Zufallsvar 1

Mittwoch, 28. April 2021

Sei X stetige Duf. Var

 $P(b \leq X \leq b) = P(X = b) = 0$

 $P(X=b) + P(b < X \leq b) = 0$

 $P(\alpha \leq X \leq b) = F(b) - F(\alpha)$ $(P(X=\alpha) + P(\alpha < X \leq b) = F(b) - F(\alpha) = P(X \leq b) - P(X \leq a)$

 $= P(\alpha < X < b)$

 $= P(\alpha \leq X < b)$

BSP: Stundeuzeiger Who Dw. P(2=X<3) = 1

 $= P(2 \le X < 3)$

 $= P(2 \le X \le 3)$

X disheref:
$$E(X) = \sum_{m} x_{m} p_{m}$$

X stetig: $E(X) = \int_{-\infty}^{\infty} t w(t) dt$

- · Suurmen zeicher wird zu Tutepral
- · Xm Wirel zur Integrationsvar t (könnte auch x heißen
- Pm wird zu w(1) olt. In der Tat ist w(1) olt die (infinitesimale) Wahrsch. doss X zwischen t und t+ olt liegt

gl.vert. Zuf.var.

a) X sei gleisliverfeilte stefige dufallsvar in [O, a]

(Classian)

 $w(t) = \frac{1}{a}$ $= \frac{1}{a}$ $= \frac{1}{a}$ $= \frac{1}{a}$ $= \frac{1}{a}$ EM = 9 a Vieso 2 2 Damit Fläche a. 2 = 1

Verteilungsflot $F(t) = P(X \le f) = \int w(t')df'$ $= \left[\frac{d}{dt} \right]_{0}^{t} = \frac{t}{d} \quad \text{für } 0 \leq t \leq u = \int w(t) dt'$

 $F(4) = 1 \quad \forall t > \alpha$

b) $\mu = E(X) = \int_{0}^{\infty} f \, dd = \frac{1}{2} \int_{0}^{\infty} -\frac{1}{2} \frac{a^{2}}{2} = \frac{a}{2}$

c) $r = Var(X) = E((X-\mu)^2)$ $=\int \left(t-\frac{\alpha}{2}\right)^2 \frac{1}{\alpha} dt \qquad \qquad \omega(t)$ $=\frac{1}{\alpha}\left[\frac{1}{3}\left(t-\frac{\alpha}{2}\right)^{3}\right]_{0}^{\alpha}=\frac{1}{\alpha}\cdot\frac{2}{3}\frac{\alpha^{3}}{8}=\frac{\alpha^{2}}{12}$ Dreiecks-Zuf.var.

Mittwoch, 28. April 2021

X sei sfefige 2 uf. var. mit Wakersch.-chichte $W(t) = \int x t \int x t \int x t = 0 \le t \le T$ $V(t) = \int x t \int x t \int x t = 0 \le t \le T$

 $\alpha) \qquad \angle T \uparrow \qquad \psi(f) \qquad \psi(T) = \angle T \qquad \psi(0.5) = \angle 0.5$ T = 2

Wie groß ist &?

2 E(X) = 0.6 T

(i) Dreieclas fläche T. XT. = XT.

(iii) $\int w(t) dt = \int x t dt = \frac{1}{2}xt^2/0$

 $1 = \frac{1}{2} \times T^{2} = \frac{2}{7^{2}}$

b) $\mu = E(x) = \int t \cdot \frac{2}{72} t dt$

 $=\frac{2}{7^2}\int_0^1 t^2 dt = \frac{2}{7^2}\int_0^7$

 $= \frac{2}{7^2} \frac{7^3}{3} = \frac{2}{3} = 0.67$