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Abstract

This technical report introduces GBG, the general board game playing and learning
framework. It is a tutorial that describes the set of interfaces, abstract and non-abstract
classes which help to standardize and implement those parts of board game playing
and learning that otherwise would be tedious and repetitive parts in coding. GBG is
suitable for arbitrary 1-player, 2-player and N -player board games. It provides a set of
agents (AI’s) which can be applied to any such game. This document describes the
main classes and design principles in GBG.

This document is an updated version of the 2020 GBG tutorial1 (new or enhanced
sections on Parameter Settings for Scheiermann and Konen [2022], Wrapper classes
and Wrapper parameters, N-Tuples, GBG Help and Design Principles, removed sec-
tion on ArenaTrain).

GBG is written in Java and available from GitHub.2

1https://www.gm.fh-koeln.de/ciopwebpub/Kone20d.d/TR-GBG.pdf
2https://github.com/WolfgangKonen/GBG
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1 Introduction

1.1 Motivation

General board game (GBG) playing and learning is a fascinating area in the intersection of
machine learning, artificial intelligence and game playing. It is about how computers can
learn to play games not by being programmed but by gathering experience and learning
by themselves (self-play). The learning algorithms are often called AI agents or just „AI“’s
(AI = artificial intelligence). There is a great variety of learning algorithms around, e.g.
reinforcement learning algorithms like TD(λ), Monte Carlo tree search (MCTS), different
neural network algorithms, Minimax, ... to name only a few.

Even if we restrict ourselves to board games, as we do in this paper (and do not con-
sider other games like video games), there is a plethora of possible board games where
an agent might be active in. The term „General“ in GBG refers to the fact that we want
to have in the end agents or AIs which perform well on a large variety of games. There
are quite different games: 1-person games (like Solitaire, 2048, ...), 2-person games (like
TicTacToe, Othello, Chess, ...), many-person games (like Settlers of Catan, Poker, ...). The
game environment may be deterministic or it may contain some elements of chance (like
rolling the dices, ...).

A common problem in GBG is the fact, that each time a new game is tackled, the AI
developer has to undergo the frustrating and tedious procedure to write adaptations of
this game for all agent algorithms. Often he/she has to reprogram many aspects of the
agent logic, only because the game logic is slightly different to previous games. Or a new
algorithm or AI is invented and in order to use this AI in different games, the developer has
to program instantiations of this AI for each game.

Wouldn’t it be nice if we had a framework consisting of classes and interfaces which
abstracts the common processes in GBG playing and learning? If someone programs a
new game, he/she has just to follow certain interfaces described in the GBG framework,
and then can easily use and test on that game all AIs in the GBG library.

Likewise, if an AI developer introduces a new learning algorithm which can learn to play
games, she has only to follow the interface for agents laid down in the GBG framework.
Then she can test this new agent on all games of GBG. Once the interface is implemented
she can directly train her agent, inspect its move decisions in each game, test it against
other agents, run competitions, enter game leagues, log games and so on.

The rest of this document introduces the class concept of GBG. After a short (and
probably incomprehensive) summary of related work in Sec. 1.2, Sec. 2 gives an overview
of the relevant classes and Sec. 3 discusses them in detail. Sec. 8 discusses some use
cases and FAQs for the GBG class framework. Appendix B gives more details on game
value functions, Appendix C introduces n-tuples, and Appendix D describes the tasks in
GBG which are multi-core parallelized.

See Konen [2019] for a more research-oriented description of GBG.
See GBG Wiki - Board Games for the actual list of games implemented in GBG.
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1.2 Related Work

One of the first general game-playing systems was Pell’s METAGAMER [Pell, 1996]. It played
a wide variety of simplified chess-like games.

Later, the discipline General Game Playing (GGP) [Genesereth and Thielscher, 2014,
Mańdziuk and Świechowski, 2012] became a wider coverage and it has now a long tra-
dition in artificial intelligence: Since 2005, an annual GGP competition organized by the
Stanford Logic Group [Genesereth et al., 2005] is held at the AAAI conferences. Given the
game rules written in the so-called Game Description Language (GDL, Love et al. [2008]),
several AIs enter one or several competitions. As an example for GGP-related research,
Mańdziuk and Świechowski [2012] propose a universal method for constructing a heuristic
evaluation function for any game playable in GGP. With the extension GDL-II [Thielscher,
2010], where II stands for „Incomplete Information“, GGP is able to play games with incom-
plete information or nondeterministic elements as well.

GGP solves a tougher task than GBG: The GGP agents learn and act on previously
unknown games, given just the abstract set of rules of the game. This is a fascinating
endeavour in logic reasoning, where all information about the game (game tactics, game
symmetries and so on) is distilled from the set of rules at run time. But, as Świechowski
et al. [2015] have pointed out, arising from this tougher task, there are currently a number
of limitations or challenges in GGP which are hard to overcome within the GGP-framework:

• Simulations of games written in GDL are slow. This is because math expressions,
basic arithmetic and loops are not part of the language.

• Games formulated in GDL have suboptimal performance as a price to pay for its
universality: This is because „it is almost impossible, in a general case, to detect what
the game is about and which are its crucial, underpinning concepts.“ [Świechowski
et al., 2015]

• The use of Artificial Intelligence (AI), most notably neural networks, deep learning
and TD (temporal difference) learning, have not yet had much success in GGP. As
Świechowski et al. [2015] writes: „AI-based learning methods are often too slow even
with specialized game engines. The lack of game-related features present in GDL
also hampers application of many AI methods.“ Michulke and Thielscher [2009] and
Michulke [2011] present first results on translating GDL rules to neural networks and
TD learning: They had some success, but they faced also problems like overfitting,
combinatorial explosion of input features and slowness of learning.

GBG aims at offering an alternative with respect to these limitations, as will be further
exemplified in Sec. 1.3. It has not the same universality as GGP, but agents from the
AI-universum (TD, SARSA, deep learning, ...) can train and act fast on all available games.

Other works with relations to GBG: General Video Game Playing (GVGP, Levine et al.
[2013]) is a related field which tackles video games instead of board games. Likewise,
µRTS [Ontanón and Buro, 2015, Barriga et al., 2017] is an educational framework for AI
agent testing and competition in real-time strategy (RTS) games. OpenAI Gym [Brockman
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et al., 2016] is a toolkit for reinforcement learning research which has also a board game
environment supporting a (small) set of games.

1.3 Introducing GBG

We define a board game as a game being played with a known number of players, N =
1, 2, 3, . . ., usually on a game board or on a table. The game proceeds through actions
(moves) of each player in turn. This differentiates board games from video or RTS games
where usually each player can take an action at any point in time. Note that our definition of
board games includes (trick-taking) card games (like Poker, Blackjack, ...) as well. Board
games for GBG may be deterministic or nondeterministic.

What differentiates GBG from GGP? – GBG has not the same universality than GGP
in the sense that GBG does not allow to present new, previously unknown games at run
time. However, virtually any board game can be added to GBG at compile time. GBG then
aims at overcoming the limitations of GGP as described in Sec. 1.2 and in [Konen, 2019]:

• GBG allows fast game simulation due to the compiled game engine (10.000-90.000
moves per second for TD-agents on a single core).

• The game or AI implementer has the freedom to define game-related features or
symmetries (for the n-tuple agents, see Sec. 3.8 and Appendix C.3) at compile time
which she believes to be useful for her game. Symmetries can greatly speed up
game learning.

• GBG offers various AI agents, e.g. TD- and SARSA-agents and – for the first time –
a generic implementation of TD-n-tuple-agents (see Sec. 3.5), which can be trained
fast and can take advantage of game-related features. With generic we mean that
the n-tuples are defined for arbitrary game boards (hexagonal, rectangular or other)
and that the same agent can be applied to 1-, 2-, . . ., N -player games.
See Sec. 3.5.1 and Table 1 for a list of all AI’s (agents).

• For evaluating the agent’s strength in a certain game it is possible to include game-
specific agents which are strong or perfect player for that game.3 Then the generic
agents (e. g. MCTS or TD) can be tested against such specific agents in order to
see how near or far from strong/perfect play the generic agents are on that game.4

It is important to emphasize that the generic agents do not have access to the spe-
cific agents during game reasoning or game learning, so they cannot extract game-
specific knowledge from the other strong/perfect agents.

• Each game has a game-specific visualization and an inspect mode which allows to
inspect in detail how the agent responds to certain game situations. This allows to get
deeper insights where a certain agent performs well or where it has still remarkable
deficiencies and what the likely reason is.

3Examples are the near-perfect-playing AlphaBetaAgent for Connect-4 and BoutonAgent for Nim.
4Note that in GGP agents are compared with other agents from the GGP league. A comparison with

strong/perfect game-specific (non-GGP) agents is usually not possible.
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Figure 1: Important interfaces in GBG: (a) StateObservation and (b) PlayAgent.
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Figure 2: Class diagram GBG: Classes around Arena.

• See GBG Wiki - Board Games for the actual list of all games implemented in GBG.

GBG is written in Java and supports parallelization on multiple cores for certain time-
consuming tasks. It is available as open source from GitHub5 and as such – similar to GGP
– well-suited for educational and research purposes [Konen, 2019].

2 Overview

2.1 Classes and Interfaces

Figs. 1 and 2 give a first overview of the classes in GBG. In these UML-like diagrams, an
interface is depicted as blue half circle, an open-triangle arrow connects a child class with

5https://github.com/WolfgangKonen/GBG
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a parent class, and a diamond-shaped arrow connects a member with its containing class.
Interface StateObservation is the main interface a game developer has to implement

once he/she wants to introduce a new game (Fig. 1a). A class derived from ObserverBase
and implementing StateObservation observes a game state, it can infer from it the available
actions, knows when the game is over, can advance a state into a new legal state given one
of the available actions. If a random ingredient from the game environment is necessary
for the next action (of the next player), the advance function will add it.

The second interface a game developer has to implement is the interface GameBoard,
which realizes the board GUI and the interaction with the board. If one or more humans
play in the game, they enter their moves via GameBoard.

The interface an AI developer has to implement is the interface PlayAgent (Fig. 1b). It
represents an „AI“ or agent capable of playing games. If necessary, it can be trained by
self-play. Once trained, it has methods for deciding about the best next action to take in
a game state StateObservation and getting the agent’s estimate of the score or value of a
certain game state.

The heart of GBG is the abstract class Arena (Fig. 2). In the Arena all agents meet:
They can be loaded from disk, they play a certain game, there can be competitions. If
the Arena has train rights, then it has additional options to parametrize, train, inspect,
evaluate and save agents. The classes XArenaMenu, XArenaTabs, XArenaButtons and
XArenaFuncs are helper classes to implement the functionality of Arena.

The Java application classes GBGLaunch and GBGBatch are starter programs and
have an Arena object. They allow to start all game arenas, either with GUI or as batch w/o
GUI.

The helper classes Feature, XNTupleFuncs, Evaluator and ACTIONS (+ ACTIONS_VT,
ACTIONS_ST) support the abstraction in GBG.

See GBG Wiki - Board Games for the actual list of games implemented in GBG.

2.2 Help for GBG

The GBG framework offers various forms of help resources:

• For developers: https://github.com/WolfgangKonen/GBG/wiki. The wiki of GBG’s
GitHub page, which gives a quick overview and tips for installation and configura-
tion.

• For developers: this technical report, offering an in-depth description of classes and
interfaces in GBG. It is available under https://www.gm.fh-koeln.de/ciopwebpub/
Konen22a.d/TR-GBG.pdf.

• For users: GBG Help: Start GBG and select Help – Help File as PDF to see a
description of the GBG user interface and an in-depth description of all parameters
for all agents. Alternative location: GBG on GitHub – resources – HelpGUI-Arena-
GBG.pdf.
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• For users: Start GBG and select Help – Game Rules as PDF to show the playing
rules of all games implemented in GBG. Alternative location: GBG on GitHub –
resources – GameRules-GBG.pdf.

3 Classes in Detail

3.1 Interface StateObservation and abstract class ObserverBase

Interface StateObservation observes the current state of the game, it has utility functions
for

• returning the available actions (getAvailableActions()),

• advancing the state of the game with a specific action (advance(ACTIONS)),

• copying the current state,

• getting the player who has to move in the current state (getPlayer()),

• getting the game score of the current state (getGameScore(int i)) from the per-
spective of player i,

• signaling end and winner of the game

Example classes implementing StateObservation are: StateObserverTTT, StateObserver2048,
..., ObserverBase.

Many methods of StateObservation e.g. setters, getters and other common methods,
have their defaults implemented in abstract class ObserverBase. It is strongly recom-
mended to derive a new StateObservation class from class ObserverBase, i. e.

class StateObsXYZ extends ObserverBase implements StateObservation.

This allows that default methods have not to be re-implemented in every class derived
from StateObservation. It is however always possible to override them.

3.2 Interface PartialState and class PartialPerfect

Interface PartialState is a base of StateObservation and encapsulates the partial-state
part of StateObservation. Partial states are needed for imperfect-information games. Sec.
Games with Partial States (Sec. 5) has further information on this.

Class PartialPerfect provides a default implementation of all methods in PartialState
for perfect-information games.
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3.3 Interface StateObsNondeterministic

For nondeterministic games there is an additional interface StateObsNondeterministic
derived from StateObservation. More details are in Appendix A.

3.4 Classes StateObsWithBoardVector and BoardVector

Class StateObsWithBoardVector is a container class containing a BoardVector object
and its creating StateObservation object.

Class BoardVector contains an int[] representation of a StateObservation object.
See Appendix C.1 for a specific example and Sec. 8.9 for several BoardVector-creating
methods.

3.5 Interface PlayAgent and abstract class AgentBase

Interface PlayAgent has all the functionality that an AI (= game playing agent) needs. The
most important methods are:

• getNextAction2(sob,...): given the current game state sob, return the best next
action.

• double getScore(sob): the score (agent’s estimate of final reward) for the current
game state sob.

• trainAgent(sob,...): train agent for one episode6 starting from state sob.

Many methods, e.g. setters, getters and other common methods, have their defaults
implemented in abstract class AgentBase. It is strongly recommended to derive a new
agent class from class AgentBase, i. e.

class AgentXYZ extends AgentBase implements PlayAgent

3.5.1 List of Agents implemented in GBG

Classes implementing interface PlayAgent and derived from AgentBase are shown in Ta-
ble 1 and listed below:

• RandomAgent: an agent acting completely randomly

• HumanPlayer: an agent waiting for user interaction

• MinimaxAgent: a simple tree search (max-tree for 1-player games, min-max-tree
for 2-player games). Deprecated , better use MaxNAgent or ExpectimaxNAgent for
deterministic and nondeterministic games, resp.7

6An episode is one specific game playout.
7Note that Minimax is only for 2-player games, while MaxN is for 1-, 2-,..., N-player games. Note that

Minimax in this simple implementation may not be appropriate for games with random elements, because
Minimax follows in each tree step only one path of the possible successors that advance() may produce.
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Table 1: Agents available in GBG.

agent game remark

generic agents
RandomAgent all acts completely random
HumanPlayer all human play
MaxNAgent all generalized ’Minimax’ [Korf, 1991]
ExpectimaxNAgent all MaxN for nondeterministic games
MCAgent all Monte Carlo
MCTSAgentT all Monte Carlo Tree Search [Browne et al., 2012]
MCTSExpectimax all MCTS extension for nondeterministic games

[Kutsch, 2017]
TDAgent all TD(λ) agent according to Sutton and Barto [1998]

with user-supplied features
TDNTuple4Agt all TD(λ) agent with n-tuple features [Lucas, 2008]
Sarsa4Agt all SARSA agent (state-action-reward) [Sutton and

Barto, 1998] with n-tuple features [Lucas, 2008]
QLearn4Agt all Q-learning agent [Sutton and Barto, 1998] with n-

tuple features [Lucas, 2008]

wrapper agents
MaxN2Wrapper all MaxN wrapper around inner agent
ExpectimaxNWrapper all ExpectimaxN wrapper around inner agent
MCTSWrapper all MCTS wrapper around inner agent
MCTSEWrapper all MCTS Expectimax wrapper around inner agent

game-specific agents
AlphaBetaAgent Connect-4 near-perfect Connect-4 player (alpha-beta search

with opening books) [Thill, 2015]
BSBJA BlackJack Basic Strategy BlackJack agent, plays perfect
BoutonAgent Nim perfect Nim player (theory of Bouton [1901])
BenchPlayer Othello baseline Othello player, weighted piece counter
HeurPlayer Othello baseline Othello player, weighted piece counter
Edax2 Othello very strong Othello player (only for Windows) [De-

lorme, 2017]
PokerAgent Poker a medium-strength Poker agent
DAVI3Agent RubiksCube Deep Approx. Value Iter. [McAleer et al., 2018]
DAVI4Agent RubiksCube Deep Approx. Value Iter. [Agostinelli et al., 2019]
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Figure 3: Class diagrams GBG: Classes around AgentBase.

• MaxNAgent: the generalization of Minimax to N-player games with arbitrary N (see
Korf [1991]). It maximizes the kth score in a score tuple.

• ExpectimaxNAgent: the generalization of MaxNAgent to nondeterministic games:
alternating layers of chance nodes and expectimax nodes. Since 2021 it offers also
an extension for imperfect-information games (e.g. Poker, Kuhn Poker, Blackjack),
that is, games with partial states.

• MCAgent: Monte-Carlo agent (no tree)

• MCTSAgentT: Monte-Carlo Tree Search agent

• MCTSExpectimaxAgt: Monte-Carlo Tree Search agent for non-deterministic games:
alternating layers of chance nodes and expectimax nodes. See Kutsch [2017] for
more details.

• TDAgent: general TD(λ) agent (temporal difference reinforcement learning) with neu-
ral network value function (see Sec. 8.8 for more details). This agent requires a
Feature object in constructor, see Sec. 3.7.

• TDNTuple3Agt: Deprecated , former version of TDNTuple4Agt where all cells had to
have the same number of position values.

• TDNTuple4Agt: TD(λ) agent (temporal difference reinforcement learning) using n-
tuple sets as features (see Sec. 8.7, 8.9 and Appendix C for more details). This
agent requires an object of class XNTupleFuncs in constructor, see Sec. 3.8. Uses
n-tuples where each cell may have individual position values, see Sec. 8.7.
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• QLearn4Agt: Q-learning agent with state-action-pairs, using n-tuple sets as features
(see Appendix C for more details). This agent requires an object of class XNTuple-
Funcs in constructor, see Sec. 3.8.

• Sarsa4Agt: SARSA agent (SARSA is a variant of Q-learning with state-action-pairs)
using n-tuple sets as features (see Appendix C for more details). This agent requires
an object of class XNTupleFuncs in constructor, see Sec. 3.8.

The last five agents are reinforcement learning agents (temporal difference). The last
four agents are based on n-tuple features. TDNTuple4Agt is the generic implementation
of a TD-n-tuple-agent. More details on TD(λ) (temporal difference learning, reinforcement
learning for games, eligibility traces) can be found in the technical reports Konen [2015]
(outdated) and Konen and Bagheri [2020a,b] (up-to-date, including final adaptation).

Each agent has an AgentState member, which is either RAW, INIT or TRAINED.
Some of the agents (RandomAgent, HumanAgent, MaxNAgent, ExpectimaxNAgent,

MCAgent, MCTSAgent, MCTSExpectimaxAgt) are directly after construction in a TRAINED
state, i.e. they are ready-to-use. They make their observations on-the-fly, starting from the
given state. Other agents (TDAgent, TDNTuple3Agt, TDNTuple4Agt, SarsaAgt) require
training, they are after construction in state INIT.

Classes implementing PlayAgent should also implement the Serializable interface.
This is needed for loading and saving agents. Agent members which need not to be
included in the serialization process can be flagged with keyword transient. Agent mem-
bers which are user-defined classes should implement the Serializable interface as well.

3.5.2 The Wrapper Agents

There are four wrapper agents in Table 1. MaxN2Wrapper and ExpectimaxWrapper can
be wrapped around any other agent. This means that an inner agent is wrapped by either
MaxNAgent or ExpectimaxNAgent of prescribed depth. Which of the two is taken depends
on the deterministic nature of the game. If the wrapper is selected, then – instead of using
the inner agent directly – a tree of prescribed depth is constructed and only at the leafs of
the tree the inner agent’s value function is used. This allows the agent to ’look farther’ and
thus make better decisions. The price to pay for this is a longer execution time. Especially
if the branching factor of the game is high, wrapper depths larger than 2 or 3 should be
used with caution.

As shown in Fig. 3, MaxN2Wrapper is not derived from MaxNAgent but from Agent-
Base. This is only because it simplifies software maintenance. Algorithmically, both follow
the same principles.

Two other wrappers MCTSWrapper and MCTSEWrapper, inspired by AlphaZero [Sil-
ver et al., 2017], wrap an MCTS (MCTS-Expectimax) around any inner agent. Which of the
two is taken depends on the deterministic nature of the game. Normally, the wrappers
will be activated after training (to improve the planning capabilities during play and eval-
uation). If they are activated prior to training, MCTS iterations will be done during self-play
training, which improves the quality of the selected moves but which also may take very
long. See Scheiermann [2020], Scheiermann and Konen [2022] for further information.
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The wrappers are not selectable via the agent select box in the Arena GUI. Instead,
specify in the agent select box the inner agent. To wrap this agent, select in the combo box
Wrapper Mode of tab Wrapper pars (Params window) a mode different from None:

• If Wrapper Mode = MaxN Wrapper (stands for both MaxN and ExpectimaxN wrap-
per), set Wrapper nPly to a value nply greater than 0. Then a wrapper with depth
nply will be constructed and wrapped around the inner agent.

• If Wrapper Mode = MCTS Wrapper (stands for both MCTS and MCTSE wrapper), set
Wrapper MCTS to a value iter greater than 0 and set optionally other MCTS wrapper
parameters (see also Appendix G). Then a wrapper with iter MCTS iterations will be
constructed and wrapped around the inner agent.8

3.6 Game Score and Game Value

3.6.1 Conventions for Game Score

Although the game score (the final result of a game, e. g. „X wins“ or „O wins with that
many points“) seems to be a pretty simple and obvious concept, it becomes a bit more
complicated if one wants to define the game score consistently for a broader class of
states, not just for a terminal state. We use the following conventions:

• For StateObservation so,

so.getGameScore(int i)

returns the sum of rewards in state so, seen from the perspective of the player i.
Most 2-player games will give the reward only in the end (win/tie/loss), so that for
those games so.getGameScore(i) is usually 0 as long as so is non-terminal. But
other games (e.g. 2048, Blackjack, Poker) give rewards not only at the end of an
episode. Then the game score will be the sum of all rewards given so far in this
episode (cumulative score or reward). For example, the game score in Poker for
player i is the amount of chips that she has in state so, and this amount changes
at the end of each round. In 2048, the game score is the cumulative sum of all tile
merges.

• If a state is terminal (e. g. „X wins“) then the „player who moves“ has changed a last
time (i. e. to player O, although the game is over.). Thus, the score for O will be −1
(„O loses“). It seems a bit awkward at first sight to assign a terminal state a „player
to move“, but this is the only way to guarantee in a succession of actions for 2-player
games that the current score estimate is always the negative of the next state’s score
(negamax principle). Fig. 4 shows an example.

8Older agents stored on disk may have their wrapper params set in ParOther (now deprecated) and have
ParWrapper=null. In this case, ParWrapper will be instantiated from ParOther and suitable other defaults.
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Figure 4: A succession of states in TicTacToe: If O makes in state sA the losing move
leading to sB, then sB is a clear win for X, and so is the terminal state sC. The game score
for sC from the perspective of O, the player to move in sC, is −1. The game values (see
Sec. 3.6.3) for sB and sC are +1 and −1, resp.

Example: State sC in Fig. 4 (TicTacToe) is a terminal state: X has made
a winning move. On this terminal state O would have to move next (if it
were not terminal). So the game score for this terminal state is a negative
reward sC.getGameScore(sC.getPlayer())= −1 for player O.

sC.getGameScore(sC.getPlayer()) = -1;

sC.getGameScore(sB.getPlayer()) = +1;

sC.getGameScore(sA.getPlayer()) = -1;

sC.getGameScore() = sC.getGameScore(sC.getPlayer());

• StateObservation.getGameWinner() may only be called if the game is over for the
current state (otherwise an assertion fires). It returns an enum Types.WINNER which
may be one out of {PLAYER_WINS, TIE, PLAYER_LOSES}. The player is always
the player who has to move. The method Types.WINNER.toInt() converts these
enums to integers which correspond to {+1, 0,−1}, resp.

StateObservation defines two methods

public double getMinGameScore();

public double getMaxGameScore();

These methods should return the minimum and maximum game score which can be
achieved in a specific game. This is needed since some PlayAgent (e.g. TDAgent) make
predictions of the estimated game score with the help of a neural network. Since a neural
network has often a sigmoid output function which can emit only values in a certain range
(e.g. [0,1]), it is necessary to map the game scores to that range as well. This can only be
done if the minimum and maximum game score is given.9

9If a precise maximum game score for a certain game is not known, a reasonable ’big’ estimate is usually
also sufficient.
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3.6.2 Difference between Game Score and Game Reward

In many cases, game score and game reward are the same and can be used synony-
mously. But in some cases it might be beneficial – e.g. when training an agent – to train it
on a different reward than the raw score of a game state. Example: In 2048, the number
of empty tiles might be an indicator of the player’s mobility and indicate an difference be-
tween states that otherwise have the same game score. This fact can be used to form a
game-specific reward (by combining it with the cumulative game score or by replacing it).

More details on game reward are in Appendix B.

3.6.3 Difference between Game Score and Game Value

There is a subtle distinction between game score and game value. The game score is
the score of a game state according to the game laws. For example, TicTacToe has the
score 0 for all intermediate states, while a terminal state has either +1/0/-1 as game score
for win/draw/loss of the player to move. In 2048, the game score is the cumulative sum of
all tile merges. Each player usually wants to maximize the expectation value of ’his’ score
at the end of the game.

But the score in an intermediate game state is not a good indicator of the potential
of that state. The game value of a state is an estimate of the final score attainable from
that state. Two intermediate (score-0) states in TicTacToe might differ in their game value:
While a first state might be an inevitable loss for the player-to-move, a second state might
be just one step away from a sure win. Both states have the same game score (0), but
obviously quite different game values. The precise game value of a state is often not known
/ not computable, but it is of course desirable to estimate it. An estimate can be based on a
simple heuristic like the weighted piece count in chess. Or it can be based on sophisticated
(deep or n-tuple) neural networks as approximators.

The main possibility to deliver a game value is:

• PlayAgent.getScore(StateObservation so) returns the agent’s estimate of the
final score for the player who has to move in StateObservation so – assuming per-
fect play of that player. That is what we call the game value of so. The game value
for 2-player games is usually +1 if it is expected that the player wins finally, 0 if it
is a tie and -1 if he loses. Values in between characterize expectation values in
cases where different outcomes are possible or likely (or where the agent has not yet
gathered enough information or experience).

There are other methods to deliver a game value or a reward

• StateObservation.getReward(int i,boolean)

• PlayAgent.estimateGameValue(StateObservation so)

but they are only for advanced users and their description is deferred to Appendix B.
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3.6.4 Ranges for Game Score and Game Value

In principle the range of game values is arbitrary, only the order of values matters for agent
decisions. So a shift or stretch of the game value range should be normally irrelevant.

But there are two other reasons why the range of the game value or game score is
important:

• When displaying game values on the gameboard or printing game values, it is better
to have either [−1, 1] or [0, 1] as game value range. Classes derived from Game-
Board will often multiply all game values by 100 and then they will display numbers
in the convenient range [−100, 100].

• When a neural network is used for predicting game values, it may contain a sigmoid
function in the output neuron. Depending on the type of sigmoid, the range of neural
network outputs is either [−1, 1] or [0, 1]. The game values should fall into the neural
network output range, otherwise the net cannot learn them.

3.7 Interface Feature

Some classes implementing PlayAgent need a game-specific feature vector. As an ex-
ample, consider TDAgent, the general TD(λ) agent (temporal difference reinforcement
learning) with neural network value function. To make the neural network predict the value
of a certain game state, the network needs some feature input (e.g. specific board patterns
which form threats or opportunities, number of them, number of pieces and so on). These
features are usually game-specific. We assume here that every feature can be expressed
as double value (neural networks can only digest real numbers as input), so that the whole
feature vector can be expressed as double[].

To create an Feature object within the general Arena-code, the factory method pattern
is used: Arena defines an abstract method

public Feature makeFeatureClass(int featmode);

The argument featmode allows to construct different flavors of Feature objects and to test
and evaluate them.

In all cases where Arena needs a Feature object, it will call this method makeFeatureClass(int).
This will take place whenever a TDAgent object is constructed, because the TDAgent con-
structor needs a Feature object as parameter.

Interface Feature has the method

public double[] prepareFeatVector(StateObservation so);

which gets a game state and returns a double vector of features. This vector may serve as
an input for a neural network or other purposes.

Implementing classes: FeatureTTT, Feature2048, ...
More details on how to set up a new Feature class are in Sec. 8.8.
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3.8 Interface XNTupleFuncs and abstract class XNTupleBase

There are the special agents TDNTuple3Agt and SarsaAgt to realize TD- or SARSA-
learning with n-tuple features. N-tuple features or n-tuple sets (Lucas [2008], Thill et al.
[2014], Bagheri et al. [2015], Thill [2015]) are another way of generating a large number of
features. An n-tuple is a set of board cells. For every game state StateObservation it can
translate the position values present in these cells into a double score or value. In order
to construct such n-tuples, the user has to implement the interface XNTupleFuncs. See
Sec. 8.9 for more details on the member functions of XNTupleFuncs and Appendix C for a
more detailed description of n-tuples.

To create an XNTupleFuncs object within the general Arena-code, the factory method
pattern is used: Arena defines an abstract method

public XNTupleFuncs makeXNTupleFuncs();

Whenever Arena needs a XNTupleFuncs object, it will call this method makeXNTupleFuncs().
This will take place whenever an n-tuple agent object is constructed, because these n-tuple
agent constructors need an XNTupleFuncs object as parameter.

It is strongly recommended to derive a new XNTuple class from class XNTupleBase
i. e.

class XNTupleXYZ extends XNTupleBase implements XNTupleFuncs.

XNTupleBase is an abstract class which has however default implementations for members
instantiateAfterLoading() and makeBoardVectorEachCellDifferent() and others.

Note: If you do not plan to use an n-tuple agent in your game, you do not need to
implement a specific version of class XNTupleFuncs either. Since you do not construct an
object of class TDNTuple3Agt or similar, makeXNTupleFuncs() should never be called. If
it is called nevertheless, the default implementation of makeXNTupleFuncs() in Arena will
throw a RuntimeException.

More details on how to set up a new XNTupleFuncs class are in Sec. 8.9.

3.9 Interface GameBoard

Interface GameBoard prescribes things specific to the game board. All implementing
classes GameBoardXyz have an optional member GameBoardXyzGui that realizes game
board GUI (usually in a separate JFrame). It provides functionality for:

• Maintaining its own StateObservation object m_so. This object is after construction
in a default start state (e. g. empty board). The same state can be reached via
clearBoard() or getDefaultStartState() as well. The associated GUI will show
the default start state.

• updateBoard(so, ...): Showing or updating the current game state (StateObser-
vation so) in the GUI and enabling / disabling the GUI elements.

• Human interaction with the board: see Sec. 3.12.
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• Returning its current StateObservation object (getStateObs()).

• chooseStartState(): This method returns randomly one out of a set of different
start states. This is useful when training an agent in such a way that not always the
same game episode is played but some variation (exploration) occurs.

Example TicTacToe: The implementation in GameBoardTTT returns with
probability 0.5 the default start state (empty board) and with probability 0.5
one of the possible next actions (an ’X’ in any of the nine board positions).

There is a peculiar thing to note about GameBoard’s object StateObservation m_so:
Methods that interact with GameBoard, like Arena’s methods PlayGame or InspectGame,
call in their main while-loop

so = m_gb.getStateObs();

and establish so to be a reference to m_so. This means that each action applied to so

is applied to m_so. It is important to work with this reference and not to make – e.g. in
gb.updateBoard(so,...) – a copy of object so. This is because a human interaction
with the board (see Sec. 3.12) acts on m_so.10 and the resulting state is only correctly
passed over to the so-context if so is a reference to m_so.

Classes implementing GameBoard should not inherit from JFrame in order to make
GBG runnable also on systems without GUI capabilities. Instead, each class implementing
GameBoard has an element GameBoardXyzGui m_gameGUI which holds all GUI-related
stuff. But m_gameGUI can be also null in the non-GUI case. Example classes implement-
ing GameBoard are: GameBoardTTT, GameBoard2048, ...

3.10 Abstract Class Evaluator

Class Evaluator evaluates the performance of a PlayAgent. Evaluators are called in menu
item Quick Evaluation, during training and at the end of each Compete variant in menu
Competition. It is important to note that Evaluator calls have no influence on the training
process, they just measure the (intermediate or final) strength of a PlayAgent.

In the constructor

public Evaluator(PlayAgent e_PlayAgent, int mode,

int stopEval, int verbose);

the argument mode allows derived classes to create different types of evaluators. These
may test different abilities of PlayAgent.11

A normal evaluation is started by calling Evaluator’s method eval which calls in turn
the abstract method

10since in the context where HGameMove is called, the reference so is not available
11For complex games it is often very difficult or impossible to have a perfect evaluator. Remember that (a)

that the game tree can be too complex to know what the perfect action for a certain state is and that (b) a
perfect Evaluator should evaluate the actions of PlayAgent for every possible state, which would take too long
(or is impossible) for games with larger state space complexity. A partial way out is to have different Evaluator
modes which evaluate the agent from different perspectives.
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abstract protected boolean evalAgent();

and counts the consecutive successful returns from that method. The argument stopEval
sets the number of consecutive evaluations that the abstract method eval_Agent() has
to return with true until the evaluator is said to reach its goal (method goalReached()

returns true). This is used in XArenaFunc’s method train() as a possible condition to
stop training prematurely. This test for a premature training stop is however only done if
stopTest>0 and stopEval>0.12

Method eval_Agent() needs to be overridden by classes derived from Evaluator. It
returns true or false depending on a user-defined success criterion. In addition, it lets
method double getLastResult() return a double characterizing the evaluation result
(e. g. the average success rate of games played against MaxN player).

Concrete objects of class Evaluator are usually constructed by Arena’s factory method

abstract public Evaluator makeEvaluator(PlayAgent e_PlayAgent,

int stopEval, int mode, int verbose);

Example classes derived from Evaluator: EvaluatorTTT, Evaluator2048, ...
More details on how to set up a new evaluator are in Sec. 8.10.

3.11 Abstract Class Arena

Class Arena is an abstract class for loading agents and playing games. Its constructors
are

public Arena(String title, boolean withUI);

public Arena(String title, boolean withUI, boolean withTrainRights);

If argument withTrainRights is true, then the constructed Arena object will have train
rights (see below).

Why is Arena an abstract class? – It has to create an object implementing interface
GameBoard, and this object will be game-specific, e. g. a GameBoardTTT object. To
create such an object within the general Arena-code, the factory method pattern is used:
Arena defines the abstract methods

abstract public GameBoard makeGameBoard();

abstract public Evaluator makeEvaluator(...);

The first method is a factory method for GameBoard objects. The second method is a
factory method for Evaluator objects. Both will be implemented by classes derived from
Arena. That is, a derived class ArenaTTT can be very thin, it just implements the methods
makeGameBoard() and makeEvaluator() and lets them return (in the example of TicTac-
Toe) GameBoardTTT and EvaluatorTTT objects, resp.

Class Arena has in addition the factory method

public Feature makeFeatureClass(int);

12stopTest and stopEval are members of ParOther.
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If it is not overridden by derived classes, it will throw a RuntimeException (no game-
tailored object implementing the Feature interface is available). If a class derived from
Arena wants to use a trainable agent requiring Feature (e. g. TDAgent) then it has to
override makeFeatureClass.

Class Arena has similarly the factory method

public XNTupleFuncs makeXNTupleFuncs();

which can be used to generate a game-tailored XNTupleFuncs object, if needed (if agents
TDNTuple3Agt or SarsaAgt are used ). If not overridden, it will throw a RuntimeException.

Class Arena has the following functionality:

• choice of agents for each player (load or set),

• specifying parameters for agents (except parameters for training),

• playing games (AI agents & humans),

• evaluating agents, competitions (one or multiple times),

• inspecting the move choices of an agent,

• logging of played games (option for later replay or analysis),

• a slider during agent-agent game play to control the playing velocity,

• tournaments (round-robin, ..., Elo, Glicko, ...).

• See Sec. 9 Open Issues for planned extensions to the Arena functionality.

Class Arena has in method run() a long switch statement on member Task taskState

which takes one of the possible Task values (PARAM, TRAIN, COMPETE, ...) and controls what
Arena is actually doing.

If class Arena has train rights then it has this additional functionality:

• specifying all parameters for agents (including parameters for training),

• training agents (one or multiple times),

• saving agents.

Examples of non-abstract classes derived from Arena: ArenaTTT, Arena2048, ...
They usually have a method

public static void main(String[] args)

for starting a specific game.
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3.12 Human interaction with the board and with Arena

During game play: How is the integration between user actions (human moves) and AI
agent actions implemented?

If GameBoard request an action from Arena, then its method isActionReq() returns
true. This causes the selected AI to perform a move. If on the other hand a human interac-
tion is requested, Arena issues a setActionReq(false) and this causes isActionReq()

to return false as well. GameBoard then waits for GUI events until a user (human) action
is recorded. This should trigger GameBoard’s HGameMove. GameBoard’s HGameMove is
responsible for checking whether the human action is legal (isLegalAction()).13 If so,
then GameBoard’s HGameMove issues an advance(ACTIONS). Method advance(ACTIONS)

opens the possibility for invoking random elements from the game environment (e. g.
adding a new tile in 2048), if necessary.

It is also important for a second reason that GameBoard’s HGameMove calls advance():
Some games (e.g. ConnectFour, Sim) can only detect a win- or a lose-situation of a state
correctly, if the state was reached via advance(). This is because it is much simpler to
detect whether the last action created a win- or a lose-pattern than it is to scan the whole
board for such patterns.

When all this has happened, GameBoard sets its internal state such that isActionReq()
returns true again. Thus it asks Arena for the next action and the cycle continues. Finally,
Arena detects an isGameOver()-condition and finishes the game play.

3.13 The Param Classes

Each agent or group of agents has associated classes for setting its parameters. Table 2
gives an overview of these param classes. These classes come in two flavours:

...Params For example, class TDParams holds the parameters for all parameters related
to TD (Temporal Difference learning). It holds additionally the GUI (param tab) to set
them. Similar for all other ...Params classes. These classes are usually derived from
Frame or JFrame and as such their objects tend to be rather big.

Par... For example, class ParTD holds solely the parameters related to TD. Thus, objects
of class Par... are much smaller and can be easily copied, attached to other objects,
passed to other methods, saved and loaded.

It is advisable to use the classes ...Params only once for the multi-pane Param Tabs
window. For all other use cases (inside agents, loading and saving to disk, ...) you should
use the Par... variant.

Classes ParOther and OtherParams hold parameters relevant for all agents in one
way or the other. Among these parameters are:

• the evaluator modes to use during quick evaluation (Quick Eval Mode) or during
training (Train Eval Mode),

13see method HGameMove(x,y) in GameBoardTTT for an example.
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Table 2: The Param classes in GBG.

Par... ...Params related agents

ParTD TDParams TDAgent, TDNTuple3Agt, TDNTuple4Agt, SarsaAgt
(TD settings)

ParNT NTParams TDNTuple3Agt, TDNTuple4Agt, SarsaAgt (n-tuple
[Lucas, 2008] & temporal coherence [Beal and Smith,
1999] settings)

ParMaxN MaxNParams MaxNAgent [Korf, 1991], ExpectimaxNAgent and
wrappers (Sec. 3.5.2)

ParMC MCParams MCAgent
ParMCTS MCTSParams MCTSAgentT
ParMCTSE MCTSEParams MCTSExpectimaxAgent
ParEdax EdaxParams Edax parameter (only Othello)
ParRB RBParams Replay buffer parameters (all trainable agents)
ParWrapper WrapperParams Wrapper parameters (all agents) (Sec. 3.5.2)
ParOther OtherParams Other parameters (all agents)

• parameters relevant for all trainable agents (numEval, Episode Length, Choose Start
01, Learn from RM),

See GBG Help for more detailed information.

3.14 The ACTION Classes

There are three classes (public subclasses of class Types) for specifying actions:

ACTIONS is an action specified by an int and a Boolean predicate randomSelect whether
it was selected by a random move or not.

ACTIONS_ST is derived from ACTIONS and has additionally the ScoreTuple of this action.

ACTIONS_VT is derived from ACTIONS and has additionally a value table for all available
actions, the value of this action and the ScoreTuple of this action.

3.15 GBG Starter Classes

3.15.1 GBGLaunch

GBGLaunch is the class that allows to launch all the games implemented in GBG. This
can be done either via GUI or via command line arguments. See GBG Help, Sec. GBG
Launcher, for details.

Note that the third parameter (either T or P) of GBGLaunch’s main controls whether
Arena is started with train rights or without. Default is T.

If a game is scalable, i.e. it comes in different variants, the scalable parameters may
be specified in the launcher GUI prior to calling the game.
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3.15.2 GBGBatch

GBGBatch is the class that allows to run (time-consuming) tasks in batch mode, usually
without any GUI. GBGBatch is completely configurable via command line arguments. See
See GBG Help, Sec. GBG Batch, for more details.

3.15.3 SetupGBG

SetupGBG is the base class for both GBGLaunch and GBGBatch and bundles common
functionality.

4 Games with Rounds

Poker, Kuhn Poker and Blackjack are games where an episode consists of several rounds.
All other games in GBG do not have rounds (i.e. each episode is exactly one round).

For round-based games: If a round is completed, a new round with completely new
settings starts, only the chips of the players remain what they were at the end of last round.
Two things are necessary to change in the general interface:

1. Signaling the end of round (because a MC rollout may want to stop there and a TD
learning cycle may NOT transport the value from the successor state in the new
round back to the end-of-round-state).

2. A mechanism to stop the game play in the GameBoard at the end-of-round-state
(after showdown, to let the user watch the round result) and – only after the user has
hit the „Continue“ button in the GameBoard – continue to the next state, which is the
start of a new round.

To achieve this, we add the following to the general GBG part:

• New methods for interface StateObservation

– boolean isRoundOver()

– void setRoundOver(boolean)

– void initRound()

• For games with rounds we change the methods advance and its helper methods
advanceDeterministic & advanceNondeterministic: If it comes to an end-of-
round-condition, only call setRoundOver, but DO NOT call initRound→ the state
remains in an artificial round-over position after showdown: the cards are all open on
the table and the resulting distribution of the chips in the pot is calculated. But the
transition to the first state of the new round is not yet made.

• This transition is now delegated to Arena’s PlayGame() where the relevant part in its
while-loop reads:
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...

actBest = pa.getNextAction2(...)

so.advance(actBest)

...

gb.updateBoard(so, ...) // which may stop if so.isRoundOver()

...

if (so.isRoundOver() && !so.isGameOver()) so.initRound();

if(so.isGameOver()) {

...

break; // out of while

}

• Now GameBoard’s updateBoard(so,...) may stop if it detects so.isRoundOver()
and may continue only after the user has hit the „Continue“ button.

5 Games with Partial States

Poker, Kuhn Poker and Blackjack are imperfect-information games, that is, games where
each player has only partial information about the current state. We call this a partial state.
As an example consider a state in Kuhn Poker where the player only knows his own card
(but not the opponent’s card). All other games in GBG are perfect-information games.

When an agent gets a state of an imperfect-information game, it gets only the partial
state, that is, a state where the elements of other players are hidden (i. e. by replacing
their cards with empty cards or null values). If the episode ends (or if the agent reasons
about the different possibilities), the missing elements are completed (either by random
completion or by walking through all possibilities).

The base interface PartialState of StateObservation has the methods to implement this
behavior:

• StateObservation partialState()

• boolean isPartialState(...)

• ArrayList<ACTIONS> getAvailableCompletions(...)

• Tuple<StateObservation,Double> completePartialState(...)

See the JavaDoc of PartialState for further information.
PartialState’s default implementation for perfect-information games is in class Par-

tialPerfect: partialState() returns just this, isPartialState(...) returns always false and
completePartialState(...) returns <this,1.0>. PartialPerfect is a base class of Observer-
Base.
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6 JUnit Tests

Package test of GBG offers various software tests which are runnable within the JUnit
framework.

Packages test/games, test/ludiiInterfaceOthello, test/tools offer quick-run-
ning tests for various aspects of the GBG software. These tests are usually strict, i.e. if
any of them fails, there is usually something wrong with the tested software part.

Package test/controllers offers various tests for the agents in GBG. Some of them,
especially in TDNTuple3AgtTest, have a longer runtime (up to 25 min) since they may train
a complete TDNTuple3Agt and test whether the resulting agent matches some predefined
evaluation thresholds. Due to the stochastic nature of agent training, these tests are not
strict, i.e. there is a low probability that a certain agent may not pass the evaluation thresh-
old. If it misses the threshold only by a small margin, the user might try to run this test
again. If it misses the threshold by a large margin, there is usually something wrong with
the tested software part.

7 Design Principles

The development of GBG is based on design principles that should help to write well-
maintainable, versatile and error-free code:

7.1 Separate GUI from core GBG

Have a clean separation of GUI elements and core GBG functionality. It should be possible
to perform time-consuming GBG tasks on different machines, but not all machines are
capable of executing GUI code (X11, Swing etc.). Therefore, the core GBG functionality
should be runnable without any GUI elements. GBG classes should not inherit from GUI
classes (like JFrame, JPanel). Instead, GUI elements, where necessary, should be optional
members of GBG classes. ’Optional’ means that these members may be null without
obstructing any GBG core functionality. Examples:

• Class Arena has the optional member ArenaGui. ArenaGui extends JFrame.

• Class ParMC has the optional member MCParams. MCParams extends Frame.

When a batch program like GBGBatch is run, it should not need any GUI elements. Then
all these optional parameters are left at their initial value null and the program runs even
on machines without X11.

7.2 Number the Players with 0, 1, 2, . . .

Players should be numbered with 0, 1, 2, . . .. Do not use the numbering 1, 2, 3, . . ., because
this needs transformations in all cases where we have arrays over players.14 The code is

14For 2-player games there is also the string constant String[] GUI_2PLAYER_NAME = {"X", "O"}, but
this is only for display purposes in the GUI.
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less well-maintainable, since we might be unclear in which player-numbering scheme we
are.
As a convention, always player 0 will start a game episode.

7.3 Copy Constructor for StateObservation

All classes StateObserverXYZ implementing StateObservation should have a copy con-
structor and a method copy(). This is to ensure that really all elements of the derived
class are copied.

Each class derived from StateObservation should usually extend ObserverBase.
Then the first line of the copy constructor should be super(other); in order to guar-

antee that all elements of ObserverBase are copied.
newState = new StateObserverXYZ(this); and
newState = this.copy();

do the same. The latter is just a shorthand for the former.
If elements of StateObserverXYZ are complex objects (lists or arrays) do not forget to

use the appropriate clone()-operations.

It is usually a bit faster (much faster in the case of Othello!) to use in the copy con-
structor other.availableActions.clone() instead of setAvailableActions(). Note
that the clone operation makes a copy of the ArrayList

ArrayList<ACTIONS> availableActions,
but not of the actions contained in it. This is usually OK, since a state will not change the
actions contained in availableActions.

7.4 Avoid Excess Copying

Think whether copying of elements is really required.
It may slow down operation. And it may be a cause of errors, if it is somehow forgotten

in a part of the code to copy elements, but another part of the code silently assumes that
they have been copied.

Of course there are circumstances where copying is a must, but use it only if necessary.

7.5 Loading and Saving Agents

All agents that store parameters should override the interface method
fillParamTabsAfterLoading().

This ensures that the stored parameters appear immediately in the Param Tabs.
All agents that have transient members should override the interface method

instantiateAfterLoading().
This ensures that transient members are properly initialized.
See also Sec. 8.6 and 8.13.
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8 Use Cases and FAQs

8.1 My first GBG project

Follow the install and configuration tips from the GitHub Wiki:
https://github.com/WolfgangKonen/GBG/wiki – Install and Configure

in order to install the GBG framework.
Run GBGLaunch as Java Application. Once started, you can use all functionality of

Arena (e. g. play, inspect, compete, train, see Sec. 3.11) for all games registered in
GBGLaunch. For more detailed information on how to train an agent see Sec. 8.3.

8.2 I have implemented game XYZ and want to use AI agents from GBG –
what do I have to do?

As a game developer you have to implement the following five interfaces for your game:

• StateObserverXYZ implements StateObservation

• GameBoardXYZ implements GameBoard

• EvaluatorXYZ extends Evaluator

• FeatureXYZ implements Feature, Serializable (only needed, if you want to
use the trainable agent TDAgent, see Sec. 8.8).

• XNTupleXYZ extends XNTupleBase implements XNTupleFuncs, Serializable

(only needed, if you want to use the trainable n-tuple agent TDNTuple3Agt or SarsaAgt,
see Sec. 8.9).

Once this is done, you only need to write a very ’thin’ class ArenaXYZ with suitable
constructor

public ArenaXYZ(String title, boolean withUI, boolean withTrainRights)

Class ArenaXYZ overwrites the abstract methods of class Arena with the factory pattern
methods

public GameBoard makeGameBoard() {

gb = new GameBoardXYZ(this);

return gb;

}

public Evaluator makeEvaluator(PlayAgent pa, GameBoard gb,

int stopEval, int mode, int verbose) {

return new EvaluatorXYZ(pa,gb,stopEval,mode,verbose);

}

If needed, you should overwrite the methods (see Sec. 8.8 and Sec. 8.9)
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public Feature makeFeaturClass(int featmode) {

return new FeatureXYZ(featmode);

}

public XNTupleFuncs makeXNTupleFuncs() {

return new XNTupleXYZ();

}

as well.
If you do not want to use the agents TDAgent and TDNTuple3Agt needing these fac-

tory methods, you may just implement stubs throwing suitable exceptions:

public Feature makeFeaturClass(int featmode) {

throw new RuntimeException("Feature not implemented for XYZ");

}

public XNTupleFuncs makeXNTupleFuncs() {

throw new RuntimeException("XNTupleFuncs not implemented for XYZ");

}

You can inspect class ArenaTTT in order to see for all this an example specific to the
game TicTacToe.

Finally you need to register your new game for GBGLaunch and GBGBatch To do so,
add a few lines of code in the switch statements of SetupGBG’s methods startGBG, similar
to the statements for the other games.15

Then your game will show up the next time you start GBGLaunch and you can use
for your game all the functionality laid down in Arena and all the wisdom of the AI agents
implementing PlayAgent. Cool, isn’t it?

8.3 How to train an agent and save it

1. Create and launch an Arena object with train rights

2. Select a trainable agent and set its parameters

3. Set general training-specific parameters:

• maxTrainNum: Train games = number of training episodes (main GBG window,
Arena),

• numEval: after how many episodes an intermediate evaluation is done (Other
pars tab),

• epiLength: Episode length = maximum allowed number of moves in a training
episode.16 (Other pars tab).

15If your game has scalable parameters, you may want to add also appropriate code in the switch statements
of SetupGBG’s method setDefaultScaPars and GBGLaunch’s method adjustScaParGuiPart.

16If epiLength is reached, the game is stopped and PlayAgent.estimateGameValue() is returned (either
up-to-now-reward or estimate of current + future rewards). If the game terminates earlier, the final game score
is returned. Set to –1, if no premature stop is allowed.
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4. Train the agent & visualize intermediate evaluations.

5. Optional: Inspect V = inspect the value or Q-function of an agent (how it responds
to certain board situations).

6. Save the agent via menu item Agent N – Save Agent N.

Note that also agents like MCAgentN, MCTSAgentT and so on are ’trainable’. That is,
if Train or MultiTrain is executed on them, they will perform the desired number of self-play
episodes. Of course these agents do not really ’train’ i. e. modify their behavior. It is just
for the side effects: (i) the number of moves per second – train time, excluding evaluation
time – is measured and reported and (ii) the agents are repeatedly evaluated.

8.4 Which games are currently implemented in GBG?

See GBG Wiki - Board Games for the actual list of games implemented in GBG.

8.5 Which AI’s are currently implemented for GBG?

See Sec. 3.5.1 and Table 1 for a list of all AI’s (agents), i. e. classes that implement interface
PlayAgent.

8.6 How to write a new agent (for all games)

Of course your new agent NewAgent has to implement the interface PlayAgent. It is strongly
recommended that you derive your new agent from AgentBase to inherit basic functions
with their default implementations. These functions can be overridden if necessary.

The new agent should as well implement the interface Serializable (java.io) to be load-
able and savable. – If the agent needs instantiation after loading or parameter tabs set-
ting after loading, add this functionality in member methods instantiateAfterLoading

(Sec. 8.13) and fillParamTabsAfterLoading() (Sec. 8.14). If nothing is needed here,
AgentBase will provide appropriate (empty) dummy stubs for these methods.

There are a few places in the code where the new agent has to be registered:

• Types.GUI_AGENT_LIST: Add a suitable agent nickname "nick". This is how the
agent will appear in the agent choice boxes.

• XArenaFuncs.constructAgent(): Add a suitable clause
if (sAgent.equals("nick")) ...

• XArenaFuncs.fetchtAgent(): Add a suitable clause
if (sAgent.equals("nick")) ...

• XArenaTabs.showParamTabs(): Add a suitable clause
if (selectedAgent.equals("nick")) ...
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If the agent has new sensible default parameters, they may be added to function
setParamDefaults in classes TDParams, NTParams or other Param classes.

If the agent requires a whole set of new parameters which do not fit into the exist-
ing Param classes, then construct new Param classes ...Params and Par... and add
...Params to the Param tab.

8.7 What is the difference between TDAgent, TDNTuple3Agt and TDNTu-
ple4Agt?

All these agents are trained by TD (temporal difference) learning. They differ only in their
feature vectors: For TDAgent the user has to specify all features through a Feature object
(see Sec. 3.7), which contains method

public double[] prepareFeatVector(StateObservation so).

On the other hand, the classes TDNTuple*Agt construct their features automatically from
the given n-tuple sets and position values (see Sec. 8.9 and Appendix C.1). The differences
between the three n-tuple agents are:

TDNTuple3Agt is now deprecated, but retained in the GBG software distribution to keep
some older agents loadable. It has the following advantages over the former TDNTu-
ple2Agt (no longer part of the GBG distribution): TD-learning is only based on own
experiences of the agent, not on those of the other players. This allows the same
TD algorithm to be used for N = 1, 2, 3, . . . players. It includes the so-called Final
Adaptation RL (FARL) method which is described in detail in Konen and Bagheri
[2020a,b].

TDNTuple4Agt is the actual TD-n-tuple agent. It keeps all the advantages of TDNTu-
ple3Agt plus that it uses class NTuple4 which is a generalization of NTuple2 in the
sense that every n-tuple cell may have a different number of position values. This
allows for the game Rubik’s Cube representations that have memory consumption
lower by a factor of 5-10.

8.8 How to apply TDAgent to a new game

Suppose you have implemented a new game XYZ and want to write a TD agent (temporal
difference agent) which learns this game. What do you have to do? – Luckily, you can re-
use most of the functionality laid down in class TDAgent (see Sec. 3.5). But a few things
remain to be done:

1. Write a new class derived from Feature

public class FeatureXYZ implements Feature, Serializable

This is the only point where some code needs to be written: Think about what fea-
tures are useful for your game. In the simplest case this might be the raw board
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positions, but these features may characterize the win- or the lose-probability for a
state only rather indirectly. Other patterns may characterize the value (or the dan-
ger) of a state more directly. For example, in the game TicTacToe any two-in-a-line
opponent pieces accompanied by a third empty position pose an immanent threat. A
typical feature may be the count of those threats. Another way to form features is to
count the number of pieces for each player and let a network learn weights for it. Or
the number of pieces in certain positions on the board.17

2. Add to ArenaXYZ the overriding method

public Feature makeFeatureClass(int featmode) {

return new FeatureXYZ(featmode);

}

TDAgent will generate by reinforcement learning a mapping from feature vectors to
game values (estimates of the final score, see Sec. 3.6.3) for all relevant game states.

The class ArenaTTT (together with FeatureTTT) may be inspected to view a specific
example for the game TicTacToe.

8.9 How to apply TDNTuple4Agt agent to a new game

Suppose you have implemented a new game XYZ and want to write a TD (temporal differ-
ence) agent using n-tuples which learns this game. What do you have to do? – Luckily,
you can re-use most of the functionality laid down in class TDNTuple4Agt (see Sec. 3.5).
But a few things remain to be done:

1. Write a new class that implements XNTupleFuncs (Sec. 3.8) and is derived from
XNTupleBase

public class XNTupleFuncsXYZ extends XNTupleBase

implements XNTupleFuncs, Serializable

Here you have to code some rather simple things like getNumCells(), the number
of board cells in your game, and getNumPositionValues(), the number of position
values that can appear in each cell. This is for example 9 and 3 (O/empty/X) in the
game TicTacToe.

Next you implement the BoardVector-creating method

BoardVector getBoardVector(so)

17The drawback of all these features is that they are not very generic: The user has to code the features in a
game-dependent way for each new game again. – N-tuple sets (Lucas [2008], Thill et al. [2014], Bagheri et al.
[2015], Thill [2015]) are another way of generating a large number of features in a generic way (but they are
not part of TDAgent, see Sec. 8.9, Appendix C and TDNTuple3Agt instead).
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which transforms a game state so into a board vector (length: getNumCells()). See
Appendix C.1 for board cell numbering and a specific example.

If your game has symmetries (the game TicTacToe has for example eight symmetries,
4 rotations × 2 mirror reflections), you implement the method

BoardVector[] symmetryVectors(BoardVector boardVector, int n)

which returns in case ’n=0 or n=s’ for a given board vector all symmetric board vectors
(including itself). If the game has no symmetries, it returns just the board vector itself.
If 0 < n < s, this method returns the board vector itself plus n-1 (randomly selected)
of the s symmetry vectors. (This n-option is for games where the full set of symmetry
vectors is too big (e.g. Sim and Nim). n is set via element nSym in the NT pars
(n-tuple params) tab.)

There is also a sibling method

BoardVector[] symmetryVectors(StateObsWithBoardVector, int n)

which is for games where the symmetric states can only be constructed if access
to the underlying StateObservation object is provided. This is for example the case
in the games Sim and Rubik’s Cube. For other games where this is not necessary,
you just implement nothing. Then the default implementation from XNTupleBase is
taken:

XNTupleBase.symmetryVectors(StateObsWithBoardVector, int n)

which just calls symmetryVectors(BoardVector, int n).

The method

HashSet adjacencySet(int iCell)

returns the set of cells adjacent to the cell with number iCell. Whether adjacency
is a 4-point- or an 8-point-neighborhood or something else is defined by the user.
This function is used by TDNTuple4Agt when creating the shape of new n-tuples by
random walk.

Finally you implement

int[][] fixedNTuples()

a function returning a fixed set of n-tuples suitable for your game. If you do not need
fixed n-tuple sets, you may leave fixedNTuples() unimplemented (i. e. let it throw
an exception) and select in the NT pars (n-tuple params) tab the check box Random
n-tuple generation.

2. Add to ArenaXYZ the overriding method
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public XNTupleFuncs makeXNTupleFuncs() {

return new XNTupleFuncsXYZ();

}

Class ArenaTTT (together with XNTupleFuncsTTT) may be used as a template, show-
ing the implementation for the game TicTacToe.

TDNTuple4Agt offers several possibilities to construct n-tuples:

(a) using a predefined, game-specific set of n-tuples (see fixedNTuples() above),

(b) random n-tuples generated by random-cell-picking (the cells in an n-tuple are in gen-
eral not adjacent), and

(c) random n-tuples generated by random walk (every cell in each n-tuple is adjacent to
at least one other cell of this n-tuple; needs method adjacencySet, see above).

A cell may (and often should) be part of several n-tuples.
The same remarks apply if you want to specialize Sarsa4Agt or QLearn4Agt to a new

game.
See Appendix C for further information on n-tuples.

8.10 How to set up a new Evaluator

Setting up a good evaluator for a game is not an easy task, because the agent’s strength
in playing a game depends on its reaction to all possible game states, weighted with the
relevance of those states. To evaluate this is for most realistic games an intractable task.
It can often be only approximated by having different evaluators looking at the problem
from different perspectives. Therefore, the Evaluator concept in GBG allows for different
evaluator modes.

When testing a deterministic agent against another deterministic opponent, they will
always play the same episode, so that the evaluation covers only a tiny part of the complete
game tree. And there are only three possible outcomes: win, tie or loss, i.e. {+1,0,-1}. As a
consequence it is difficult to decide whether an agent improves or not. A little improvement
is achieved when the start state is varied (randomly or by looping through a prescribed set
of states). Then the visited fraction of the game tree is slightly bigger. More importantly,
the evaluation result is a floating point number (win rate, averaged over a set of different
episodes), which signals better than {+1,0,-1} whether an agent improves or not. Therefore,
most classes derived from Evaluator should have modes with different start states.

These general aspects should be kept in mind when constructing for a game a new
evaluator derived from Evaluator. It is often a good idea to specify different modes where
the agent plays against different opponents, either from the default start state or from a set
of start states.

When deriving a concrete class from Evaluator, you have to implement the abstract
methods of class Evaluator, the most important ones are:

• getAvailabelModes(): returns an int[] with all available modes,
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• evalAgent(): run the evaluator with the mode specified in constructor,

• getTooltipString(): return a String (may be multi-line) describing the different
modes (tooltip text of the evaluator mode choice boxes in OtherParams).

A typical constructor EvaluatorXYZ extends Evaluator looks like:

public EvaluatorXYZ(PlayAgent e_PlayAgent, GameBoard gb, int stopEval,

int mode, int verbose) {

super(e_PlayAgent, mode, stopEval, verbose);

...

}

8.11 Scalable GUI fonts

When writing a new GUI element, this GUI element may be shown on display screens with
largely differing screen sizes. In order to have legible fonts on all such screen sizes, it is
advisable NOT to use explicit font sizes like 12, 14, .... Instead it is better to use variable
font sizes

int Types.GUI_HELPFONTSIZE

int Types.GUI_DIALOGFONTSIZE

and similar (see Types.java). To define a new font, use for example the form

Font font=new Font("Arial",0,(int)(1.2*Types.GUI_HELPFONTSIZE));

where the factor 1.2 is optional, if you want to adjust the appearance of the associated text
element.

The variable font sizes are automatically scaled to be a certain portion of the screen
width. If you want all fonts to appear bigger or smaller, you may set

double Types.GUI_SCALING_FACTOR

in Types.java to a value slightly higher or lower than 1.0.

8.12 What is a ScoreTuple?

A ScoreTuple has a vector

public double[] scTup

of size N containing the game score or game value – depending on context – for each
player 0, 1, . . . , N − 1.

The class has methods to combine the current ScoreTuple this with a second Score-
Tuple tuple2nd according to one of the following operators:

AVG weighted average or expectation value: add tuple2nd, weighted with a certain prob-
ability weight. The probability weights of all combined tuples should sum up to 1.
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MIN combine by retaining this ScoreTuple, which has in scTup[playNum] the lower value.

MAX combine by retaining this ScoreTuple, which has in scTup[playNum] the higher
value.

DIFF subtract from this all values in the other tuple2nd.

SUM add to this all values from the other tuple2nd.

8.13 What is the purpose of PlayAgent’s instantiateAfterLoading()?

When saving an agent to disk, some agents may not save all their members. Reasons
for this are: (a) the member may not be serializable, (b) the member would make the
saved agent too big and is not needed for reconstructing it. If the agent is re-loaded from
disk, these members will be 0 or null. To fully instantiate the agent, we need the method
instantiateAfterLoading(). This will for example allocate memory for an array, read in
static opening books or do other things. Having this method as part of PlayAgent’s interface
makes the code simpler in all cases where we need this instantiation.18

If an agent needs nothing to be done here, the implementer of the agent has nothing
to do as well: The base class AgentBase – from which the agent should be derived – has
a dummy stub for this method: it just does nothing.

See also Sec. 8.6.

8.14 What is the purpose of PlayAgent’s fillParamTabsAfterLoading()?

Similarly, most agents will have parameters which are restored from disk. To make these
parameters visible, the appropriate param tabs need to be filled with their values. Method
fillParamTabsAfterLoading() has the appropriate code for this.

If an agent needs nothing to be done here, the implementer of the agent has nothing
to do as well: The base class AgentBase – from which the agent should be derived – has
a dummy stub for this method: it just does nothing.

See also Sec. 8.6.

9 Open Issues

The current GBG class framework is still under development. The design of the classes
and interfaces may need further reshaping when more games or agents are added to the
framework. There are a number of items not fully tested or not yet addressed:

• Undo/redo possibilities

• Game balancing

18Before, a lengthy switch-statement with many cases and agent-dependent casts was needed.
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• Client-server architecture for game play via applet on a game page. Option for a ’hall
of fame’. An example for the game Sim is available from TU Wien 19.

• Replay memory for better training: This idea has been used by DeepMind in learning
Atari video games. Played episodes are stored in a replay memory pool and used
repeatedly for training.

• The extension of TD-agents to N -player games with N > 2 is fully functional but so
far tested only on 3-player Sim in a near-trivial configuration (results nearly always
in a tie). It is desirable to test it on non-trivial 3-player games. One option may be a
3-player Sim with pre-defined coalition (similar to Skat) or the game Skat itself.

19http://www.dbai.tuwien.ac.at/proj/ramsey
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A Appendix: Interface StateObsNondeterministic

If a game is nondeterministic it has random elements (like rolling the dices in a dice game
or placing a new tile in 2048). Then, advance(ACTIONS) is additionally responsible for
invoking such random actions and reporting the results back in the new state. Examples:

• For a dice-rolling game: the game state is the board & the dice number.

• For 2048: the game state is just the board (with the random tile added).

Interface StateObsNondeterministic is derived from StateObservation and provides
functionality around nondeterministic actions. It splits the usual advance() in two parts:
advanceDeterministic() and advanceNondeterministic(). The possible random ac-
tions in the non-deterministic part are accessible via getAvailableRandoms(). Exam-
ples using or implementing StateObsNondeterministic are ExpectimaxNAgent and Sta-
teObserver2048.

Why do we need the split of advance(ACTIONS) into the two parts

advanceDeterministic(ACTIONS)

advanceNondeterministic(),

why can we not simply pack the functionality of both into advance(ACTIONS)? – This is be-
cause some agents, most dominantly ExpectimaxNAgent and MCTSExpectimaxAgent
handle the deterministic and the nondeterministic part of an action differently: Usually an
agent selects that deterministic action that maximizes the game value. For the nondeter-
ministic part it is different: The agent has no control what nondeterministic action will take
place – this is dictated by the game environment. Thus, the agent has to average the value
over the different possible nondeterministic actions.

If in a certain usage of StateObservation the distinction between the deterministic part
and the nondeterministic part is not needed, the user may call advance(ACTIONS), which
first calls advanceDeterministic(ACTIONS) and then advanceNondeterministic().

Interface StateObsNondeterministic has additionally the methods

isNextActionDeterministic()

getNextNondeterministicAction()

for fine-grained control.

B Appendix: Other Game Value Functions

Sec. 3.6 and 3.6.3 have introduced with

StateObservation.getGameScore(int i)

PlayAgent.getScore(StateObservation sob)

the main functions to retrieve a game score or game value, resp. There are two other
functions delivering a game value; they are only required for more advanced needs:
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• Interface StateObservation delivers with

getReward(int i, boolean rgs)

a function returning the game reward. This reward is simply the same as game
score in case rgs==true (’reward is game score’), but it can be also another (game-
specific) function in case rgs==false. This opens the possibility that the reward
might be something different from game score. Example: In the game 2048, a pos-
sible reward for a state can be the number of empty tiles in that state.

• Interface PlayAgent delivers with estimateGameValue(so) a function (perhaps train-
able / adjustable from previous experiences) that estimates the future game value
at end of play. The difference to PlayAgent.getScore(StateObservation so):
estimateGameValue(so) may NOT call getScore(so) or getNextAction(so), since
these functions may call estimateGameValue(so) inside (e.g. if a certain episode
length is reached) and this would result in infinite recursion. A simple implementation
can be to return just so.getReward(rgs), but other implementations are possible as
well.

A potential use of pa.estimateGameValue(sob) is to compute in MC or MCTS the
final value of a random rollout in cases where the rollout did not reach a terminal game
state (since the episode lasts longer than the ’Rollout depth’ as it is for example in 2048
often the case).

A second use of pa.estimateGameValue(sob) is in trainable agents, when the maxi-
mum training episode length (if any) is reached.

A third use of pa.estimateGameValue(sob) is in MaxNAgent when the tree depth is
reached but the game is not yet over. Then we call pa.estimateGameValueTuple(sob).

A fourth use of pa.estimateGameValue(sob) is in wrapper MaxN2Wrapper and Ex-
pectimaxWrapper (Sec. 3.5.2) when the prescribed n-ply tree depth is reached. These
wrappers implement estimateGameValue(sob) and let it return the wrapped agent’s game
value via

wrappedAgt.getScore(sob)

where sob is the state at the leaf node of the wrapper tree.
It is dependent on the class implementing PlayAgent what

estimateGameValue(sob)

actually returns. If it is too complicated to train a value function (or if it is simply not
needed, because for a game like TicTacToe we come always to an end during rollout),
then estimateGameValue(sob) may simply return sob.getReward(rgs).

If we integrate a trainable game value estimation into a class implementing PlayAgent,
then agents that formerly did not need training (Minimax, MC, MCTS, ...) will require train-
ing. They should be after construction in AgentState INIT. How the training is actually done
depends fully on the implementing agent.

Tables 3 and 4 give an overview over all functions in GBG returning a game score or a
game value. Summary of main facts:

40



Table 3: Summary of all game score and game value functions in GBG.
method remark

class StateObservation (so)
getGameScore(int i) game score of this from perspective of player i
getGameScoreTuple() a ScoreTuple with game scores for all players
getReward(int i,rgs) game reward of this from perspective of player i
getRewardTuple(rgs) a ScoreTuple with rewards for all players
getStepRewardTuple() a ScoreTuple with step rewards for all players

class PlayAgent (pa)
getScore(so) the game value = agent’s estimate of so’s final score
getScoreTuple(so) a ScoreTuple with game values for all players
estimateGameValue(so) agent’s estimate of game value for so
estimateGameValueTuple(so) a ScoreTuple with agent estimates for all players

Table 4: Deprecated game score and game value functions in GBG.
method remark

class StateObservation (so)
getGameScore() (deprecated) use so.getGameScore(so.getPlayer())

getGameScore(refer) (deprecated) use so.getGameScore(refer.getPlayer())

getReward(rgs) (deprecated) use so.getReward(so.getPlayer(),rgs)

getReward(refer,rgs) (deprecated) use so.getReward(refer.getPlayer(),rgs)

41



• The methods in Table 4 are deprecated because they can be expressed equivalently
by other methods as indicated in Table 4. It is better to have a thin interface with
getGameScore(int i) because in this way it is clearer what a class derived from
StateObservation has to implement.

• getReward(i,rgs) returns getGameScore(i), if rgs==true. Otherwise it returns a
specific reward, depending on the nature of the game (whatever the class derived
from StateObservation implements).

• getReward and getGameScore return the cumulative reward and game score for the
StateObservation object this. If the user wants the delta reward, he/she has to
substract the reward of the preceding state.

• getReward is used in all places where agents reason about the next action. This is in
move calculation (getNextAction2), in estimateGameValue... and during training.

• If a game has its StateObservation class derived from ObserverBase and it does not
implement getReward, then default implementations from ObserverBase are taken
which implement the reward just as game score and issue a warning when called
with rgs==true.

• pa.getScore returns the agent’s estimate of the game value, i.e. the estimate of
the final score attainable for pa – assuming perfect play. To calculate this, it may
ask a model (e.g. NN or some weighted piece-position formula), or it may perform
recursive search up to a tree depth / rollout depth, depending on the nature of the
agent. If the maximum depth is reached, it may call estimateGameValue.

• pa.estimateGameValue returns also an game value estimate. But it returns a coarser
estimate, since it may not call getScore back (to avoid an infinite loop).

• All game score, game reward and game value methods have associated ...Tuple

versions: They return instead of a single game score or game value a ScoreTuple
(Sec. 8.12) of N values for all players 0, 1, . . . , N − 1.

• Interface StateObservation delivers with

getStepRewardTuple()

a method that adds a reward for each step (transition). This is a 0-ScoreTuple for all
games except for Rubik’s Cube, where it returns a ScoreTuple with the negative value
CubeConfig.stepReward. This ensures that from two transition sequences leading
to a solved cube the shorter one gets a higher total reward. If the step reward were
not present, endless cycles would occur.
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C Appendix: N-Tuples

C.1 Board Cell Numbering and Board Vectors

Each n-tuple is a list of board cells Lucas [2008]. Board cells are specified by numbers. The
canonical numbering for a rectangular board is row-by-row, from left to right. For example,
a 4× 4 board would carry the numbers

00 01 02 03

04 05 06 07

08 09 10 11

12 13 14 15

Other (irregular) boards may carry other (user-specified) cell numbers. Each choice of
numbering is o.k., it has only to be used consistently throughout the game.

Given the board cell numbering, the method

BoardVector XNTupleFuncs::getBoardVector(StateObservation so)

returns a board vector: Each BoardVector object contains an int[] vector whose length
is the number of board cells

int XNTupleFuncs::getNumCells(),

and the int[] vector carries the position value for each board cell according to the board
cell numbering.20

A cell’s position value is a game-specific coding of all allowed board cell states. It is a
number in {0, 1, 2, . . . , P − 1} with P = XNTupleFuncs::getNumPositionValues().

Example: The canonical board cell numbering for the game TicTacToe runs
from 00 to 08. The position values are 0: O, 1: empty, 2: X. Each BoardVector
object has length 9. For state sA in Fig. 4 the board vector is

bVec = {1, 1, 0, 1, 2, 2, 1, 1, 1};

C.2 N-Tuple Creation

N-tuple sets can be created through explicit specification by the user (n-tuple fixed mode)
or through a random initialization process.

Fig. 5 shows two examples of 4× 4 boards with fixed (user-specified) n-tuple sets. The
canonical cell number is obtained from

4× row_number + col_number
20In the game Sim, the ’board cells’ are the links in the Sim graph. In the game Rubik’s Cube, the ’board

cells’ are the cubie faces (stickers) needed to uniquely define a cube state.
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(a)
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(b)

0 1 2 3

0 3

1 2

0

1

2 3

4

0 1

0 1 2 3

Figure 5: Two examples for n-tuples: (a) 3 n-tuples, (b) 4 n-tuples of varying length and
placement.
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Figure 6: Another example: four 8-tuples on a 6x7 field.
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Example (a) in Fig. 5 is coded in a class derived from XNTupleFuncs as

public int[][] fixedNTuples() {

int nTuple[][]={ {0,1,2,3}, {1,5,6,2}, {0,4,8,9,10,11} };

return nTuple;

}

Example (b) is coded as

public int[][] fixedNTuples() {

int nTuple[][]={ {4,5,6,7}, {2,6,7,3}, {0,4,8,9,13}, {10,11} };

return nTuple;

}

Each n-tuple contains each cell at most once. But a set of n-tuples may (and often
should) contain the same cell multiple times.

The following random initialization processes to create n-tuple sets are provided by the
n-tuple factory:

1. Random points: Cells are picked at random, no cell twice21, no topographical con-
nection. This is often not advantageous because in many board games the neigh-
borhood of a cell is more important for determining its value than an arbitrary other
more distant cell.

2. Random walks: Cells are picked at random, no cell twice, with adjacency constraint.
That is, each cell of the n-tuple list must be adjacent to at least one other cell in the
n-tuple. What adjacent actually means in a certain game is specified by the user
through the XNTupleFuncs method

public HashSet adjacencySet(int iCell);

which returns the set of all neighbors of cell iCell.

C.3 N-Tuple Training and Prediction

How are the n-tuples used to generate features? – Each n-tuple has an associated look-up
table (LUT) of length Pn where n is the n-tuple length and P is the number of position
values each cell might have.

Example: TicTacToe has P = 3 cell position values: {O,-,X}. For an n-tuple
of length n = 2 this leads to 32 = 9 possible LUT entries

{OO, O-, OX, -O, --, -X, XO, X-, XX}

21within the same n-tuple
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These LUT-entries are features. Even for a small number of n-tuples this will generate quite
large number of features. For example in Fig. 5(a), if we assume 3 position values for each
cell, the number of features is 34 + 34 + 36 = 891, because there are 2 4-tuples and one
6-tuple. On a larger board, a more realistic setting would be, for example, 40 n-tuples of
length 8, resulting in 40 · 38 = 262 440 features.

Each feature i in n-tuple ν has an associated weight wν,i. Given a certain board state,
we look first which of those features are active (xν,i = 1) or inactive (xν,i = 0) in that board
state. Then the n-tuple network computes its estimate V (est) of the game value through

V (est) = σ

(
m∑
ν=1

Pn−1∑
i=0

wν,ixν,i

)
(1)

which is a simple a neural net without hidden layer and with a sigmoid function σ(·).22 We
compare the estimate generated by this net with the target game value V prescribed by
TD-learning. A δ-rule learning step with step-size α (gradient descent) is made for each
weight in order to decrease the perceived difference δ = V − V (est) between both game
values (Thill et al. [2014], Thill [2015]).

For complex games it might be necessary to train such a network for several hundred
thousand or even million games in order to reach a good performance. The so-called
eligibility traces are a general technique from TD-learning to speed up learning. They can
be activated in the GBG framework by setting parameter λ > 0 in the TD pars parameter
tab. Further details on eligibility traces are found in Thill et al. [2014].

Once the network is trained, the game value estimate V (est) is used to decide about
the next action.

To further speed up learning, symmetries may be used: Symmetries are transforma-
tions of the board state which lead to board states with the same game value. If weights
for symmetric states are trained simultaneously, this will lead to better generalization of
the trained agent. For example, TicTacToe and 2048 have eight symmetries (4 rotations
× 2 mirror reflections). Instead of performing only one learning step with the board state
itself, one can do eight learning steps by looping through all symmetric states. This may
greatly speed up learning, since more weights can learn on each move and the network
generalizes better.

If the game has symmetries, the user has to code them in XNTupleFuncs method

public BoardVector[] symmetryVectors(BoardVector boardVector, int n);

See Sec. 8.9 for further information on this method.

D Appendix: Multi-Core Threads

GBG supports for several time-consuming operations multi-core (parallel) threads to speed
up calculation. The operations are given in Table 5.

22In TDNTuple4Agt the sigmoid function is always σ = tanh (see helper class NTuple4ValueFunc), so that
V (est) ∈ [−1, 1] holds.

46



Table 5: Summary of various multi-core threads in GBG.
method remark

class MCAgent, MCAgentN
getNextAction_PAR parallelization over available actions
getNextAction_MassivePAR parallelization over available actions AND

over rollouts

class EvaluatorHex
competeAgainstMCTS_diffStates_PAR parallelization over different start states for

eval mode 10 & agent TDNTuple3Agt

class Evaluator2048
eval_Agent two parallelizations over evaluation games

for 2 agents MCTS-Expectimax & Expecti-
maxWrapper

Note that an operation can only be parallelized, if the relevant routines and agents are
thread-safe. This is for example the case for agent TDNTuple3Agt when it is evaluated
(where its method getNextAction2 is needed): This method does not change any data of
this agent, so different threads can use the same TDNTuple3Agt object and call this method
independently. This is what we do in the parallel thread of EvaluatorHex.

On the other hand, an agent like MCTS is not thread-safe, because each call to get-
NextAction2(sob,..) with a different state sob would construct different MCTS tree data.
The only way to parallelize game play with MCTS is that each thread has its own copy of
an MCTS with the parameters given. This is exactly what we do in the two parallel threads
in Evaluator2048.

E Appendix: String Representations of Agents

Table 6 shows and distinguishes different methods for agent string representations.

Table 6: Summary of various agent string representation methods in GBG.
method remark

getName the name given to the constructor of the agent,
e.g. TD-Ntuple-3 (see Types.GUI_AGENT_LIST)

getClass.getSimpleName the simple name of the underlying class,
e.g. TDNTuple3Agt

getClass.getName the full class name,
e.g. controllers.TD.ntuple2.TDNTuple3Agt

stringDescr simple class name + parameter settings
stringDescr2 full class name + additional parameter settings
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Table 7: Summary of all files written by GBG.
filename directory remark

text files
playStats.csv agents/<game>[/<subdir>]/csv statistics of a ’Play’ episode
multiTrain.csv agents/<game>[/<subdir>]/csv multi-training results
theNtuple.txt agents n-tuple configuration (last loading)

binary files
*.agt.zip agents/<game>[/<subdir>] saved agents
*.tsr.zip agents/<game>[/<subdir>]/TSR tournament system results
*.gamelog logs/<game>[/<subdir>] log files

If a class derived from AgentBase does not specify stringDescr and stringDescr2,
then the default implementation from AgentBase is taken, which is only the simple and the
full class name, resp.

F Appendix: Files Written by GBG

Table 7 shows and distinguishes the files written by GBG. Some remarks:

• The file playStats.csv is only written, if Types.PLAYSTATS_WRITING==true. Usu-
ally, this source code variable is set to false to avoid cluttering the file system with
files playStats.csv each time a game episode is played.

• The file theNtuple.txt is not meant for permanent storage. It is only an interme-
diate print-out of a certain n-tuple configuration (perhaps a good-working one gen-
erated by random walk) and enables to copy it into the source code of a game as a
fixed n-tuple mode.

G Parameter Settings for Scheiermann and Konen [2022]

In this appendix we list all parameter settings for the GBG agents used in Scheiermann
and Konen [2022]. Parameters were manually tuned with two goals in mind: (a) to reach
high-quality results and (b) to reach stable (robust) performance when conducting multiple
training runs with different random seeds. The agents listed further down are the best-so-
far agents found for the respective games (best among all agents learning from scratch by
self-play).

The detailed meaning of RL parameters is explained in Konen and Bagheri [2021]:

• Algorithms 2, 5 and 7 in Konen and Bagheri [2021] explain parameters α (learning
rate), γ (discount factor), ε (exploration rate) and output sigmoid σ (either identity or
tanh).
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• Appendix A.3 explains our eligibility method, parameters are: eligibility trace factor λ,
horizon cut ch, eligibility trace type ET (normal) or RESET (reset on random move).
If not otherwise stated, we use λ = 0 (no eligibility trace), and in this case horizon
cut ch and eligibity trace type are irrelevant. If λ > 0, their default is ch = 0.1 and
eligity trace type ET.

• Appendix A.5 explains our TCL method, parameters are: TC-Init (initialization con-
stant for counters), TC transfer function (TC-id or TC-EXP), β (exponential factor in
case of TC-EXP), TC accumulation type (delta or recommended weight-change)

Another branch of our algorithm is the MCTS wrapper, which can be used to wrap TD-
N-tuple agents during evaluation and testing. The precise algorithm for MCTS wrapping is
explained in detail in [Scheiermann and Konen, 2022, Sec. II-B].23 The relevant parameters
are:

• cPUCT : relative weight for the prior probabilities of the wrapped agent in relation to
the value that the wrapper estimates

• dmax: maximum depth of the MCTS tree, if -1: no maximum depth

• UseSoftMax: boolean, whether to use SoftMax normalization for the priors or not

• UseLastMCTS: boolean, whether to re-use the MCTS from the previous move within
an episode or not

Further parameter explanations:

• Appendix C in this document explains n-tuples, parameters are: number of n-tuples,
length of n-tuples, and n-tuple creation mode (fixed, random walk, random points).
Appendix C explains as well symmetries.

• USESYMMETRY: whether to use symmetries or not

• LearnFromRM: whether to learn from random moves or not

• ChooseStart-01: whether to start episodes from different 1-ply start states or always
from the default start state.

• Etrain: maximum episode length during training, if -1: no maximum length.

• Eeval: maximum episode length during evaluation and play, if -1: no maximum length.

In the following we list the parameter settings for the four agents used in Scheiermann
and Konen [2022]. All agents were trained with no MCTS inside the training loop.

If not stated otherwise, these common settings apply to all agents: LearnFromRM
= false, ChooseStart-01 = false, Etrain = −1, Eeval = −1. Wrapper settings during
test and evaluation: MCTS wrapper with cPUCT = 1.0, dmax = −1, UseSoftMax = true,
UseLastMCTS = true.

23As [Scheiermann and Konen, 2022, Sec. IV-E] shows, the MCTS wrapper may be used as well during
training, but it may require large computation times.
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G.1 Othello 8x8

α = 0.2, γ = 1.0, ε = 0.2, εfinal = 0.1, λ = 0.5, horizon cut ch = 0.1, eligibility trace type
ET, output sigmoid σ = tanh. N-tuples: 100 7-tuples created by random walk. TCL acti-
vated with transfer function TC-EXP, TC-Init= 10−4, β = 2.7 and rec-weight-change accu-
mulation. USESYMMETRY, Choose-Start-01 and LearnFromRM active. 250,000 training
episodes.
Agent filename in GBG: TCL4-100_7_250k-lam05_P4_nPly2-FAm_A.agt.zip

G.2 ConnectFour

α = 3.7, γ = 1.0, ε = 0.1, εfinal = 0.0, λ = 0.0, output sigmoid σ = tanh. N-tuples:
FIXEDNTUPLEMODE=1 (70 specific 8-tuples). TCL activated with transfer function TC-
EXP, TC-Init= 10−4, β = 2.7 and rec-weight-change accumulation. USESYMMETRY and
LearnFromRM active. 6,000,000 training episodes.
Agent filename in GBG: TCL-EXP-NT3-al37-lam000-6000k-epsfin0-noFA.agt.zip

G.3 Rubik’s Cube

The agents shown here are for the STICKER2 representation and half-turn metric (HTM) [Ko-
nen, 2022]. USESYMMETRY, Choose-Start-01 and LearnFromRM are all inactive in the
Rubik’s cube case.
MCTS wrapper during test and evaluation with cPUCT = 1.0, dmax = 50.24

Other parameters are:

G.3.1 2x2x2 Cube

α = 0.25, γ = 1.0, ε = 0.0, λ = 0.0, output sigmoid σ = id. N-tuples: 60 7-tuples
created by random walk. TCL activated with transfer function TC-id, TC-Init= 10−4 and rec-
weight-change accumulation. 3,000,000 training episodes. Scrambling by 1,...,13 twists,
Etrain = 16, Eeval = 50.
Agent filename in GBG: 2x2x2_STICKER2_AT/TCL4-p13-ET16-3000k-60-7t-stub.agt.zip

G.3.2 3x3x3 Cube

α = 0.25, γ = 1.0, ε = 0.0, λ = 0.0, output sigmoid σ = id. N-tuples: 120 7-tuples
created by random walk. TCL activated with transfer function TC-id, TC-Init= 10−4 and
rec-weight-change accumulation. 3,000,000 training episodes. Scrambling by 1,...,9 twists,
Etrain = 13, Eeval = 50.
Agent filename in GBG: 3x3x3_STICKER2_AT/TCL4-p9-ET13-3000k-120-7t-stub.agt.zip

24When evaluating the trained cube agents with different MCTS wrappers, we test in each case whether
cPUCT = 1.0 or 10 is better. In most cases, cPUCT = 1.0 is better, but for (2x2x2, QTM, 800 iterations) and
for (3x3x3, HTM, 100 iterations) cPUCT = 10.0 is the better choice.

50



The agent filenames given above which cary ’-stub’ in their name are just stubs, i.e.
agents that are initialized with the correct parameters but not yet trained. This is because
a trained agent can require up to 80 MB disk space, which is too much for GitHub. Instead,
a user of GBG may load such a stub agent, train it (takes between 10-40 min in the Rubik’s
cube case) and save it to local disk.

See Konen and Bagheri [2021] for more parameter settings (best-so-far agents) in other
games.
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