Vorlesung 20.6.2022

Extremweste mit Nebenbedingungen

Bp: Aus WS Dosenproblem

Dosenproblem

V was Nebenbed. $V = \pi r^2 \cdot h = 1\ell$

h durch rausgeotridet Variableusubstitution

O(rih) = - - -

Rückfüham auf Fhl. m. Mucht Hor

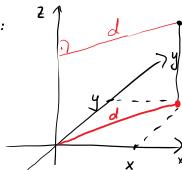
Bp. Ein Punkt bewege sich auf Ebene mit der Gleichung: X+y+z=O

Abstand des Punhtes vom Ursprung des 3D-Raumer sei 1 (\(\prescript{\text{ } \text{ } \tex

Frage: Welches ist du bleuiste und welches ist obs größte Abstand des Punktes von du z-Achse?

Extremwestaufgabe mit 2 NB:

Zielfunktim:



P(x,y,z)

d: Abstand von der z-Achse

$$d = \sqrt{x^2 + y^2}$$

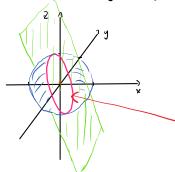
$$f(x,y,z) = \sqrt{x^2 + y^2}$$

Zielfunkhon

2 Nebenbed.:

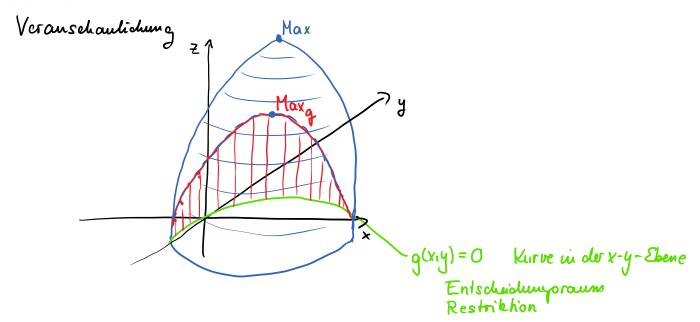
1) P bewegt such any Kupel mid r = 1 $\chi^2 + y^2 + 2^2 = 1$

2) Pliest and Shene: x+y+2=0



Bahn des Punktes Pauf der Ebene

Losung dieses Problems spoker!



Möglichkeisen, das Problem zu lösen

1) Variablensubstitution

für Flet. mit 2 unabh. Variablen und 1 NB Bp: Dosenproblem

$$B_{p}: z = f(x,y) = -x^{2} - \frac{1}{2}y^{2} + 4$$
 $D = R_{+}^{2}$

NB: $g(x,y) = 2 - 2x - y = 0 \iff y = 2 - 2x$ Def. bes. ist num eugenhautet errie geroole

Aufgabe : Losen Sie mil Hilfe der Variableusubstitution

Substitution y=2-2x

$$Z = f(x,y) = -x^{2} - \frac{1}{2}(2-2x)^{2} + 4 \quad \text{Zielfeunkhion}$$

$$= -x^{2} - \frac{1}{2}(4-8x+4x^{2}) + 4$$

$$= -x^{2} - 2 + 4x - 2x^{2} + 4$$

$$= -3x^{2} + 4x + 2 \quad \text{Funkhion wit Awak.}$$

= -3x2+4x+2 Funktion mil swall. Var.

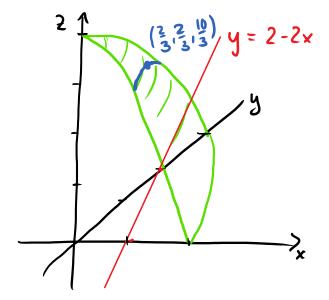
$$f(x) = -3x^2 + 4x + 2$$

$$f'(x) = -6x + 4$$

f''(x) = -6

$$f'(x) = 0$$
 (=) $-6x+4 = 0$ (=) $6x = 4$ (=) $x = \frac{2}{3}$

Max bei (3,3), also bei (3,3,10)



grobe Skizze!

2) Die Methode von Lagrange Multiplikatoren regel von Lagrange Lagrange (1736-1813)

$$z = f(x_i y)$$
 $g(x_i y) = 0$

Die Extremwerte von flx,y) unter der NB g(x,y)=0 higen genau dott,

$$L(x_1y_1\lambda) = f(x_1y) + \lambda g(x_1y)$$
 ihre Extremweste arminunt.

Lagrange-Hulhpstikator (ist eine Variable)

Notw. Bed:

$$\int \frac{\mathbf{I} : L_{x}(x,y,\lambda) = 0}{\mathbf{I} : L_{y}(x,y,\lambda) = 0}$$

$$\underline{\mathbf{I}} : L_{y}(x,y,\lambda) = 0$$

$$\underline{\mathbf{II}} : L_{x}(x,y,\lambda) = 0$$

Ben:
$$L_{\lambda} = 0$$
 lieka: $g(x,y) = 0$
 $g(x,y) = 0$
Nebenberhigung

-> liefet die Kandidaton

Notw. Bedingungen:
$$IL_x = -2x - 2\lambda = 0$$

 $IIL_y = -y - \lambda = 0$
 $IIL_x = 2-2x-y = 0$

Aus I:
$$-2x - 2\lambda = 0$$
 (=) $-2x = 2\lambda$ (=) $\lambda = -x$ $\lambda = -x$ $\lambda = -y$ Aus I: $-y - \lambda = 0$ (=) $\lambda = -y$

(*) in
$$\mathbb{I}$$
: $2-2x-x=0$ (=) $3x=2$ (=) $x=\frac{2}{3}$ Kandi'dad $\left(\frac{2}{3},\frac{2}{3}\right)$

UA für zu House:

Dosenproblem: V=1 Liter, Oberfläche minimieren

mil der Methode von Lagrange losen

Du Methode von Lagrange bei Funktionen mut n math. Vanakton und ke Vebenbedingungen

$$z_j = g_j(x_1, \dots, x_n) = 0$$
 $j=1,\dots,k$ & Nebenbed.

Sei
$$X = (X_1, ..., X_n)$$

 $\lambda = (\lambda_1, ..., \lambda_k)$

$$\sum_{i=1}^{k} (\lambda_{i}, \dots, \lambda_{k}) = f(x) + \sum_{j=1}^{k} \lambda_{j} g_{j}(x)$$

$$(=) \left[(X_{A_1}X_{2_1}...X_{n_1}) \lambda_{A_1}\lambda_{2_2}...\lambda_{k_l} \right] = f(X_{A_1}...X_{n_l}) + \sum_{j=1}^{k} \lambda_j g_j(X_{A_1}...X_{n_l})$$

ntk Variablen

$$L_{X_i} = 0$$

$$(i=1,\ldots n)$$

Notwendige Bed.
$$L_{X_i} = 0$$
 $(i=1,...,n)$ $n+k$ gleichungen $L_{\lambda_j} = 0$ $(j=1,...,k)$ $n+k$ gleichungen Liefert genau die Noben beolingungen