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Abstract. Explainable artificial intelligence (XAI) is an increasingly
important research field, fueled by the need for reliability and account-
ability in applications. For reinforcement learning (RL), achieving ex-
plainability is particularly challenging because agent decisions depend
on the context of a trajectory, which makes data temporal and non-i.i.d.
In the field of XAI, Shapley values and SHAP in particular are among
the most widely used techniques. In this work, we investigate how SHAP
performs in explaining RL models, especially in multidimensional action
spaces that other XAI-for-RL methods struggle with. In particular, we
make three contributions: (1) We investigate how design choices of the
SHAP approach affect SHAP accuracy for RL models. We investigate
the size of the so-called background data that is utilized to represent ab-
sent features, as well as the selection method with which the background
data is formed. We find that SHAP for RL requires only modest amounts
of background data and that clustering is preferred over sampling as a
selection method. (2) Additionally, we analyze how SHAP-based feature
importance relates to overall agent performance (return). We find that
while feature importance is often correlated to agent performance, no-
table exceptions occur, especially for environments that are sensitive or
fragile in the sense that small changes in actions may lead to catastrophic
failure. However, since a significant correlation is found in the majority
of the investigated environments, SHAP proves to be a valuable XAI tool
for RL with multidimensional, continuous actions. (3) Illustratively, we
show the time evolution of SHAP values and caution against misinter-
preting sharp changes therein.

Keywords: Reinforcement learning · Explainability · Shapley values ·
SHAP · XAI.
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1 Introduction

The issue of explainability in artificial intelligence (XAI) has been of increasing
importance during the last years and was often cited [1, 2] as one of the main
challenges when applying AI to real-world scenarios, especially in safety-critical
fields. As a consequence, a variety of methods have been developed with the goal
of increasing insights into opaque AI models. One of these methods is the SHAP
framework [3], rooted in mathematical game theory [4].

XAI for reinforcement learning (RL), and in particular SHAP for RL, can
be more challenging than XAI for supervised machine learning (ML). This is
due to the temporal and non-i.i.d. nature of the data in RL, where decisions
depend on the state of the environment. In the context of RL, agents with
multidimensional actions pose a particular challenge for XAI, and this article
examines in particular what contribution SHAP can make to this challenge.

1.1 Shapley Values

Named after Lloyd Shapley, Shapley values give a solution to the problem of
fairly distributing a given payout among the cooperative players of a game [4].
In short, the Shapley value corresponds to a player’s marginal contribution to
the possible coalitions or the expected performance gain when said player joins
a coalition. Given a game with a set N of n = |N | cooperative players and a
function v assigning a value to each coalition, player j’s added contribution to
coalitions S is given by

ϕj =
1

n

∑
S⊆N\{j}

(
n− 1

|S|

)−1

(v(S ∪ {j})− v(S)) (1)

It can be mathematically shown that Shapley values are the only method with
a variety of desirable properties (efficiency, symmetry, dummy, and additivity)
that lead to a payout distribution that can be called “fair” [5]. For the exact com-
putation, 2n−1 values of coalitions containing a specific player must be compared
to 2n−1 values of coalitions without the player, hence the cost is exponential in
the number n of players.

1.2 Shapley Values for ML – SHAP

In the transition from game theory to machine learning, the prediction of an ML
model takes the place of the value function, while the input features take the role
of the single players. For large numbers of features, the exact computation of
Shapley values suffers from combinatorial explosion and is generally not feasible.
The framework SHAP [3] offers a variety of different approximation methods (one
of them being KernelSHAP, which will be explained in more detail in Sect. 4).

The framework has seen a remarkable success, has been expanded with differ-
ent approximation methods optimized for certain ML models as well as visual-
ization tools, and has often been cited as the go-to approach for model-agnostic
explainability of ML models.
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When used to explain ML decisions, the first examples are typically the
explanation of single decisions (think of the often-used example of a denied
bank-loan) or the discovery of general trends in classification examples. When
applied to RL, the prediction of the ML model is the action performed by the
agent in the environment, while the features are the observables accessible to
the agent. The words “features” and “observations” can be used interchangeably;
the terms “prediction” and “action” are also used as synonyms in the following.
In this setting, the SHAP values are the contribution of each feature towards
the model’s prediction, so that the RL agent’s action is the sum of its average
action3 and the SHAP values of all observables. We note in passing, that taking
the RL agent’s action as the value function v in Eq. (1) for the SHAP procedure
is not the only possibility. Alternatively, one could also take the episode return
as a possible value function v. However, since this has higher computational
demands, it was not considered in this work, but left for future work instead.

Compared to supervised ML classification and regression tasks, where the
data can usually be assumed to be i.i.d., RL has structural differences. Given
the interaction between agent and environment, RL data are usually non-i.i.d.:
Decisions depend on the state of the environment and the overall success is
determined by a sequence of profitable actions. In addition, complex environ-
ments require the agent to perform multidimensional actions at each timestep.
As a result, each action dimension has its own set of SHAP values. Aggregating
this multitude of values and ensuring the meaningfulness of SHAP for RL is a
non-trivial task.

1.3 Contributions

The main contributions of this work are summarized as follows: (1) We empir-
ically test the effect of the quantity of background data4 and the method of
background data selection on the computed SHAP values, and relate the results
to the computation time. This evaluates the robustness of the approximation
method and might help practitioners to better find the appropriate compromise
between precision and computation time. (2) We expand the known definition of
SHAP feature importance to the case of multidimensional actions and evaluate
the computed feature importance on the RL task. (3) We interpret the time
evolution of SHAP values throughout the episode in the context of the agent’s
actions.

In Sect. 2, we discuss the related work on SHAP for RL. Section 3 describes
the RL environments we use as benchmark. In the three follow-up Sect. 4, 5, 6, we
describe our experiments and discuss results regarding the three main objectives
given above. Finally, we draw a conclusion and hint at possible future work in
Sect. 7.
3 When using KernelSHAP, the average action is the average model prediction on the

background data (see Sect. 4.1)
4 The background data are used by KernelSHAP to fill in data for features that are

absent in the currently investigated feature coalition. This will be explained in more
detail in Sect. 4.1.
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2 Related Work

With the success of AI and ML, which was often made possible with the help
of complex deep learning models, the last years have seen a growing interest in
XAI [6–9]. Important explanation techniques for ML in general (mostly classi-
fication and regression) are post-hoc explanations, like SHAP [3], LIME [10],
or LRP [11], and self-explainable models like linear models or decision trees
(DT) [12].

In the following, we focus on explainability for RL, which is often more chal-
lenging than for supervised ML classification or regression. This is due to the
reasons already mentioned in Sect. 1.2 (multiple steps contribute to overall re-
turn; multiple actions or even multiple agents make it harder to find out which
of the model outputs is responsible for reaching a high performance). Explain-
ability in RL has been the topic of several reviews [2, 13, 14]. According to the
review of Hickling et al. [13], the most common XAI approaches in RL are similar
to the general ML case: either DTs as explainable surrogates for more complex
DRL models [15–17] or post-hoc explanations via SHAP [5,18–20] (or LIME or
LRP).

DTs are often used to mimic simple (but not trivial) DRL agents (e.g. less
than 10 inputs, single-dimensional action space) as was shown in [15–17,21,22].
If DTs are successful, they deliver explanations through human-understandable
rules. However, for more complex environments (e.g. the MuJoCo environments
studied in this work with 8 − 27 observables and multidimensional, continuous
actions), it can be difficult or impossible to find simple DTs and large DTs are
no longer interpretable.

In those cases, many works resort to SHAP-based post-hoc explanations [13],
as they can be aggregated across multiple actions, or evaluated for many input
dimensions or for multi-agent RL (MARL). Heuillet et al. [5] use SHAP for
MARL environments where the contribution of a specific agent to the global re-
ward is measured via Shapley values. Their task is not to explain the actions of a
single DRL agent, but to evaluate each agent’s contribution. Another interesting
approach using SHAP in conjuction with RL is the one described by Sequeira
and Gervasio [23]. To the goal of gaining more insights into trained DRL agents,
the authors compute different human-inspired “interstingness dimensions”, e.g.,
“confidence” and “riskiness” from interaction data obtained by evaluating RL
agents in their respective environment for multiple episodes. Among other anal-
yses, they use the SHAP framework to investigate how features influence the
different “interestingness dimensions” on a global level or to better understand
local sudden changes throughout the episodes. Rizzo et al. [19] use SHAP to
explain a single agent for a traffic light control system. SHAP values indicate
which inputs are important in certain states. This is similar to our approach, but
they use SHAP only for a single-dimensional action space and for illustrating
the decisions made at certain timesteps. Zhang et al. [20] use RL and SHAP for
power system control. Liessner et al. [18] study a simple car control environment
where an agent follows a street lane and has to obey certain speed limits. They
present a so called RL-SHAP diagram where the agent’s inputs are placed on
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Fig. 1. Renderings of the benchmark environments

the y-axes, color-coded by the SHAP values, while the x-axis shows the distance
traveled. This method provides great visual understanding for this simple prob-
lem, but is harder to apply to more complex problems with multidimensional
action spaces.

3 Benchmark Environments

We conduct our experiments using a variety of RL environments from the Gym-
nasium [24] suite (see Table 1 and Fig. 1), in particular LunarLanderContinuous
and a set of MuJoCo tasks. In LunarLanderContinuous the goal is to operate
the main and lateral engines of the lander in order to safely land in a predefined
area of the lunar surface. The MuJoCo tasks all have the goal of fast directed
locomotion of simulated robots in various different shapes and therefore with
different numbers of joints and actuators. All these environments share proper-
ties relevant for our investigations: the observations are multidimensional and
continuous, as are the actions (corresponding to thrust of the engines in case of
LunarLanderContinuous or torque applied to the joints of MuJoCo robots).

For the training of DRL agents, we rely on Stable Baselines3 [25]. Agents are
trained using either TD3 [26] or TQC [27] in order to achieve state-of-the-art (as
reported on https://huggingface.co/sb3) high-performance and low-fluctuation
results. We used the hyperparameters from RL Baselines3 Zoo [28].

4 Experiment 1: Dependency of KernelSHAP on
Background Data

The research question of this experiment is whether the size and selection pro-
cedure (sampling or clustering) of the background dataset are critical for the

https://huggingface.co/sb3
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Table 1. Environments used as benchmark

observation action DRL R: Performance
Environment dim. dim. agent in 100 episodes
LunarLanderCont.-v2 8 2 TQC 278.54 ± 29.29
Swimmer-v4 8 2 TD3 353.50 ± 2.41
Hopper-v4 11 3 TQC 3659.89 ± 6.30
Walker2d-v4 17 6 TD3 4470.01 ± 13.47
HalfCheetah-v4 17 6 TQC 12 098.48±107.42
Ant-v4 27 8 TD3 5966.68±809.69

accuracy of the SHAP values, especially in high-dimensional environments. To
clarify the meaning of “background data”, we briefly summarize the KernelSHAP
approximation method.

4.1 KernelSHAP and Background Data

The KernelSHAP method approximates the features’ impact by observing the
output of the model when switching a feature from “absent” to “present”. To
compute the SHAP values of an observation x in J-dimensional space, first a
number M of coalitions are sampled. Each coalition is represented by a vector z ∈
{0, 1}J , where 0 means that the feature j is absent and 1 that the feature is part
of the coalition. A transformation function h translates these encodings z to valid
inputs for the model: while present features keep their actual value h(zj) = xj ,
absent features are replaced by values drawn randomly from the background
data, h(zj) ≺ Bj . This is the point at which the background data B come
into play. They can be understood as matrix with J columns (features) and Nb

rows. Nb is the size of the background dataset. B is constructed once prior to
all KernelSHAP computations, by either sampling or clustering from a larger
reservoir (see Sect. 4.2 for details). In the last step, a linear model

g(z) = ϕ0 +
J∑

j=1

ϕjzj (2)

is fitted to minimize the squared differences (f(h(z))− g(z))
2 for all M coali-

tions, where f(h(z)) is the model output for a given input h(z). The squared
differences are weighted by the SHAP kernel (Theorem 2 in [3]), which assigns
higher weights to coalitions with few and to coalitions with many present fea-
tures. The coefficients of the linear model g are the SHAP values ϕj . As a
consequence, the computed SHAP values are not only a function of the model,
but also of the background data (as well as stochasticity).

It is recommended to reduce the size of large background datasets by sam-
pling or clustering. To empirically study the impact of the background dataset’s
size and the effect of sampling or clustering, we propose the following experiment.
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4.2 Experimental Setup

First, the background dataset is filled with samples from 10 episodes of the
RL agent, leading to 10 000 samples for the MuJoCo environments and about
1700 for LunarLanderContinuous, where each sample is a point in the observa-
tion space. This dataset is then reduced to size Nb either by sampling or using
the KMeans algorithm to produce Nb cluster centers. Based on these Nb back-
ground data, we now compute SHAP values for a fixed set of Ne = 1000 samples
drawn from data logged during a number of different evaluation episodes. The
consistency of SHAP values computed with background data of various sizes is
qualitatively visualized by the dependency plots in Fig. 2 and quantitatively eval-
uated in Fig. 3 by computing the root mean squared error (RMSE), measuring
the difference between SHAP values with Nb ≤ 100 background data and ap-
proximately “true” SHAP values based on a much larger dataset with Nb = 1000
background data as reference. The SHAP values corresponding to each action
dimension are normalized by the standard deviation of the actions σa to make
them comparable across the action dimensions. The RMSE is then computed
across all features j and actions a.

This approach is tested on the variety of simulated control tasks with multi-
dimensional, continuous observation and action spaces from Sect. 3. We run tests
with increasing number of background data points Nb ∈ {1, 5, 10, 20, 50, 100, 1000}
and two different selection methods (sampling or KMeans-clustering). For better
statistics each run is repeated five times.

4.3 Robustness of KernelSHAP

Our results show a remarkable robustness of KernelSHAP. Visually inspecting
the resulting dependency plots (Fig. 2), we note that only the values based on 1
background sample stand out. Differences between other distributions are often
hardly noticeable to the naked eye. The RMSE of the respective set of SHAP
values w.r.t. the one based on the largest set of background data (Nb = 1000)
gives a quantitative measurement. The linear arrangement of measurements in
the log-log-plots of Fig. 3 suggests a power-law-relationship between the num-
ber of background samples and the error. The parameters of this law seem to
be rather consistent across different RL-tasks. This evaluation also shows, that
clustering leads to noticeable smaller errors than sampling. The results show
little variance across multiple repetitions, as indicated by the very small error
bars, and the qualitative results are consistent across all investigated benchmark
tasks.

For all environments, when using selection method sampling, the power-law
relationship follows a 1/

√
Nb power-law remarkably well. This can be under-

stood from the law of large numbers: If a measurement with i.i.d. fluctuations
is repeated N times, the error in all averages shrinks by a factor of 1/

√
N . The

number Nb of background data puts an upper bound on the number of i.i.d.
samples. With clustering we get a higher power law because the cluster centers
are better representatives of the underlying data distribution.
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Fig. 2. SHAP dependency plots of 5 out of the 8 features of Swimmer, computed using
differently sized background data (encoded by color) obtained by sampling. Colored
dotted lines signify the average SHAP value of each feature. The histograms on the
abscissa show the features’ distribution.
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Fig. 3. RMSE of SHAP values computed with different numbers Nb of background
samples (using SHAP computed on the largest sample Nb = 1000 as reference) and
two dataset reduction methods: sampling (dash-dotted blue line) and clustering (dashed
orange line). The error bars mark ±1σ of five repetitions. The dotted horizontal line
marks the threshold described in the main text.



10 R. C. Engelhardt et al.

The horizontal line in each plot gives an idea of the upper tolerable limit for
the error. As a measure, we here use the standard deviation of the SHAP values,
normalized by σa. If the error is substantially smaller than the horizontal line,
the given number Nb of background data should be sufficient. Figure 3 shows
that this is the case for Nb ≥ 5.

The rapidly decreasing gains in precision when adding more samples to the
background dataset is especially relevant when put in context of increased com-
putational costs. Figure 4 shows the process time for computing SHAP values
of Ne = 1000 samples based on differently sized background data. When search-
ing for a trade-off between precision and computation time, this increase in
compute should carefully be taken into consideration, especially in conjunction
with the rapidly decreasing error. Since the overhead of KMeans clustering is
negligible compared to the computational costs of SHAP value approximation
(tens of seconds vs hours), this method of background data reduction is generally
preferable, given the smaller errors.

In general, the outcome of this experiment is quite surprising: Even for the
environments with many observation and action dimensions (meaning that the
estimation of marginal distributions for the “missing” features requires high-
dimensional integrals), a relatively small number of samples or cluster centers is
sufficient to reach reasonable accuracy.

5 Experiment 2: Empirical Evaluation of SHAP-based
Feature Importance

SHAP is a method rooted in game-theory we use for attributing a certain action
difference to the single elements of the observation vector (features). The action
difference is the difference between the actual action of the agent, given an
observation, and the average action. Based on this attribution, the importance
of the single features can be defined. In the following experiment, we investigate
how the computed global feature importance correlates to the feature importance
in the RL task.

5.1 Generalized Feature Importance

Although the SHAP value for feature j and action a measures how this specific
feature influences this specific action, it is not a priori clear whether the impor-
tance for a single action implies a similar importance for the RL performance of
the agent (overall return from a RL episode). Molnar [7, Chap. 9.6.5] suggests
establishing a connection between SHAP values for a dataset with N instances
and feature importance as

FIj,a =
1

N

N∑
n=1

|ϕ(n)
j,a |, (3)
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Fig. 4. Computational costs (µ±1σ across five repetitions) of KernelSHAP computing
SHAP values of Ne = 1000 samples, based on differently sized background dataset Nb

and the computational overhead of clustering with Nb cluster centers. Note that the
costs of KernelSHAP shown on the left y-axis are measured in hours, while the costs
for clustering shown on the right y-axis are measured in seconds. Thus, clustering costs
are generally negligible. The costs for sampling instead of clustering are in the order
of magnitude 10−4 s to 10−3 s and therefore completely negligible.
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given by averaging the absolute SHAP values |ϕj | of a feature j over the in-
stances. Since in more complex RL tasks the agent has to perform multidimen-
sional actions, the definition of a global feature importance is not obvious. The
importance of a single feature can be very different for different elements of the
action vector, as can be seen for example in Fig. 2, where the feature vytip

has
the biggest impact on the first dimension of the action vector, while having only
a marginal effect on the second one (rather flat distribution in the SHAP depen-
dency plot). In addition, the different elements ai of the action vector a ∈ RA can
have very different ranges. This would have a strong impact on the associated
SHAP values according to their definition based on the difference between the
actual action and average action. To mitigate these problems, normalizing the
feature importances for each dimension by the standard deviation of the actions
along the specific dimension and averaging them seems a natural extension of
Eq. (3) to multidimensional actions. We therefore generalize feature importance
to the case of multidimensional actions by defining

FIj =
1

A

A∑
i=1

FIj,ai

σ(ai)
(4)

for a task with A action dimensions. Is the feature importance FIj correlated to
the change in agent performance (cumulative reward) when feature j is removed
from the observations? This research question is investigated in the following
experiment.

5.2 Experimental Setup

We assess the research question, using the six different RL tasks described in
Table 1, with the following procedure:

1. The agents are evaluated in their respective environment for 10 episodes.
2. A KernelSHAP explainer is set up using Nb = 1000 background data sam-

ples.
3. SHAP values are computed for Ne = 1000 samples drawn randomly from 10

different evaluation episodes.
4. The feature importances FIj are computed according to Eq (4).
5. The agent is evaluated again for 100 episodes, this time being “blinded”

w.r.t. observation j. Observation j is substituted by its average value of the
evaluation samples from step 3. The resulting average return of the agent
blinded w.r.t. observation j is denoted by R\j .

5.3 Performance Drop vs. Feature Importance

Plotting R\j , the performance of the agent blinded w.r.t. observable j, against
feature importance FIj in Fig. 5 shows the general correlation between the two
measurements. Table 2 contains the results in succinct form.
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Table 2. Summary of the correlation between SHAP feature importance and perfor-
mance drop of partially-blinded agent

Environment Pearson r R2

LunarLanderCont.-v2 −0.829 0.687
Swimmer-v4 −0.909 0.826
Hopper-v4 −0.0364 0.001 33
Walker2d-v4 −0.687 0.472
HalfCheetah-v4 −0.530 0.281
Ant-v4 −0.557 0.310

The results show, with the notable exception of Hopper, a correlation be-
tween a feature’s importance in predicting an action and the agent’s performance
when that feature is absent. While this correlation is especially prominent in the
“simpler” environments Swimmer and LunarLanderContinuous, more complex
environments show a weaker correlation: a general trend is still visible, but there
are many examples where features with lower FI lead to stronger decreases in
performance and vice versa. The results suggest interpreting the FI as computed
by SHAP with caution.

The environment Hopper stands out, as apparently every single feature is
crucial to the agent’s success. Omitting any feature leads to almost the same
drastic decrease in performance. The feature importance therefore has almost
no correlation with R\j . To investigate whether the crucial role of every single
observable is a property of this trained agent or an intrinsic property of the
environment, training was repeated with partially-blinded TQC agents. During
training and evaluation of each of these agents, one observable is set to zero.
Since such experiments require training multiple agents ex novo, and are there-
fore rather time-consuming, we performed this experiment only for the outstand-
ing case of Hopper. Figure 6 shows the relation between FIj , R\j , and R

(retrain)

\j ,
the performance of agents newly trained without the specific feature j. When
training new agents partially blinded ab initio w.r.t. one observable, the per-
formance increases notably. While for no feature the performance reaches the
fully-observable threshold, in most cases (except for θthigh, θtorso, and ωfoot) the
performance lies at least around 3000. The feature importance of the agent,
trained with all observables accessible, cannot be expected to correlate with the
performance of newly-trained, partially-blinded agents.

By visually inspecting episode renderings5 corresponding to low feature im-
portance and low performance for the partially-blinded agent (points in the lower
left part of the plots in Fig. 5), one common behavior emerges: These episodes
are always characterized by catastrophic failure of the agent falling over (e.g.,
the ant falling on its back) or by premature termination due to reaching a state

5 The renderings of the five best and five worst episodes can be accessed on the Github
repository https://github.com/RaphaelEngelhardt/xai_shap4rl.

https://github.com/RaphaelEngelhardt/xai_shap4rl
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defined by the environment as “unhealthy” (one or more observables leaving a
predefined range). The hidden observables are apparently crucial for keeping the
simulated robot in a safe state, even if they have been assigned a relatively low
feature importance.

It should also be noted, that the process of omitting a feature can usually
not be applied iteratively: Omitting several of the features together, that hid-
den individually have little impact on performance, often leads to a complete
breakdown of performance.

It is also worth noting that omitting some features has a greater impact on
the consistency of the agent’s performance than others. This is most prominent
in the case of Swimmer, where omitting a feature generally leads to a very
consistent performance. If the agent is blinded w.r.t. feature θtip instead, it
can play either very successful or very unsuccessful episodes. This is shown in
Fig. 7 where the distributions of returns are represented by violin plots and point
clouds. Omitting feature θtip leads to a strongly bimodal distribution. This can
be explained with a peculiarity of the Swimmer environment: For coordinated
movement, the rear rotor has to make a movement to the opposite side of the
front tip. In absence of the front tip angle θtip, the agent still observes the front
tip’s angular velocity ωtip, which assumes the value 0 at either side, but the agent
has to guess which side it is. If it guesses correctly, it receives a good return,
otherwise the movement comes to a complete standstill.6

6 Interpretation of SHAP Time Dependency in RL

An advantage of using SHAP as XAI method in RL is that SHAP assigns a
contribution of each feature to each action dimension at each timestep of an
episode. This provides a rich dataset which can be used to gain insights. As
an example, Fig. 8 shows the time dependencies of the SHAP values for each
feature and action dimension (the two rotors in case of Swimmer). This has some
similarity to the RL-SHAP diagram introduced in [18].

We see for example that vytip
has a large contribution to rotor 0, but not to

rotor 1. Likewise, θ2rot. has a large contribution to rotor 1, but a much smaller
contribution to rotor 0. It might be tempting to relate steep falls or rises in
the SHAP value (e.g. for vytip

around timesteps 10 and 25, respectively) to
drastic changes in importance, that is, vytip

initially appears to have a major
positive effect on rotor 0 up to timestep 10 and thereafter a major negative
effect. However, with this example, we would like to point out that such an
interpretation is wrong. A SHAP value has always to be seen in connection with
the ML prediction that it models, in our case the variable action 0 shown in
the first row and column of Fig. 8. If this target value exhibits a jump, the
overall SHAP values will also show the same jump. As a consequence, a high-
contributing SHAP value needs to have a similar jump. The right interpretation
6 Example videos of the best and the worst Swimmer episodes are accessible on

the repository https://github.com/RaphaelEngelhardt/xai_shap4rl as supplemen-
tary material.

https://github.com/RaphaelEngelhardt/xai_shap4rl
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is: Whatever the target value of action 0 is, feature vytip
has a large contribution

to it of the same sign.

7 Conclusion and Outlook

This work analyzes the reliability of SHAP values as a XAI method for complex
RL environments with multidimensional actions. A positive aspect of SHAP is
its applicability as XAI method also in the case of multidimensional actions,
whereas interpretable DTs are hard or impossible to build in such cases.

We have examined the SHAP accuracy as a function of background data size
and found it to be surprisingly robust even if only a small size is used in order to
reduce computational costs. We found KMeans clustering to be the preferable
background data selection method.

Furthermore, we have generalized the SHAP-based feature importance to RL
of multidimensional actions. While the SHAP value measures the contribution of
a feature to a specific action, the feature importance expresses the importance of
the feature in general, regardless of the action dimension. Given this generalized
feature importance, we have investigated how well this importance is correlated
to the agent’s performance (the return). We showed that often there is a clear
correlation, while also exceptions exist, most notably in the case of Hopper, where
every left-out feature leads to drastic performance breakdowns, irrespective of
whether it had high or low feature importance.

Currently, we can only point out these two distinctive cases; finding the rea-
son for these distinct behaviors is left for future research. A possible reason might
be SHAP’s inability to handle interactions between features. Inspecting the cases
with surprising breakdown, we can speculate that this happens more likely for
unstable environments with a higher sudden-failure probability (Hopper, can fall
down, irreversible) than for more stable environments (Swimmer, cannot fall).

We believe that these findings make an important contribution to the reli-
ability of SHAP-based explainability in RL. The results presented in this work
also contain useful insights for XAI practitioners in RL. In the future, we plan to
investigate the reasons why SHAP-based importance sometimes does not corre-
late with agent performance. Furthermore, we plan to examine alternative value
functions for SHAP, e.g. episode returns as outlined in Sect. 1.2.
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