
Final Adaptation Reinforcement Learning
for N-Player Games ?

Wolfgang Konen[0000−0002−1343−4209] and
Samineh Bagheri[0000−0003−2488−8000]

Computer Science Institute, TH Köln, University of Applied Sciences, Germany
{wolfgang.konen,samineh.bagheri}@th-koeln.de

Abstract. This paper covers n-tuple-based reinforcement learning (RL)
algorithms for games. We present new algorithms for TD-, SARSA- and
Q-learning which work seamlessly on various games with arbitrary num-
ber of players. This is achieved by taking a player-centered view where
each player propagates his/her rewards back to previous rounds. We
add a new element called Final Adaptation RL (FARL) to all these al-
gorithms. Our main contribution is that FARL is a vitally important
ingredient to achieve success with the player-centered view in various
games. We report results on seven board games with 1, 2 and 3 play-
ers, including Othello, ConnectFour and Hex. In most cases it is found
that FARL is important to learn a near-perfect playing strategy. All
algorithms are available in the GBG framework on GitHub.

Keywords: Reinforcement learning · TD-learning · SARSA · game learn-
ing · N-player games · n-tuples

1 Introduction

1.1 Motivation

It is desirable to have a better understanding of the principles how computers
can learn strategic decision making. Games are an interesting test bed and rein-
forcement learning (RL) is a general paradigm for strategic decision making. It
is however not easy to devise algorithms which work seamlessly on a large vari-
ety of games (different rules, goals and game boards, different number of players
and so on). It is the hope that finding such algorithms and understanding which
elements in them are important helps to better understand the principles of
learning and strategic decision making.

Learning how to play games with neural-network-based RL agents can be seen
as a complex optimization task. It is the goal to find the right weights such that
the neural network outputs the optimal policy for all possible game states or a
near-optimal policy that minimizes the expected error. The state space in board
games is usually discrete and in most cases too large to be searched exhaustively.

? This work is an extended version of a paper submitted to BIOMA’2020, Bruxelles.

2 W. Konen and S. Bagheri

These aspects pose challenges to the optimizer which has to generalize well to
unseen states and has to avoid overfitting.

In this paper we describe in detail a new class of n-tuple-based RL algorithms
(TD-, SARSA- and Q-learning). N-tuples were introduced by Lucas [12] to the
field of game learning. These new learning algorithms extend the work described
in [1,8,18] and serve the purpose to be usable for a large variety of games. More
specifically we deal here with discrete-time, discrete-action, one-player-at-a-time
games. This includes board games and card games with N = 1, 2, . . . players.
Games may be deterministic or nondeterministic.

N-tuple networks are shown to work well in a variety of games, (e.g. in Con-
nectFour [1,18], Othello [12], EinStein würfelt nicht [3], 2048 [17], SZ-Tetris [7]
etc.) but the algorithms described here are not tied to them. Any other function
approximation network (deep neural network or other) could be used as well.

All algorithms presented here are implemented in the General Board Game
(GBG) learning and playing framework [9,10] and are applied to several games.
The variety of games makes the RL algorithms a bit more complex than the
basic RL algorithms. This paper describes the algorithm as simple as possible,
yet as detailed as necessary to be precise and to follow the implementation in
GBG’s source code, which is available on GitHub1.

A work related to GBG [9,10] is the general game systems Ludii [13]. Ludii is
an efficient general game system based on ludeme library implemented in Java,
allowing to play as well as to generate a large variety of strategy games. Currently
all AI agents implemented in Ludii are tree-based agents (MCTS variants or
Alpha-Beta). GBG on the other hand offers the possibility to train RL-based
algorithms on several games.

The main contributions of this paper are as follows: (i) It presents a unify-
ing view for RL algorithms applicable to different games with different number
of players; (ii) it demonstrates that a new element, named Final Adaptation
RL (FARL), is vital for having success with this new unifying view; (iii) it in-
corporates several other elements (afterstates, n-tuples, eligibility with horizon,
temporal coherence) that are useful for all games. To the best of our knowledge,
this is the first time that these elements are brought together in a comprehen-
sive form for game-learning algorithms with arbitrary number N of players. In
addition, we point out and demonstrate that SARSA- and Q-learning have some
disadvantages in game learning as compared to TD-learning.

1.2 Algorithm Overview

The most important task of a game-playing agent is to propose, given a game
state st, a good next action at from the set of available actions in st. TD-
learning uses the value function V (st) which is the expected sum of future re-
wards when being in state st. Similarly, Q- and SARSA-learning (State-Action-
Reward-State-Action) use the Q-function Q(st, at) which is the expected sum of

1 https://github.com/WolfgangKonen/GBG

https://github.com/WolfgangKonen/GBG

Final Adaptation Reinforcement Learning 3

future rewards when taking action at in state st. The similarities and differences
between these variants are well explained in [14,16].

It is the task of the agents to learn the value function V (s) (TD) or the
Q-function Q(s, a) (SARSA, Q) from experience (interaction with the envi-
ronment). In order to do so, they usually perform multiple self-play training
episodes, until a certain training budget is exhausted or a certain game-playing
strength is reached.

The nomenclature and algorithmic description follows as closely as possible
the descriptions given in [6,17]. But these algorithms are for the special case of
the 1-player game 2048. Since we want to use the TD-n-tuple algorithm for a
broader class of games, we present in this paper a unified TD-update scheme
inspired by [14] which works for 1-, 2-, . . ., N -player games.

Our new RL-algorithm is partly inspired by [6,14] and partly from our own
experience with RL-n-tuple training. The key elements of the new RL-logic – as
opposed to our previous RL-algorithms [1,8] – are:

– New afterstate logic [6], see Sec. 2.2.
– Generalization to N -player games with arbitrary N [14], see Sec. 2.4.
– Final adaptation RL (FARL) for all players, see Sec. 2.7.
– Eligibility method with horizon based on [6], see Sec. 2.3.

The following key elements are also part of our algorithms, but only briefly
explained in the appendix of this technical report

– Weight-individual learning rates via temporal coherence learning (TCL) [1,2],
see Appendix A.5.

– Faster learning through symmetries [12].
– Modified n-tuple update rule with global learning rate scaling factor. see

Appendix A.3.
– Inhibition of multiple changes of the same weight in one update step, see

Appendix A.3 and A.4.

This technical report extends the BIOMA’2020 paper insofar that it covers
SARSA as well, that it covers the aforementioned algorithmic details in Ap-
pendix A.3–A.5, and that it has in Appendix A.6 all the parameter settings for
the experiments shown in Tab. 1.

2 Algorithms and Methods

2.1 N-Tuple Systems

N-tuple systems coupled with TD were first applied to game learning by Lucas
in 2008 [12], although n-tuples were introduced already in 1959 for character
recognition purposes. The remarkable success of n-tuples in learning to play
Othello [12] motivated other authors to benefit from this approach for a number
of other games. The main goal of n-tuple systems is to map a highly non-linear
function in a low dimensional space to a high dimensional space where it is

4 W. Konen and S. Bagheri

easier to separate ’good’ and ’bad’ regions. This can be compared to kernel trick
in SVM. An n-tuple is defined as a sequence of n cells of the board. Each cell
can have m values representing the possible states of that cell. Therefore, every
n-tuple will have a (possibly large) look-up table indexed in form of an n-digit
number in base m. An n-tuple system contains multiple n-tuples.

2.2 Afterstate Logic

For nondeterministic games, Jaskowski et al. [6,17] describe a clever mechanism
to reduce the complexity of the value function V (s).

Fig. 1. For nondeterministic games it is better to split a state transition from s to s′′

in a deterministic part, resulting in afterstate s′, and a random part resulting in next
state s′′ (from [17]).

Consider a game like 2048 (Fig. 1): An exemplary action is to move all tiles
to the right, this will cause the environment to merge adjacent same-value tiles
into one single tile twice as big. This is the deterministic part of the action and
the resulting state is called the afterstate s′. The second part of the action
move-right is that the environment adds a random tile 2 or 4 to one of the
empty tiles. This results in the next state s′′.

The naive approach for learning the value function would be to observe the
next state s′′ and learn V (s′′). But this has the burden of increased complexity:
Given a state-action pair (s, a) there is only one afterstate, but 2n possible next
states s′′, where n is the number of empty tiles in afterstate s′.2 This makes it
much harder to learn the value of an action a in state s. And indeed, it is not the
specific value of V (s′′) which is the value of action a, but it is the expectation
value 〈V (s′′)〉 over all possible next states s′′.

2 In the example of Fig. 1 we have n = 9 empty tiles in afterstate s′, thus there are
2n = 18 possible next states s′′. The factor 2 arises because the environment can
place one of the two random tiles 2 or 4 in any empty tile.

Final Adaptation Reinforcement Learning 5

It is much more clever to learn the value V (s′) of an afterstate. This reduces
the complexity by a factor of 2n̄, where n̄ is the average number of empty tiles.
It helps the agent to generalize better in all phases of TD-learning.

For deterministic games there is no random part: afterstate s′ and next state
s′′ are the same. However, afterstates are also beneficial for deterministic games:
For positional games (like TicTacToe, ConnectFour, Hex, . . .) the value of taking
action a in state s depends only on the resulting afterstate s′. Several state-action
pairs might lead to the same afterstate, and it often reduces the complexity of
game learning if we learn the the mapping from afterstates to game values (as
we do in TD-learning, Sec. 2.5). This is opposed to learning the mapping from
state-action pairs to values (as we do in SARSA- and Q-learning, Sec. 2.6).

2.3 Eligibility Method

Instead of Sutton’s eligibility traces [16] we use in this work Jaskowski’s eligibility
method [6]. This method is efficiently computable even in the case of long RL
episodes and it can be made equivalent to eligibility traces in the case of short
episodes. For details the reader is referred to Appendix A.3 or to [6].

2.4 N Players

We want to propose a general TD(λ) n-tuple algorithm which is applicable not
only to 1- and 2-player games but to arbitrary N -player games.

The key difference to the TD-learning variants described in earlier work [1,8]
is that there each state was connected with the next state in the episode. This
required different concepts for TD-learning, depending on whether we had a 1-
or a 2-player game (minimization or maximization). Furthermore it has a severe
problem for N -player games with N > 2: We usually do not know the game
value for all other players in intermediate states, but we would need them for
the algorithms in [1,8]. In contrast, Ree and Wiering [14] describe an approach
where each player has a value function only for his/her states st or state-action-
pairs (st, at). The actions of the opponents are subsumed in the reaction from
the environment. That is, if st is the state for player pt at time t, then st+1 is the
next state of the same player pt on which (s)he has to act. This has the great
advantage that there is no need to translate the value of a state for player pt to
the value for other players – we take always the perspective of the same player
when calculating temporal differences.3

This holds for TD-, SARSA- and Q-learning. In the next section we describe
the application of these ideas to TD-learning, which will result in the (new)
TD-FARL n-tuple algorithm valid for all N -player games.

2.5 TD Learning for N Players

We set up a TD-learning algorithm connecting moves to the last move of the
same player. This is done in Algorithm 1 (TDFromEpisode). Algorithm 1

3 If the player uses a neural network for function approximation it may or may not be
that the opponents also use the same network [14].

6 W. Konen and S. Bagheri

Algorithm 1 TDFromEpisode: Perform one episode of TD-learning, starting
from state s0. States s′t−1, st, s

′
t and actions at are for one specific player pt. rt is

the delta reward for pt when taking action at in state st. At is the set of actions
available in state st.

1: function TDFromEpisode(s0)
2: t← 0
3: repeat
4: Choose for player pt action at ∈ At from st using policy derived from V
5: . e.g. ε-greedy: with probability ε random, with prob. 1− ε using V
6: Take action at and observe reward rt, afterstate s′t and next state s′′.
7: V new(s′t−1) = rt + γV (s′t) . target value for pt’s previous afterstate
8: Use NN to get the current value of previous afterstate: V (s′t−1)
9: Adapt NN by backpropagating error δ = V new(s′t−1)− V (st−1)

10: t← t+ 1
11: st ← s′′

12: until s′′ is terminal

shows the TD-learning algorithm in compact form. It thus makes the general
principle clear. But it has the disadvantage that it obscures one important detail:
What is shown within the while loop is what has to be done by player pt in state
st. After completing this, we do however not move to the next state st+1 of the
same player pt (one round away), but we let the environment act, get a new state
s′′t for the next player, and then this next player does his/her pass through the
while loop.

To make these details more clear, we write the algorithm down in a form
where the pseudocode is closer to the GBG implementation. This is done in
Algorithm 2 (TD-FARL-Episode). Some remarks on Algorithm 2:

– Now the sequence of states s0, s1, ..., sf is really the sequence of consecutive
moves in an episode. The players usually vary in cyclic order, 0, 1, ..., N −
1, 0, 1, ..., but other turn sequences are possible as well.

– In each state the connection to the last afterstate of the same player p is
made via slast[p]. Thus the update step is equivalent to Algorithm 1.

– In contrast to Algorithm 1, this algorithm has the final adaptation step
FARL (function FinalAdaptAgents) included. FARL is covered in more
detail in Sec. 2.7.

Algorithm 2 is simpler and at the same time more general than our previous
TD-algorithms [1,8] for several reasons:

1. Each player has its own value function V and each player seeks actions that
maximize this V . This is because each V has in its targets the rewards from
the perspective of the acting player. So there is no need to set up complicated
cases distinguishing between minimization and maximization as it was [1,8].

2. The same algorithm is viable for arbitrary number of players.

Final Adaptation Reinforcement Learning 7

Algorithm 2 TD-FARL-Episode: Perform one episode of TD-learning, start-
ing from state s0. Similar to Algorithm 1, but with Final-Adaptation RL (FARL).
We connect afterstate s′ via player pt with the previous afterstate slast[pt] of
this player. Note that slast and r are vectors of length N .

1: function TD-FARL-Episode(s0)
2: t← 0;
3: slast[p]← null ∀ player p = 0, . . . , N − 1 . last afterstates
4: repeat
5: pt = player to move in state st
6: Choose action at from st using policy derived from V . e.g. ε-greedy
7: (r, s′, s′′)← MakeAction(st, at) . s′: afterstate (after taking at)
8: . r is the delta reward tuple from the perspective of all players p
9: AdaptAgentV(slast[pt], r[pt], s

′)
10: slast[pt]← s′ . the afterstate generated by pt when taking action at
11: t← t+ 1
12: st ← s′′

13: until (s′′ is terminal)
14: FinalAdaptAgents(pt, r, s

′) . use final reward tuple to adapt all agents

15:
16: . Update the value function (based on NN) for player pt
17: function AdaptAgentV(slast[pt], r

′, s′)
18: if (slast[pt] 6= null) then . Adapt V (slast[pt]) towards target T
19: Target T = r′ + γV (s′) for afterstate slast[pt]
20: Use NN to get V (slast[pt])
21: Adapt NN by backpropagating error δ = T − V (slast[pt])

22:
23: . Terminal update of value function for all players
24: function FinalAdaptAgents(pt, r, s

′)
25: for (p = 0, . . . , N − 1,but p 6= pt) do
26: if (slast[p] 6= null) then . Adapt V (slast[p]) towards target r[p]
27: Use NN to get V (slast[p])
28: Adapt NN by backpropagating error δ = r[p]− V (slast[p])

29: . Adapt V (s′)→ 0 (s′: terminal afterstate of player pt)
30: Use NN to get V (s′)
31: Adapt NN by backpropagating error δ = 0− V (s′)

8 W. Konen and S. Bagheri

3. There is no (or less) unwanted crosstalk because of too frequent updates (as
it was the case for some variants in [1,8]).4

4. Since states are connected with states one round (and not one move) earlier,
positive or negative rewards propagate back faster.

These advantages apply as well to SARSA- and Q-learning which we will
cover next.

2.6 SARSA- and Q-Learning for N Players

SARSA- and Q-learning have a Q-function instead of the value function in TD-
learning. Again, each player has a Q-function only for his/her state-action-pairs
(st, at). The actions of the opponents are subsumed in the reaction from the
environment. That is, if st is the state for player pt at time t, then st+1 is the
next state of the same player pt on which (s)he has to act. For the detailed
algorithms (e.g. Algorithm 5, Sarsa-FARL-Episode) the reader is referred to
Appendix A.2.

Another key difference is the form of the neural network, as shown in Fig. 2.
In TD-learning the network learns V (s) and thus has a single output. It is asked
for all afterstates s′ arising from available actions as s′ = A(s, a) and selects
that afterstate that produces the highest V (s′). On the other hand, the neural
network in Q-learning or SARSA approximates Q(s, a): it has s (or features
derived from s) as input, but it has multiple outputs, one for each possible
action a. Given a certain state s it produces a vector of outputs Q(s, a), one
element for each a. SARSA- or Q-learning selects that action a with the highest
output activation.

V (s′)

afterstate s′

(a)

Q(s, a1) Q(s, a2) Q(s, a3)

state s

(b)

Fig. 2. Neural networks in (a) TD-learning, (b) SARSA- and Q-learning.

4 With crosstalk we mean the effect that the update of the value function for one state
has detrimental effects on the learned values for other states.

Final Adaptation Reinforcement Learning 9

SARSA- and Q-learning share with TD-learning the same advantages as men-
tioned at the end of Sec. 2.5. There are however some disadvantages of SARSA-
and Q-learning in games:

– If Na is the number of possible actions, it needs Na as many weights in the
last layer. Since in n-tuple learning there is only one layer, these are Na as
many weights in total. Consequently, the agents are bigger (in memory and
on disk) by a factor Na. This is a considerable increase for larger Hex boards
(e.g. 9× 9 Hex → Na = 81) and other games with high branching factor.

– SARSA and Q-learning cannot exploit the benefits of afterstates: Several
state-action pairs (s, a) may lead to the same afterstate s′. Usually the value
of an action is fully determined by the resulting afterstate. In such cases,
TD-learning stores the value for that afterstate only once, while SARSA-
and Q-learning store it multiple times.5

These disadvantages of SARSA- and Q-learning are not present in the new TD-
learning algorithm 2.

2.7 Final Adaptation RL (FARL)

Once an episode terminates, we have a delta reward tuple for all players. A
drawback of the plain TD- and SARSA-algorithms is that only the current player
(who generated the terminal state) uses this information to perform an update
step. But the other players can also learn from their (usually negative) rewards.
This is what the first part of FinalAdaptAgents (lines 26-28 of Algorithm 2)
is for: Collect for each player his terminal delta reward and use this as target
for a final update step where the value of the player’s state one round earlier is
adapted towards this target.6

One might ask whether it is not a contradiction to Sec. 2.4 where we stated
that the value for other players is not known for N > 2. This is not a contradic-
tion: Although intermediate values are usual not known for all players, the final
reward of a game episode – at least for all games we know of – is available for
all players. It is thus a good strategy to use this information for all players.

Second part of FinalAdaptAgents, lines 29-31: A terminal state is by def-
inition a state where no future rewards are expected. Therefore the value of that
state should be zero. However, crosstalk in the network due to the adaptation
of other states may lead to non-zero values for terminal states. Jaskowski [6]
proposes to make an adaptation step towards target 0 for all terminal states.

5 How many times? – If an afterstate s′ contains x pieces of the player who just created
s′, then there are x preceding states leading with the appropriate action to that same
afterstate s′. For TicTacToe x ≤ 4, but for 9× 9 Hex x ≤ 40 (!).

6 Why does the target have only the delta reward r[p] and does not need the value
function V (s′)? – Because the value function for a terminal s′ is always 0 (no future
rewards are expected).

10 W. Konen and S. Bagheri

3 Results

We show results of our algorithms on two games. In preliminary experiments we
tested various settings for parameters, namely the learning rate α, the random
move rate ε and the eligibility rate λ. We selected for TicTacToe parameter α
linearly decreasing from 1.0 to 0.5 and the n-tuple system consisted just of one
9-tuple. For ConnectFour we used α = 3.7 and an n-tuple system consisting of
initially randomly chosen but then fixed 70 8-tuples. For both games we had ε
linearly decreasing from 0.1 to 0.0, λ = 0.0 and we used the TCL scheme as
described in [1] and Appendix A.5. Note that due to TCL the effective learning
rate adopted by most weights can be far smaller than α.

3.1 TicTacToe

Fig. 3 shows learning curves of TD- and SARSA-learning. The red curves show
the full Algorithms 2 (TD-FARL-Episode) and 5 (Sarsa-FARL-Episode).
Algorithm 2 is slightly quicker in convergence, but both algorithms will eventu-
ally master the simple game TicTacToe. The blue curves show the results when
we switch off FinalAdaptAgents: The decrease in performance is severe: dras-
tic for TD and strong for SARSA.

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.1

0.2

0.3

0.4

0.5

0 10 20 30

episodes [*103]

w
in

 r
at

e

● TD−FARL no−FARL

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.1

0.2

0.3

0.4

0.5

0 10 20 30

episodes [*103]

w
in

 r
at

e

● SARSA−FARL no−FARL

Fig. 3. Different versions of TD-learning (left) and SARSA-learning (right) on TicTac-
Toe. Each agent is evaluated by playing games from different start positions in both
roles, 1st and 2nd player, against the perfect-playing Max-N agent. The best achievable
result is 0.0, because Max-N will win at least in one of the both roles. Shown is the
average over 25 training runs.

3.2 ConnectFour

Fig. 4 shows learning curves of our TD-FARL agent on the non-trivial game
ConnectFour. Two modes of evaluation are shown: The red curves evaluate

Final Adaptation Reinforcement Learning 11

against opponent AlphaBeta (AB), the blue curves against opponent AlphaBeta-
Distant-Losses (AB-DL). The AlphaBeta algorithm extends the Minimax algo-
rithm by efficiently pruning the search tree. Thill et al. [18] were able to imple-
ment AlphaBeta for ConnectFour in such a way that it plays perfect in situations
where it can win. AB and AB-DL differ in the way they react on losing states:
While AB just takes a random move, AB-DL searches for the move which post-
pones the loss as far (distant) as possible. It is tougher to win against AB-DL
since it will punish every wrong move. The final results for our TD-FARL agent
are however very satisfying: 49.5% win rate against AB, 46.5% win rate against
AB-DL. It is worth noting that two perfect-playing opponents (AB and AB-DL)
are not necessarily equally strong.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
0.0

0.1

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000

episodes [*103]

w
in

 r
at

e

algorithm

FARL

no−FARL

evaluation mode

● AB

AB−DL

Fig. 4. TD-learning on ConnectFour. During training, agent TD-FARL is evaluated
against the perfect-playing agents AlphaBeta (AB) and AlphaBeta-with-distant-losses
(AB-DL). Both agents play in both roles (first or second). Since ConnectFour is a
theoretical win for the starting player, the ideal win rates against AB and AB-DL are
0.5. The solid lines show the mean win rates from 10 training runs with FARL. The
dashed curves no-FARL show the results when FARL is turned off. Error bars depict
the standard deviation of the mean.

It is a remarkable success that TD-FARL learns only from training by self-
play to defeat the perfect-playing AlphaBeta agents in 49%/46% of the cases.
Remember that TD-FARL has never seen AlphaBeta before during training.
The result is similar to our previous work [1]. But the difference is that the new
algorithm can be applied without any change to other games with any N .

12 W. Konen and S. Bagheri

Table 1. Results for Algorithm 2 (TD-FARL-Episode) on various games. In Nim(3P)
hxs, there are initially h heaps with s stones. For each game, 10 training runs with
different seeds are performed and the resulting TD agent is evaluated by playing against
opponents as indicated in column 3 (two such opponents in the case of Nim3P). Each
agent plays all roles. Shown are the TD agent’s win rates or scores (rewards): mean
from 10 runs plus/minus one standard deviation of the mean.

Game N
evaluated win rates or scores

other RL research
vs. FARL no-FARL

2048 1 142 000± 1 000 122 000± 900 [6] 80 000

TicTacToe 2 Max-N10 [11] 49%± 5% 18%± 6%

ConnectFour 2
AB [18] 49.5%± 0.5% 3.5%± 0.1% [4] 0.0%± 0.0%
AB-DL [18] 46.5%± 0.5% 0.0%± 0.1%

Hex 6x6 2 MCTS10000 81%± 5% 0.0%± 0.2%

Othello 2
Edaxd1 [5] 55%± 1% 53%± 1%
Bench [14] 95%± 0.3% 96%± 0.2% [14] 87.1%± 0.9%

Nim 3x5 2 Max-N15 [11] 50%± 1% 12%± 6%

Nim3P 3x5 3
Max-N15 [11] 0.33± 0.03 0.03± 0.01
MCTS5000 0.78± 0.02 0.09± 0.02

There is also a striking failure visible in Fig. 4: If we switch off FinalAdapt-
Agents (curves no-FARL), we see a complete break-down of the TD agent: It
loses nearly all its games. We conclude that the part propagating the final reward
of the other player back to the other player’s previous state is vitally important.7

If we analyze the no-FARL-agent we find that it has only 0.9% active weights
while the good-working TD-FARL agent has 8% active weights. This comes
because the other player (that is the one who loses the game since the current
player created a winning state) has never the negative reward propagated back to
previous states of that other player. Thus the network fails to learn threatening
positions and/or precursors of such threatening positions.

3.3 A Variety of Games

In Table 1 we show the results for seven games with varying number of players
(1, 2, or 3). While there exist many well-known games for 1 and 2 players, it
is not easy to find 3-player games which have a clear winning strategy. Nim3P,
the 3-player-variant of the game Nim, is such a game. Each player can take any
number of pieces from one heap at his/her turn. The player who takes the last
piece loses and gets a reward of 0.0, then the successor is the winner and gets
a reward of 1; the predecessor gets a reward of 0.2. This smaller reward helps
to break ties in otherwise ’undecided’ situations. The goal for each player is to
maximize his/her average reward. Nim3P cannot end in a tie.

7 It is really the first part of FARL which is important: We conducted an experiment
where we switch off only the second part of FARL and observed only a very slight
degradation (1% or less).

Final Adaptation Reinforcement Learning 13

All games are learned by exactly the same TD-FARL / no-FARL algorithm.
The strength of the resulting agent is evaluated by playing against opponents,
where all agents play in all roles. The opponents are in many cases perfect-playing
or strong-playing agents. If all agents play perfect, the best possible result for
each agent is a win rate of 50% for 2-player games and a score of 0.4 for the
game Nim3P (one third of the total reward 1.2 distributed in each episode).
Max-Nd is an N-Player tree search with depth d [11], being a perfect player for
the games TicTacToe, Nim, Nim3P. For ConnectFour, AB and AB-DL [18] are
perfect-playing agents introduced in Section 3.2. Edaxd1 [5] is a strong Othello
program, played here with depth 1. Bench [14] is a medium-strength Othello
agent. MCTSa is a Monte Carlo Tree Search with a iterations.

As can be seen from Table 1, TD-FARL reaches near-perfect playing strength
in most competitions against (near-)perfect opponents and it dominates non-
perfect opponents. The most striking feature of Table 1 is its column ’no-FARL’:
it is in all games much weaker, with one notable exception: In Othello the results
for TD-FARL and TD-no-FARL are approximately the same. This is supported
by the results from van der Ree and Wiering [14] who had good results on
Othello with their no-FARL algorithms. We have no clear answer yet why Othello
behaves differently than all other games.

3.4 Comparison with Other RL Research

For some games we compare in Table 1 with other RL approaches from the liter-
ature. Jaśkowski [6] achieves for the game 2048 with a similar amount of training
episodes and a general-purpose baseline TD agent scores around 80 000. It has to
be noted that Jaśkowski with ten times more training episodes and algorithms
specifically designed for 2048 reaches much higher scores around 600 000, but
here we only want to compare with general-purpose RL approaches.

Dawson [4] introduces a CNN-based and AlphaZero-inspired [15] RL agent
named ConnectZero for the game ConnectFour, which can be played online. Al-
though it reaches a good playing strength against MCTS1000, it cannot win a
single game against our AlphaBeta agent. We performed 10 episodes with Con-
nectZero starting (which is a theoretical win), but found that instead AlphaBeta
playing second won all games. This is in contrast to our TD-FARL which wins
nearly all episodes when starting against AlphaBeta.

Finally we compare for the game Othello with the work of van der Ree and
Wiering [14]: Their Q-learning agent reaches against Bench (positional player)
a win rate of 87% while their TD-learning agent reaches 72%. Both win rates
are a bit lower than our 95%.

3.5 Discussion

Looking at the results for ConnectFour, one might ask the following question: If
FARL is so important for RL-based ConnectFour, why could Bagheri et al. [1]
learn the game when their algorithm did not have FARL? – The reason is, that
both algorithms have different TD-learning schemes: While the algorithm in [1]

14 W. Konen and S. Bagheri

propagates the target from the current state back to the previous state (one move
earlier), our N -player RL propagates the target from the current state back to
the previous move of the same player (one round earlier). The N -player FARL is
more general (it works for arbitrary N). But it has also this consequence: If for
example a 2-player game is terminated by a move of player 1, the value of the
previous state slast[p2] of player 2 is never updated. As a consequence, player 2
will never learn to avoid the state preceding its loss. Exactly this is cured, if we
activate FARL.

4 Conclusion and Future Work

In summary, we collected evidence that Algorithm 2 (TD-FARL-Episode) pro-
duces good results on a variety of games. It has been shown that the new ingre-
dient FARL (the final adaption step) is vital in many games to get these good
results.

Compared to [1], TD-FARL has the benefit that it can be applied unchanged
to all kind of games whether they have one, two or three players. The algorithm
of [1] cannot be applied to games with more than two players.

We see the following lines of direction for future work: (a) More 3-player
games. Although Nim3P with a clear winning strategy provided a viable testbed
for evaluating our algorithm, taking more 3-player or N -player games into ac-
count will help us to investigate how well our introduced methods generalize.
(b) Can we better understand why Othello is indifferent to using FARL or no-
FARL? Are there more such games? If so, an interesting research question would
be whether it is possible to identify common game characteristics that allow to
decide whether FARL is important for a game or not.

References

1. Bagheri, S., Thill, M., Koch, P., Konen, W.: Online adaptable learning rates for
the game Connect-4. IEEE Transactions on Computational Intelligence and AI in
Games 8(1), 33–42 (2015)

2. Beal, D.F., Smith, M.C.: Temporal coherence and prediction decay in TD learning.
In: Dean, T. (ed.) Int. Joint Conf. on Artificial Intelligence (IJCAI). pp. 564–569.
Morgan Kaufmann (1999)

3. Chu, Y.R., Chen, Y., Hsueh, C., Wu, I.: An agent for EinStein Würfelt Nicht!
using n-tuple networks. In: 2017 Conference on Technologies and Applications of
Artificial Intelligence (TAAI). pp. 184–189 (Dec 2017)

4. Dawson, R.: Learning to play Connect-4 with deep reinforcement learning (2020),
https://codebox.net/pages/connect4, retrieved August,21,2020

5. Delorme, R.: Edax, version 4.4 (2019), https://github.com/abulmo/edax-reversi,
retrieved August,1,2020

6. Jaśkowski, W.: Mastering 2048 with delayed temporal coherence learning, multi-
stage weight promotion, redundant encoding, and carousel shaping. IEEE Trans-
actions on Games 10(1), 3–14 (2018)

https://codebox.net/pages/connect4
https://github.com/abulmo/edax-reversi

Final Adaptation Reinforcement Learning 15

7. Jaśkowski, W., Szubert, M., Liskowski, P., Krawiec, K.: High-dimensional func-
tion approximation for knowledge-free reinforcement learning: A case study in SZ-
Tetris. In: Conf. on Genetic and Evolutionary Computation. pp. 567–573 (2015)

8. Konen, W.: Reinforcement learning for board games: The temporal difference al-
gorithm. Tech. rep., TH Köln (2015), http://www.gm.fh-koeln.de/ciopwebpub/
Kone15c.d/TR-TDgame EN.pdf

9. Konen, W.: General board game playing for education and research in generic AI
game learning. In: Perez, D., Mostaghim, S., Lucas, S. (eds.) Conference on Games
(London). pp. 1–8 (2019), https://arxiv.org/pdf/1907.06508

10. Konen, W.: The GBG class interface tutorial V2.1: General board game playing and
learning. Tech. rep., TH Köln (2020), http://www.gm.fh-koeln.de/ciopwebpub/
Konen20a.d/TR-GBG.pdf

11. Korf, R.E.: Multi-player alpha-beta pruning. Artificial Intelligence 48(1), 99–111
(1991)

12. Lucas, S.M.: Learning to play Othello with n-tuple systems. Australian Journal of
Intelligent Information Processing 4, 1–20 (2008)

13. Piette, É., Soemers, D.J.N.J., Stephenson, M., Sironi, C.F., Winands, M.H.M.,
Browne, C.: Ludii - the ludemic general game system. CoRR abs/1905.05013
(2019), http://arxiv.org/abs/1905.05013

14. van der Ree, M., Wiering, M.: Reinforcement learning in the game of Othello:
Learning against a fixed opponent and learning from self-play. In: Adaptive Dy-
namic Programming and Reinforcement Learning (ADPRL). pp. 108–115 (2013)

15. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of Go without
human knowledge. Nature 550(7676), 354–359 (2017)

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

17. Szubert, M., Jaśkowski, W.: Temporal difference learning of n-tuple networks for
the game 2048. In: Computational Intelligence and Games (CIG), 2014 IEEE Con-
ference on. pp. 1–8. IEEE (2014)

18. Thill, M., Bagheri, S., Koch, P., Konen, W.: Temporal difference learning with
eligibility traces for the game Connect-4. In: Preuss, M., Rudolph, G. (eds.) Inter-
national Conf on Computational Intelligence in Games (CIG), Dortmund (2014)

http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
https://arxiv.org/pdf/1907.06508
http://www.gm.fh-koeln.de/ciopwebpub/Konen20a.d/TR-GBG.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Konen20a.d/TR-GBG.pdf
http://arxiv.org/abs/1905.05013

16 W. Konen and S. Bagheri

A Appendix

Table 2. Symbols and variables

symbol text

st game state at time t
at action taken at time t
At set of actions available in state st
pt pt ∈ {0, . . . , N − 1}: player to move in state st
N number of players in the game
rt+1 reward delta when arriving with (st, at) in state st+1

Rt+1 absolute (cumulative) reward in state st+1

TlrnRM boolean switch: If set to true, then TD-update shall be done after a random
action (see line 2 of Algorithm 7)

ε ∈ [0, 1] random move rate
γ ∈ [0, 1] discount factor, usually 1.0

A.1 Nomenclature

We list in Table 2 the symbols and variables used in this paper.

A.2 SARSA and Q-Learning: Detailed Algorithms

Algorithm 3 and 4 show Q-learning and SARSA algorithms in their shortest
form, close to [14,16], solely from the perspective of one player. st and st+1 are
one round away (same player, next round). These algorithms are quite compact,
but again they omit one detail: After a pass through the while loop with state
st, the next pass is not with state st+1 (same player, next round), but with
the state s′′ resulting from advancing st with at. Usually, s′′ has another player
p′′ = (pt + 1)%N .

It is tempting, but dangerous (or plain wrong) to try to work in Algorithm 4
with only one ’Choose action at’ per training cycle: Could we not re-use the
at+1 obtained in every pass as the at of the next pass through the while loop? -
The answer is No because after choosing at+1 we change Q, and thus the action
obtained from st+1 may be different.

Algorithm 5 shows the SARSA algorithm in a somewhat longer form exposing
this and other details. It is closer to the GBG-implementation and it is for the
case that we have one NN (the n-tuple network) used by all players and that
training proceeds by having all SARSA agents play against themselves. Now st
and st+1 are one move away (next player). We store in slast[p] the last state of
the same player p one round earlier and thus make the update step equivalent
to Algorithm 4.

There is with FinalAdaptAgents one more important difference to algo-
rithm 4: Once an episode is finished (st+1 is terminal), we add one fictious round

Final Adaptation Reinforcement Learning 17

Algorithm 3QLearnFromEpisode: Perform one episode of Q-learning, start-
ing from state s0. States st and actions at are for one specific player p. rt+1 is
the delta reward for p when taking action at in state st. At is the set of actions
available in state st. Additional inputs are: γ (discount factor), and ε (random
move rate).

1: function QLearnFromEpisode(s0)
2: t← 0
3: while true do
4: Choose action at ∈ At from st using policy derived from Q
5: . e.g. ε-greedy: with probability ε random, with prob. 1− ε using Q
6: Execute at and observe rt+1, st+1 . after environment and opponents act
7: Use NN to get Q(st+1, a

′) ∀a′ ∈ At+1

8: M ← max
a′∈At+1

Q(st+1, a
′) . if st+1 is terminal, set M = 0

9: Target Qnew(st, at) = rt+1 + γM
10: Use NN to get Q(st, at) . only one action a′

11: Adapt NN by backpropagating error δ = Qnew(st, at)−Q(st, at)
12: . NN-outputs for all actions other than at have their δ set to 0
13: if st+1 is terminal then break . out of while

14: t← t+ 1

Algorithm 4 SarsaFromEpisode: Perform one episode of SARSA-learning,
starting from state s0. States st and actions at are for one specific player p. rt+1

is the delta reward for p when taking action at in state st. At is the set of actions
available in state st. Additional inputs are: γ (discount factor), and ε (random
move rate).

1: function SarsaFromEpisode(s0)
2: t← 0
3: while true do
4: Choose action at ∈ At from st using policy derived from Q
5: . e.g. ε-greedy: with probability ε random, with prob. 1− ε using Q
6: Execute at and observe rt+1, st+1 . after environment and opponents act
7: Choose action at+1 ∈ At+1 from st+1 using policy derived from Q
8: M ← Q(st+1, at+1) . if st+1 is terminal, set M = 0
9: Target Qnew(st, at) = rt+1 + γM

10: Use NN to get Q(st, at) . only one action at
11: Adapt NN by backpropagating error δ = Qnew(st, at)−Q(st, at)
12: . NN-outputs for all actions other than at have their δ set to 0
13: if st+1 is terminal then break . out of while

14: t← t+ 1

18 W. Konen and S. Bagheri

Algorithm 5 Sarsa-FARL-Episode: Equivalent to SarsaFromEpisode, but
the pseudocode is closer to the GBG implementation. s′′ is the next state from st
after taking action at, usually with another player pnext to move. We connect it
via pnext with the previous state slast[pnext] of this player. Note that slast,alast
are vectors of length N .

1: function Sarsa-FARL-Episode(s0)
2: t← 0
3: Choose action a0 from s0 using policy derived from Q . e.g. ε-greedy, using NN
4: slast[p]← (p = p0) ? s0 : null ∀ player p = 0, . . . , N − 1
5: alast[p]← (p = p0) ? a0 : null ∀ player p = 0, . . . , N − 1
6: repeat
7: (r, s′, s′′)← MakeAction(st, at) . afterstate s′ is not used
8: . r is the delta reward tuple from the perspective of all players p
9: pnext = player to move in next state s′′

10: AdaptAgentQ(pnext, r[pnext], s
′′)

11: Choose action a′′ from s′′ using policy derived from Q
12: . e.g. ε-greedy, using NN. Calculate a′′ anew after AdaptAgentQ(()!)
13: t← t+ 1
14: slast[pnext]← st ← s′′

15: alast[pnext]← at ← a′′

16: until (s′′ is terminal)
17: FinalAdaptAgents(pnext, r) . use final reward tuple to adapt other agents

18:
19: . Update the Q-function (based on NN) for player p to act in s′′

20: function AdaptAgentQ(p, r′′, s′′)
21: if (s′′ is terminal) then
22: M = 0
23: else
24: Choose action a′′ from s′′ using Q-derived policy . e.g. ε-greedy, using NN
25: M ← Q(s′′, a′′)

26: if (slast[p] 6= null) then . Adapt Q towards target T
27: Target T = r′′ + γM
28: Use NN to get Q(slast[p],alast[p]) . only one action
29: Adapt NN by backpropagating error δ = T −Q(slast[p],alast[p])
30: . NN-outputs for all actions other than alast[p] have their δ set to 0

31:
32: . Terminal update of Q-functions for all players other than pnext
33: function FinalAdaptAgents(pnext, r)
34: for (p = 0, . . . , N − 1, but p 6= pnext) do
35: if (slast[p] 6= null) then . Adapt Q towards target T = r[p]
36: Use NN to get Q(slast[p],alast[p]) . only one action
37: Adapt NN by backpropagating error δ = r[p]−Q(slast[p],alast[p])

Final Adaptation Reinforcement Learning 19

where no moves are made but all players p perform an update towards their final
reward r[p]. This speeds up learning, because the positive reward from a player
making a winning move is directly propagated to its previous state.8

In Sec. 2.6 we stated that SARSA and Q-learning cannot benefit from the
usage of afterstates. Why is it not possible to use in Q(s, a) afterstates s′ instead
of states s? – When these algorithm have to decide which action to take, they
cannot rely on the afterstate s′, but they have to use the next state s′′. This
is because the random element added by the environment may have important
influence on the action to take.

A.3 Eligibility Method

The general TD(λ)Update rule for weights wt is [16]:

wt+1 = wt + αδt

t∑
k=t0

λt−k∇wk
Vwk

(sk)

= wt + αδt∇wtVwt(st) (1)

+ αδt∇wt−1Vwt−1(st−1)λ

+ αδt∇wt−2Vwt−2(st−2)λ2

+ · · ·

where in the last equation the sum is written out from index t downwards to
index t0.

Normally, this formula is realized in TD(λ) algorithms with the help of eligi-
bility traces ([8,16,18]) and t0 = 0 is used. But eligibility traces are unpractical
(prohibitively slow) for games like 2048 (long episodes, millions of weights would
need repeated updates9).

Jaskowski [6] has the brilliant idea to use a finite horizon t0 = max(t− h, 0),
that is, we use from the TD(λ)-equation (1) only the first h + 1 terms.10 If we
choose h = blogλ(0.1)c then we retain only those terms with λt−k ≥ 0.1. This
realizes a constant and relatively small computational effort, irrespective of how

8 The second part of FinalAdaptAgents in Algorithm 2, where the final V is adapted
towards 0, is not needed in Algorithm 5, because the Q-value of a terminal state is
never used in SARSA.

9 As Jaskowski [6] writes:
”
The eligibility traces vector is of the same length as the

weight vector. The standard Sutton’s implementation consists in updating all the
elements of the vector at each learning step. This is computationally infeasible when
dealing with hundreds of millions of weights.“ Thill [18] reduced this to the number
of weights activated during an episode. Although this is sensible for ConnectFour
(at most 42 moves; it was shown that each episode would not activate more than
approximately 5000 weights), it is not viable for 2048: Since in 2048 an episode can
last for several 10.000 moves, this may activate nearly all eligibility traces in the
network. This would make an update step prohibitively slow.

10 In the beginning, if t < h, it might be even less terms.

20 W. Konen and S. Bagheri

long an episode is. Note that episodes in the game 2048 can often have more
than 10.000 moves.11

For n-tuple systems the value function in afterstate s′ (for player p(s′)) is

V (s′) = σ

 m∑
i=1

∑
q∈S(s′)

wi[Indi(q)]

 =: σ (ν(s′)) (2)

with S(s′): the set of all states symmetric to s′ (including s′ itself), NS = |S(s′)|,
Indi(q): the index into the look-up table wi of n-tuple i given state q, and m
being the number of n-tuples. The term ν(s′) (the double sum) is the activation
of the n-tuple network induced by state s′.

If we take in Eq. (2) the derivative of V (s′) w.r.t. weight wj , it is either 0 (if
wj is not activated by the current state s′) or it is

∂

∂wj
V (s′) = σ′ (ν(s′)) · 1

if wj is activated by the current state s′. Thus the update function Eq. (1)
reduces in the special case λ = 0 and V (s′) according to Eq. (2) to

wi[Indi(q)] = wi[Indi(q)] +
1

mNS
αδtσ

′ (ν(s′)) with q ∈ S(s′) (3)

with error signal δt = T − V (s′), target T and σ′ (ν(s′)) being the derivative
of sigmoid σ() w.r.t. the activation induced by afterstate s′.12 The new scaling
factor 1/(mNS), introduced by [6], ensures that for a linear net (σ = id) an
update with α = 1 moves V (s′) directly to the target value T , irrespective of
the number of n-tuples and number of equivalent states.13

During an update of equivalent states, each n-tuple index is updated not
more than once. See Sec. A.4 for more details.

The algorithm TD(λ)Update implementing this is shown below in Algo-
rithm 7.
11 To build in the game 2048 a

”
16384“ tile, we need at least 16384/2 = 8092 tiles

”
2“.

In 90% of the moves we get a new tile
”
2“ (only 10% of the moves have a new tile

”
4“). Thus, 8192 moves is a rough estimate for an episode ending with a

”
16384“-tile.

12 This means σ′ (ν(s′)) = 1− V 2(s′) in the case of σ = tanh and σ′ (ν(s′)) = 1 in the
case of the identity function σ = id .

13 This can be shown by inserting Eq. (3) into Eq. (2):

V (new)(s′) =

m∑
i=1

∑
q∈S(s′)

(
wi[Indi(q)] +

α

mNS

(
T − V (s′)

))
(4)

=
m∑
i=1

∑
q∈S(s′)

(
wi[Indi(q)]

)
+mNS

α

mNS

(
T − V (s′)

)
= V (s′) + α

(
T − V (s′)

)
= αT + (1− α)V (s′) −→

α→1
T

Final Adaptation Reinforcement Learning 21

Algorithm 6 MakeAction: Take action a in state s and observe cumulative
reward tuple R, afterstate s′ and next state s′′.

1: function MakeAction(s, a)
2: s′ ← ComputeAfterState(s, a)
3: (s′′, R)← AddRandomPart(s′) . R = (R(s′′|p) | p = 0, . . . , N − 1)
4: if !Tafter then
5: s′ ← s′′ . afterstate and next state shall be the same
6: return (R, s′, s′′)

Algorithm 7 TD(λ)Update. Inputs: δt is the delta signal for the actual af-
terstate s′t. Additional inputs are: TlrnRM (see Table 2), step size α, eligibility
rate λ, number m of n-tuples, horizon h, and the h afterstates preceding s′t.
The variables S(s′k), NS , σ′ (ν(s′k)) and Indi(s

′) are explained in Sec. A.3 (text
around Eqs. (2) and (3)).

1: function TD(λ)Update(s′t, δt)
2: if (!TlrnRM & s′t generated by random action) then return

3: for k = t downto max(t− h, 0) do . for all states in s′t’s horizon
4: for i = 1 to m do . for all n-tuples
5: M ← {}
6: for s′ ∈ S(s′k) do
7: if Indi(s

′) /∈M then
8: wi[Indi(s

′)]← wi[Indi(s
′)] + 1

mNS
αδtλ

t−kσ′ (ν(s′k))

9: M ←M ∪ {Indi(s′)} . inhibit index Indi(s
′)

A.4 Helper Algorithms 6 (MakeAction) and 7 (TD(λ)Update)

Some remarks on the helper algorithms MakeAction and TD(λ)Update:

– MakeAction is called once per loop in Algorithms 2 and 5 above.

– TD(λ)Update(s′t, δ, 0) is called each time we write ’Adapt NN by backprop-
agating error δ . . .’ in the Algorithms 2 and 5 above.

– The reason for the index set M in lines 5, 7 and 9 of Algorithm 7 is as
follows: Each state s′ ∈ S(s′k) activates exactly one weight wi[Indi(s

′)]”
in each n-tuple. But multiple equivalent states s′ may activate the same
weight wi repeatedly. This may lead to a too large update step in line 8 of
Algorithm 7. To avoid this, we keep in M a set of already visited indices
Indi(s

′) and skip the update step, if the weight was updated before.

The relevant classes implementing the new TD and SARSA algorithms are
TDNTuple3Agt and SarsaAgt, resp.14

Some elements of the algorithms and their counter part in the GBG source
codeare listed in Table 3.

14 The older class TDNTuple2Agt [1,8] is now deprecated.

22 W. Konen and S. Bagheri

Table 3. Symbols of the algorithms and their source code equivalent in GBG

symbol source code equivalent

MakeAction constructor NextState.NextState(state,action)

ComputeAfterstate StateObservation.advanceDeterministic()

AddRandomPart StateObservation.advanceNondeterministic()

TD(λ)Update NTuple2ValueFunc.update()

TD-FARL-Episode TDNTuple3Agt.trainAgent()

TD-algo from [1,8] TDNTuple2Agt.trainAgent() (deprecated)
Sarsa-FARL-Episode SarsaAgt.trainAgent()

Tafter AFTERSTATE, TDNTuple3Agt.getAFTERSTATE()
TlrnRM learnFromRM in TDNTuple3Agt.trainAgent()

A.5 Temporal Coherence Learning (TCL)

The TCL algorithm developed by Beal and Smith [2] is an extension of TD
learning. It has an adjustable learning rate αi for every weight wi and a global
constant α. TCL works by replacing the global learning rate α in Step 8 of
Algorithm 7 for each weight by the weight-individual product ααi. The main
idea behind TCL is pretty simple: For each weight, two counters Ni and Ai
accumulate the sum of weight changes and sum of absolute weight changes. If
all weight changes have the same sign, then αi = |Ni|/Ai = 1 and the learning
rate stays at its upper bound. If weight changes have alternating signs, then
αi = |Ni|/Ai → 0 for t → ∞, and the learning rate will be largely reduced for
this weight.

The full TCL algorithm with all its variants is found in [1]. Of particular im-
portance is the variant TCL-EXP that we newly developed in [1]: We introduced
an exponential transfer function

g(x) = eβ(x−1) (5)

and set αi = g(|Ni|/Ai). It was shown that TCL-EXP results on the game
ConnectFour in much faster learning and higher win rates than plain TCL [1].

A.6 Parameter Settings

In this appendix we list all parameter settings for the experiments in Tab. 1.
Parameters were manually tuned with two goals in mind: (a) to reach high-
quality results and (b) to reach stable (robust) performance when conducting
multiple training runs with different random seeds. The detailed meaning of all
parameters is explained in the GBG documentation [10].

2048: ε = 0, α = 1.0, λ = 0, NO output sigmoid, USESYMMETRY, AF-
TERSTATE, NORMALIZE=false, FIXEDNTUPLEMODE=2 [6, Fig. 3c, 4 6-
tuple], TC-id with TC-Init= 10−4 and recommended weight-change accumula-
tion. 200.000 training episodes, numEval=5.000.

Final Adaptation Reinforcement Learning 23

TicTacToe: ε = 0.1 → 0.0, α = 1.0 → 0.5, λ = 0, output sigmoid, USE-
SYMMETRY, NORMALIZE=false, one random 9-tuple, no TCL. 30.000 train-
ing episodes, numEval=1.000.

ConnectFour: ε = 0.1→ 0.0, α = 3.7, λ = 0, output sigmoid, USESYMMETRY,
NORMALIZE=false, fixed-n-tuple mode 1: 70 8-tuples. TC-EXP with TC-INIT=
10−4, β = 2.7 and recommended weight-change accumulation. 5.000.000 training
episodes, numEval=100.000.

Hex 6x6: In our experiments, Hex is played on a 6x6 hexagonal board.
ε = 0.2, α = 1.0 → 0.5, λ = 0, output sigmoid, USESYMMETRY, NOR-

MALIZE=false, 25 random 6-tuples, TC-id with TC-Init= 10−4 and recom-
mended weight-change accumulation. Choose-Start-01 and Learn-from-RM ac-
tive. 300.000 training episodes, numEval=10.000.

Othello 8x8: ε = 0.2, α = 0.2, λ = 0.5, horizon cut 0.01, eligibility trace ET,
output sigmoid, USESYMMETRY, fixed n-tuple mode 6: 50 6-tuples. TC-EXP
with TC-INIT= 10−4, β = 2.7 and recommended weight-change accumulation.
Choose-Start-01 active. 250.000 training episodes, numEval=2.000.

Evaluation is done by playing episodes from all 244 4-ply start states in both
roles against selected opponents. If both agents played perfect, the expected win
rate would be 50%.

Nim 3x5: ε = 0.1, α = 0.5, λ = 0.5, horizon cut 0.1, eligibility trace ET, output
sigmoid, n-tuple fixed mode 1: one 3-tuple. TC-id with TC-Init= 10−4 and rec-
ommended weight-change accumulation. Choose-Start-01 inactive. Learn-from-
RM active. 20.000 training episodes, numEval=1.000.

Nim3P 3x5: In our experiments, Nim3P (3-player variant) is played with 3
heaps of size 5 (3x5) and the extra rule being active.

ε = 0.15, α = 0.2, λ = 0.5, horizon cut 0.01, eligibility trace with RESET,
output sigmoid, n-tuple fixed mode 2: two 3-tuples. TC-id with TC-Init= 10−4

and recommended weight-change accumulation. Choose-Start-01 active. Learn-
from-RM inactive. 300.000 training episodes, numEval=10.000.

	Final Adaptation Reinforcement Learning for N-Player Games

