

Overview

- 1. Motivation: How to test image processing applications?
- 2. What is an oracle?
- 3. Typical examples of oracles
- 4. What about random testing?
- 5. A pattern for the Statistical Oracle
- 6. Necessary image processing basics
- 7. How to apply the Statistical Oracle to test image processing applications?
- 8. Conclusion

Motivation *How to test an image processing application?*

Oracles What is an oracle?

Oracles *Examples of Oracles*

- Judging: Tester evaluates pass/no pass
- Prespecification: Solved examples, approximation, parametric, ...
- Gold Standard: Trusted system, voting, regression, ...
- Organic: Reversing, built-in test, ...
- → all oracles only applicable in special cases

February 17, 2005

5/27

Random Testing

22nd TAV Meeting (Bremen)

Random Testing is testing using randomly generated inputs.

Complex inputs (e.g. images) are not easy to specify ~ random generation would pay off

But what about the outputs? ~ An appropriate oracle is needed for automation

Overview:

Statistical Oracle *Necessary Statistical Basics (1)*

Notation:

- Let X₁,..., X_n denote i. i. d. random variables (the inputs of the comparator X_i belongs to the i th test case)
- The mean μ and variance σ^2 of X_i is unknown.
- The sample mean of these random variables X_1, \ldots, X_n is

$$\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i.$$

Notation (continued):

• According to the central limit theorem, it holds that

$$\frac{X_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1)$$

for $n \to \infty$.

- Thus, $\overline{X_n}$ can be regarded as approximately normally distributed with mean μ and variance σ^2/n if $n \ge 30$ (a common rule of thumb)
- The greater n gets, the less likely deviations from μ become

© Johannes Mayer 22nd TAV Meeting (Bremen) February 17, 2005

Notation (continued):

• The sample variance

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$$

(3)

of the random variables X_1, \ldots, X_n (approaches σ^2 as n goes to infinity)

- x_i , $\overline{x_n}$, s_n^2 denote realizations
- μ_0 denotes the expected mean of X_i

9/27

Statistical Oracle Statistical Decision Test

Given the (maximum) probability of $\alpha \in (0, \frac{1}{2})$ of a Type I error (i. e. α can be controlled)

Type I error: reject H_0 under H_0 Type II error: H_0 not rejected under H_1

Construction:

Intersection-union test with two one-sided t-tests

 $H_0: \mu \notin [\mu_0 - \Delta, \mu_0 + \Delta]$ (buggy) $H_1: \mu = \mu_0$ (correct)

($\Delta > 0$ can be chosen arbitrarily)

Type I error: false rejection of H_0 (i. e. a buggy IUT passes)

© Johannes Mayer 22nd TAV Meeting (Bremen) February 17, 2005

Statistical Oracle *Statistical Decision Test: Decision Rule*

Reject H_0 , i. e. the implementation passes, if

$$\frac{\overline{x_n} - (\mu_0 - \Delta)}{s_n / \sqrt{n}} \ge t_{n-1,\alpha}$$

and

$$\frac{\overline{x_n} - (\mu_0 + \Delta)}{s_n / \sqrt{n}} \le -t_{n-1,\alpha}$$

where $t_{n-1,\alpha}$ denotes the $(1 - \alpha)$ -quantile of the t-distribution with n-1 degrees of freedom

11/27

Statistical Oracle *Statistical Decision Test: Type II Error*

- Probability α of Type I error already controlled
- Probability β of Type II error:

$$\mathbb{P}(\text{decision for } H_0 \mid H_1)$$

$$= \mathbb{P}\left(t < t_{n-1,\alpha} - \frac{\Delta}{s_n/\sqrt{n}} \lor t > -t_{n-1,\alpha} + \frac{\Delta}{s_n/\sqrt{n}} \mid \mu = \mu_0\right)$$

$$\text{with } t = \frac{\overline{x_n} - \mu_0}{s_n/\sqrt{n}}$$

$$\text{o Consequences:}$$

$$\circ \text{ Necessary: } \frac{\Delta}{s_n/\sqrt{n}} > t_{n-1,\alpha}$$

$$\circ \beta \text{ decreases, when}$$

$$-\alpha, \Delta, \text{ or } n \text{ increases}$$

$$-\sigma \text{ decreases (and consequently } s_n \text{ decreases)}$$
(§) JAMME (2010) FULLY (2010) FOLLY (2010) FOLL

Statistical Oracle Statistical Decision Test: Type II Error (2)

Solution:

- For α = 1/4 determine n such that β ≤ 1/4 (Δ and σ are given)
 (→ numerically!)
- **BPP** algorithm: each answer is correct with probability at least 3/4
- Repeat this *m* times and make a majority decision to achieve arbitrarily small error probabilites

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Image Processing

Premliminaries: Minkowski addition and dilation

The Minkowski addition $A \oplus B$ is defined as

 $A \oplus B := \{x + y : x \in A, y \in B\}.$

The set *B* is in this case called the structuring element.

 $\delta_B(A)$ denotes the dilation of A with the structuring element B and is defined as $\delta_B(A) := A \oplus \check{B}$

Testing of Dilation *Random Input Generator: Overview*

Testing of Dilation *Random Input Generator: Boolean Model*

The Boolean model is simply the union $\bigcup_i (B_i + X_i)$ of i. i. d. random grains B_i each translated into another point X_i of the underlying Poisson process.

Testing of Dilation *Boolean Model: Examples*

Examples:

Testing of Dilation *Boolean Model: Useful Property*

What happens, when the Boolean model $\bigcup_i (B_i + X_i)$ is dilated by *B*?

$$\delta_B \left(\bigcup_i (B_i + X_i) \right) = \left(\bigcup_i B_i + X_i \right) \oplus \check{B}$$
$$= \bigcup_i ((B_i + X_i) \oplus \check{B}) = \bigcup_i (B_i \oplus \check{B}) + X_i,$$

The result is the Boolean model with grains $B_i \oplus \check{B}$.

For example, if B_i is a disc with random radius R_i and B is a disc with radius r, $B_i \oplus \check{B}$ is simply a disc with random radius $R_i + r$.

Testing of Dilation *Characteristics: Formulae*

Choosing specific area A_A , specific boundary length L_A , and specific Euler number $\chi_A \sim$ explicit formulae are known:

$$A_{A} = 1 - \exp(-\lambda\overline{A})$$

$$L_{A} = \lambda\overline{L}\exp(-\lambda\overline{A})$$

$$\chi_{A} = \lambda\left(1 - \frac{\lambda\overline{L}^{2}}{4\pi}\right)\exp(-\lambda\overline{A})$$

- \overline{A} mean area of the primary grain
- \overline{L} mean boundary length of the primary grain
- λ intensity of the Poisson process

Testing of Dilation *Putting the Pieces together*

- 1. The Random Test Input Generator generates realizations of the Boolean model. Passes the characteristics of the Poisson process (λ) and of the primary grain (\overline{A} and \overline{L}) to the Comparator.
- 2. The Statistical Analyzer computes the estimators for A_A , L_A and χ_A . Each such estimator can be modeled as a random variable X_i . Then A_A , L_A and χ_A are the expected means, respectively, of these random variables (i. e. μ_0).
- 3. The Comparator accumulates the realizations x_i of each such random variable X_i for n outputs and computes the realization $\overline{x_i}$ of the sample mean. Finally, it decides using an intersection-union test — as described — whether the IUT passes or not. (The error probability α can also be given to the Comparator.)

Conclusion

Perspectives

- Distance transform usually used to compute dilation and erosion
 - ~> Distance transform can be tested indirectly

References

- Robert V. Binder: *Testing Object-Oriented Systems.* Addison-Wesley, 1999.
- Johannes Mayer, Ralph Guderlei: Test Oracles Using Statistical Methods. In: Lecture Notes in Informatics P-58, Gesellschaft f
 ür Informatik, K
 öllen Druck+Verlag GmbH, 2004, pp. 179–189.
- Johannes Mayer: On Testing Image Processing Applications With Statistical Methods. Preprint, 2005. (accepted by Software Engineering 2005)

27/27