
Reengineering for Testability
Workshop on Software Reengineering (WSR)

Bad Honnef, May, 2006
by

Harry M. Sneed
ANECON GmbH, Wien

Universities of Regensburg and Passau

1 Rationale for Reengineering

There are many reasons to want to reengineer an
existing software system.
• to increase the maintainability [1],
• to improve the performance [2],
• to increase the interoperability [3],
• to decrease the personal dependency.
These goals have been covered in the pertinent
literature. [4] This paper is devoted to promoting
yet another goal for reengineering, namely
• to improve the testability.
These diverse goals may in some ways be related,
but in some instances they are contrary to one
another. For instance improving performance is
often done at the cost of decreasing maintainability.
The planer of a reengineering project must be aware
of what the exact project goals are, since they will
differ from project to project. [5]

2 Defining Testability

Test costs are driven by the size and complexity of
the software. Size can be measured in terms of the
number of elements making up the system. These
could be statements, methods, classes, components,
interfaces, files, database tables and GUIs.
Complexity is measured in terms of the number of
interactions between the elements. These could be
associations, calls, messages, file transfers, database
accesses, import, exports and events from outside.
The less there are, the less there is to test.

Another factor which influences testability is the
visibility of the data interfaces. Data passed
between components can be encoded in internal
data formats or it can be passed as readable
character strings. An example of the former is a
CORBA API. An example of the latter is an XML
document. The easier it is to read and interpret the
data, the easier it is to generate and validate that
data.

A very critical factor in testability is the separation
of the user interface from the processing logic. It
should be possible to create input data streams
without using the user interface. The same applies

to the data output. It should be possible to intercept
and store the outputs without having them displayed
in the user interface. This separation of presentation
from processing is a prerequisite to testing the
processing, i.e. the business logic, without having to
enter the data in the user interface, which requires a
lot of time and is difficult to automate.

A final factor in reducing test effort is the
separation of the data access operations from the
data processing. By having a separate access shell,
it is possible to test the data storage and retrieval
without having to go through the business logic. On
the other hand it is possible to test the business
logic with simulated data accesses without having
to have all of the databases filled with suitable test
data. [6]

The goal of reengineering for testability is to
restructure the software in such a way that
testability criteria can be met while at the same time
reducing the size and the complexity of the system.

3 Achieving Testability

Testability of software implies that the software can
be tested with a minimum of effort. This in turn
implies that a minimum of test cases are required to
test all features. To reduce the number of test cases
at the component level, one has to
a) reduce the number of paths through the

software unit, since there should be a test case
for every path

b) reduce the number of entries, since there
should be a test case for every entry

c) reduce the number of parameters, since there
should be a test case for every combination of
parameters

To reduce the number of test cases at the system
level, one has to
a) reduce the number of interactions between the

components, since every interaction has to be
tested

b) reduce the number of database accesses, since
every database access should be tested

c) reduce the number of database tables, because
tables have to be filled with test data

2

d) reduce the number of system imports and
exports, as these have to be generated or
validated

e) simplify the user interfaces, since every
control button, every menu point and every
combination of parameters should be tested.

(see Figure 1: Test Cost Drivers)

4 Measures for Improving
Testability

There are a number of reengineering steps which
can be taken to improve the testability of an
existing software system.

4.1 Restructuring to eliminate
unnecessary paths

The number of paths through a software unit
depends on the number of conditions in the code
and how deep they are nested. By reformulating
conditions it is possible to eliminate paths. For
instance, nested ifs can be converted to a single
compound if. Nested loops can be factored out into
separate methods or procedures. The idea here is to
flatten the control structure. [7]

4.2 Refactoring to reduce
complexity

Deeply nested code can be factored out into
separate methods or procedures. This will not
decrease the number of paths but it is easier to test
smaller units than it is to test large, complex ones.
So refactoring has a positive effect on testability.
Besides it can be easily automated. [8]

4.3 Removing clones

Clones are variants of a particular coding pattern
scattered through out a system. The coding pattern
could have been made into a super class or
implemented as a common subroutine. For
whatever reasons it was not. It was copied from

component to component and modified there to fit
some local requirement. Detecting such clones has
been well researched in the software reengineering
community. There are many tools available to
support this. By removing clones, the number of
test paths and with that, the number of test cases
can be reduced significantly. The less code there is,
the less there is to test. [9]

4.4 Removing redundant parameters

Since the number of data driven test cases is
dependent on the number of parameters, it makes
sense to remove those which are not absolutely
necessary. Often, too much control data is passed to
a component, data which could be derived from the
context of the operation being invoked. Such
parameters could be left out, thus reducing the
number of possible data combinations.

4.5 Grouping database accesses
into an access shell
Very often database accesses are a chain of
development operations. First one access is made to
determine what access to make next. By
reformulating the query it may be possible to
eliminate subsequent accesses, e.g. by extending the
WHERE clause to include OR and AND
conditions. Rather than having the database
accesses scattered throughout the code, it is also
better to pull them together into a single access
component for each database table. In this way
different procedures can use the same accesses. [10]

T e s t C o s t D r i v e r s
B a n d w i d t h o f S y s t e m I n t e r f a c e s

N u m b e r o f I n p u t / O u t p u t P a r a m e t e r s

N u m b e r o f
d i s c r e t e

p a t h s
t h r o u g h

t h e s y s t e m

N u m b e r o f
i n t e r a c t i o n s

b e t w e e n
c o m p o n e n t s o f

t h e s y s t e m

N u m b e r o f
D a t a A c c e s s e s

N u m b e r o f D a t a S t o r e s

3

4.6 Merging database tables
It may come as a shock to database modelers, who
are keen in factoring data down to the 5th normal
form, but increasing the number of tables has a
negative effect on testability. For every additional
table, there has to be a test procedure to generate
and validate it. So having too many tables means
having too many test procedures. From the
viewpoint of testing, it would be better to have
tables with only a few attributes merged into the
next higher level tables, e.g. to merge the address
data back into the personnel data.

4.7 Eliminating unnecessary
import/export interfaces
It may help to increase the function point count by
having lots of different input/output data streams
but it also increases the test effort. To keep the test
effort down data changes with the environment
should be kept to a minimum and, where possible,
merged together into one interface. The less
interfaces a system has, the less have to be tested.

4.8 Simplifying user interfaces
The greatest source of test effort in systems testing
is the complexity of the user interfaces. The more
“comfort” the user is offered in form of widgets,
bells and whistles the more there is to test. Every
additional window or interface object increases the
number of test cases. One of the goals of interface
reengineering should be to simplify the interfaces
by removing all features which are not absolutely
necessary. Why should it be possible to enter data
via the keyboard or by selecting from a menu? That
only doubles the number of test cases. One should
decide for one or the other. Alternate means of
submitting or displaying data may be good in the
sense of usability, but it is detrimental to testability.
Here the system architect must decide what is more
important. [11]

4.9 Revising the Algorithms
For every problem there is a large number of
possible solutions, some good, some bad, some
simple and some overly complicated. Often
developers under time pressure select the first best
solution that occurs to them. It is seldom the
simplest one. The result is a complex algorithm
which requires a lot of test cases to test, more test
cases than would be necessary for a sample
solution. When this happens, testability becomes
low. To really raise testability, the human
reengineer should reformulate the problem and
select a simpler solution. This is often cheaper than
trying to test an over complicated algorithm.

4.10 Restructuring the Architecture
The architecture of a software system has a
profound effect upon the amount of effort required
to test that system. For instance, in peer to peer
communication systems there is a potential
interface between each and every network node
which would have to be tested. By restructuring the
architecture to have a hub for connecting all
components, each network node would only
communicate with the hub, thus drastically
reducing the number of possible interactions and
with it the number of test cases.

The same is true for database accesses. If a
particular database table is accesses by every
component which uses it, then this table has to be
generated to test every component. If, however, the
accesses are restricted to a single access
component, then the database table need only be
generated to test that component.

Finally, the greatest contribution to testability is the
separation of the use interfaces from the business
logic. In an article in the IEEE Software, Robert
Martin makes a strong case for an architecture that
supports automated system testing. This can best be
achieved by creating an open interface – XML or
WSDL – between the user interface components
and the back end components. It should be possible
to bypass the user interface and to test the business
logic directly via a test bus. Running the tests
through separate APIs drastically increases the
speed of the test and makes it possible to repeat the
tests several times a day. This feature alone
promises to reduce the test costs by more than 50%.
[12]

From these measures, it can be seen that much
could be done to increase testability and thereby
reduce the testing effort. Experts claim that at least
33% of the complexity of software systems is
artificial complexity, i.e. unnecessary complexity,
which comes not from the problem itself but from
the solution. [13] By eliminating this artificial
complexity one could reduce the test effort by half.
It would, of course, be better if the software were
to be constructed from the beginning with
testability in mind. This is one of the main goals of
test driven development. However, if this is not
done and it seldom is, then reengineering for
testability can still be worth while before going into
system testing. It might also mean that the
development process is being complemented by a
parallel reengineering process, intended to raise the
quality of the software, including testability. (see
Figure 2: Parallel Projects)

4

5 Conclusions

Testing requires a significant amount of a software
project budget, in internet, distributed systems, data
warehouse and integration projects well over 50%.
According to a leading SAP manager over half of
their development resources go into testing and
integration. [14] Modern technology such as web
services only increases the need for more testing,
since it multiplies the number of potential paths
throughout the software network. On the other hand
at least 33% of a system’s complexity is artificial. It
is caused at the unit level by sloppy, unconsidered
coding, at the component level by unnecessary and
redundant functions and data, and at the system
level by an over complicated architecture and
overloaded user interfaces. Much of this artificial
complexity could be removed, thus significantly
reducing test costs. [15]

Reengineering software for testability is definitely a
worth while effort. Identifying and removing
clones, refactoring deeply nested code and
restructuring the architecture are tasks that can be
automated. Several tools exist which support that.
By using them, reengineering costs can be
minimized. Other tasks such as algorithm
optimization, merging data accesses and
simplifying user interfaces can be done manually at
a rather low cost. In view of the potential savings in
testing costs, it is well worth it to invest in a
reengineering project running parallel to the
development project.

References:

01] Fowler, M.: Refactoring–improving the design
of existing code, Addison-Wesley, Reading, MA.,
1999, p. 53
02] Sneed, H.: “Measuring the Reusability of
Legacy Software Systems“, Software Process –
Improvement and Practice, Wiley Pub., No. 4,
March, 1998, p. 43

03] Sneed, H., Nyary, E.: „“Downsizing large
Application Programs“, Journal of Software
Maintenance, Vol. 6, No. 5, Oct. 1994, p. 235-248
04] Sneed, H.: “The Economics of Software
Reengineering”, Journal of Software Maint., Vol. 3,
No. 3, Sept., 1991, p. 163-182
05] Sneed, H.: „Planning the Reengineering of
Legacy Systems“, IEEE Software, Jan. 1995, p. 24
06] Henard, J./ Hick, J.-M./ Thiran, P./ Hainut, J.-
L.: „Strategies for Data Reengineering, Proc. of
WCRE-2002, IEEE Computer Soiciety Press,
Richmond, Nov. 2002
07] Quante, J., Koschke, R.: „Dynamic Object
Process Graphs“ in Proc. of 10th European CSMR-
2006, IEEE Computer Society Press, Bari, Italy,
March, 2006, p. 92
08] Mens, T./ Tourwe, T.: „A survey of software
refactoring“ in Trans. of S.E., Vol. 30, No. 2, 1004,
p. 126
09] Baxter, I./Yahin, A./Moura, L./Anna, M.S.:
Clone detection using abstract syntax trees, in Proc.
of ICSM-1998, IEEE Computer Society Press,
Washington, Sept. 1998, p. 368
10] Cleve, A.: „Automating Program Conversion in
Database reengineering“, in Proc. of 10th European
CSMR-2006, IEEE Computer Society Press, Bari,
Italy, March 2006, p. 321
11] Merlo, E. et. al.: "Reengineering User
Interfaces, in IEEE Software, Jan. 1995, p. 64
12] Martin, R.: „The Test Bus Imperative“ IEEE
Software, July, 2005, p. 65
13] Weyuker, E.J.: „Evaluating Software
Complexity Measures“ in Trans. on S.E. Vol. 14,
No. 4, Sept. 1988, p. 1357
14] Sommer, W.: “Product Innovation Lifecycle
Maintenance and Solution Management at SAP”,
Keynote Speech of CSMR-2006, Bari, Italy, March,
2006
15] Sneed, H./Jungmayr, S.: Software Testmetrik,
GI-Informatikspektrum, Feb. 2006

P a r a l l e l P r o j e c t s

S o f t w a r e D e v e l o p m e n t P r o j e c t

S o f t w a r e R e e n g i n e e r i n g P r o j e c t

S o f t w a r e T e s t i n g P r o j e c t

P r o v i d e
F u n c t i o n a l i t y

R e d u c e
C o m p l e x i t y

E n s u r e
Q u a l i t y

S i z e

C o m p l e x i t y

Q u a l i t y

