy, J.,
Krause, A. (eds.) Proc. 35th Int. Conf. on Machine Learning, PMLR. vol. 80, pp.
1861–1870 (2018)

10. Hornak, D., Jascur, M., Ferencik, N., Bundzel, M.: Proof of concept: Using rein-
forcement learning agent as an adversary in serious games. In: 2019 IEEE Interna-
tional Work Conference on Bioinspired Intelligence. pp. 111–116 (2019)

11. Huang, S., Ontañón, S.: A closer look at invalid action masking in policy gra-
dient algorithms. The International FLAIRS Conference Proceedings 35 (2022).
https://doi.org/10.32473/flairs.v35i.130584

12. Nguyen, N.C., Bosch, O.J.H.: The art of interconnected thinking: Starting with the
young. Challenges 5(2), 239–259 (2014). https://doi.org/10.3390/challe5020239

13. Pazis, J., Parr, R.: Generalized value functions for large action sets. In: Proceed-
ings of the 28th International Conference on International Conference on Machine
Learning. pp. 1185–1192 (2011)

14. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021)

15. Raycheva, R.: Erstellung eines Custom Environments in OpenAI Gym für das Spiel
Ökolopoly. Tech. rep., TH Köln (2021)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017). https://doi.org/10.48550/arXiv.1707.06347

17. Teixeira, J.d.S., Angeluci, A.C.B., Junior, P.P., Martin, J.G.P.: ‘Let’s play?’ A
systematic review of board games in biology. Journal of Biological Education pp.
1–20 (2022). https://doi.org/10.1080/00219266.2022.2041461

18. Vester, F.: Der blaue Planet in der Krise. Gewerkschaftliche Monatshefte 39(12),
713–773 (1988)

19. Vester, F.: Ökolopoly: das kybernetische Umweltspiel. Studiengruppe für Biologie
und Umwelt (1989)

20. Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D.J., Mannor, S.: Learn what
not to learn: Action elimination with deep reinforcement learning. In: Bengio, S.,
et al. (eds.) Advances in Neural Information Processing Systems. vol. 31 (2018)

https://doi.org/10.1007/978-3-319-74727-9_37
https://doi.org/10.48550/arXiv.1512.07679
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.3390/challe5020239
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1080/00219266.2022.2041461

	Ökolopoly: Case Study on Large Action Spaces in Reinforcement Learning

