
Testing Against Requirements Using UML
Environment Models

Denis Hatebur, Maritta Heisel
{denis.hatebur, maritta.heisel}@uni-due.de

Thomas Santen and Dirk Seifert
{santen,seifert}@cs.tu-berlin.de,

dirk.seifert@loria.fr

Universität Duisburg-Essen
Fakultät Ingenieurwissenschaften, Fachgebiet Software Engineering

Technische Universität Berlin
Fakultät Elektrotechnik und Informatik, Fachgebiet Softwaretechnik

LORIA – Université Nancy 2, France

ITESYS Institut für technische Systeme GmbH, Dortmund

June 5, 2008

Our Test Approach I

Problem
model-based software development: set up models of
software systems to be constructed
models should not be used for code generation as well as
for testing

Our Approach
test against requirements, not against specification
explicitly model the environment in which the software will
operate
use UML state machines with tool support
consider reactive/embedded systems

Denis Hatebur Testing Against Requirements Using UML Environment Models 2

Our Test Approach II

On-the-fly testing

generating and executing test cases are intertwined

+ no state explosion

− can start if implementation is available

Batch testing

test cases are generated and stored for later execution

+ early test preparation possible

− all possible behavior variants must be computed

Denis Hatebur Testing Against Requirements Using UML Environment Models 3

Terminology (Jackson) I

Machine thing we are going to build; may consist
of software and hardware

Environment part of the world where the machine will
be integrated

System consists of machine and its environment;
consists of domains

Requirements optative statements; describe how the en-
vironment should behave when the ma-
chine is in action

Specification implementable requirements; describe
the machine at its external interfaces; are
basis for its construction

Denis Hatebur Testing Against Requirements Using UML Environment Models 4

Terminology (Jackson) II

Domain knowledge indicative statements; consist of facts and
assumptions:

Facts describe what holds in the environment,
no matter how we build the machine

Assumptions describe things that cannot always be
guaranteed, but which are needed to ful-
fill the requirements, e.g., rules for user
behavior

Domain knowledge is needed to derive specifications from
requirements: S ∧ D ⇒ R, D ≡ F ∧ A

Denis Hatebur Testing Against Requirements Using UML Environment Models 5

Running Example: SunBlindControl

The sunblind can manually
be lowered or pulled up.

The sunblind is automati-
cally lowered on sunshine for
more than one minute.

The sunblind should not be
destroyed by heavy wind.

The environment consists
of user, sunblind, sun and
wind.

Denis Hatebur Testing Against Requirements Using UML Environment Models 6

Transforming a Requirement into a Specification I

R1 The sunblind is not destroyed by wind.

F1 Heavy wind for more than 30 sec is destructive.

A1 Heavy wind for less than 30 sec is not destructive.

F2 If the sunblind is up, it cannot be destroyed by wind.

R1′ The sunblind is up if there is heavy wind for more than
30 sec.

F1 ∧ A1 ∧ F2 ∧ R1′ ⇒ R1

Denis Hatebur Testing Against Requirements Using UML Environment Models 7

Transforming a Requirement into a Specification II
F3 It takes less than 30 sec to pull up the sunblind.

R1′′ If there is heavy wind and the sunblind is not up, it is pulled
up.

F3 ∧ R1′′ ⇒ R1′

F4 There is heavy wind if and only if the wind sensor generates
more than 75 pulses per sec.

F5 Turning the motor left pulls up the sunblind.
S1 If the wind sensor generates more than 75 pulses per sec

and the last signals to the motor have not been turn left,
followed by motor left blocked and stop motor, then the turn
left signal is sent to the motor.

F4 ∧ F5 ∧ S1 ⇒ R1′′

F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ A1 ∧ S1 ⇒ R1
Denis Hatebur Testing Against Requirements Using UML Environment Models 8

Testing Against Requirements vs. Specifications

Testing against the specification
Does the machine generate the turn left signal?
If the specification was not correctly derived from the
requirements, the SUT passes the test nevertheless.

Testing against the requirements
Does the sunblind enter a state where it would be
destroyed?
Detects errors made in transforming requirements into
specifications.
Checks if customer needs are satisfied (acceptance test).

Denis Hatebur Testing Against Requirements Using UML Environment Models 9

Testing with Environment Models

the environment is modeled using UML state machines

this model explicitly contains the facts and assumptions
about the environment

the environment model consists of the input event generator
and adapters:

the input event generator produces abstract events
adapters transform abstract events such as pull up sun blind
into concrete ones, such as turn motor left.

the requirements are expressed as state machines that
check whether a requirement is violated

Denis Hatebur Testing Against Requirements Using UML Environment Models 10

“On the Fly” - Test System Architecture

State Machine Executor

Requirements

System
Under
Test

AS AO

CO

CStick

Violation

Violation

Adapters
Input −
Event −
Generator AO

AS

Environment Model

3a

4

1

7

5

6b

2

3b 6a

CO: Concrete Observation
AO: Abstract Observation
CS: Concrete Stimulus

AS: Abstract Stimulus
tick: Request for new Abstract Stimulus
Violation: Test Result

Denis Hatebur Testing Against Requirements Using UML Environment Models 11

“On the Fly” - Test System Architecture: Sun Blind

State Machine Executor

Requirements

System
Under
Test

AS AO

CO

CStick

Violation

Violation

Adapters
Input −
Event −
Generator AO

AS

Environment Model

lowerSunBlind,
pullUpSunBlind,

turnMotorRight,
turnMotorLeft,

heavyWind, noHeavyWind,

windPulse,
motorLeftBlocked,
...

stopMotor, ...

stopSunBlind, ...

destructiveWind, pulledUp, ...

3a

4

1

7

5

6b

2

3b 6a

CO: Concrete Observation
AO: Abstract Observation
CS: Concrete Stimulus

AS: Abstract Stimulus
tick: Request for new Abstract Stimulus
Violation: Test Result

Denis Hatebur Testing Against Requirements Using UML Environment Models 12

Pattern for Requirements and Environment Model

...

R1 R2 Rn

AdapterInput−Envent−Generator

Environment and Requirements State Machine

Denis Hatebur Testing Against Requirements Using UML Environment Models 13

Input Event Generator: Wind Example

?

/noHeavy
Wind()

0.8 /

0..80 km/h

0.2 /

WeakWind

noHeavyWind()
0.7 /

HeavyWind

Wind_Input

/ heavyWind(),
timer.start(30)

> 80 km/h

destructiveWind()

0.3 /

timer.timeout()/

heavyWind(), timer.start(30)

Assumption A1 is modeled explicitly.
Probabilities are given for the different transitions.

Denis Hatebur Testing Against Requirements Using UML Environment Models 14

Adapter: Abstract to Concrete Stimuli

abstr_wind_event
<<interface>>

noHeavyWind ()
heavyWind ()
destructiveWind ()

<<interface>>
concr_wind_event

windPulse ()

Wind_Adapter

<<provides>>

WaitForWindSig

noHeavyWind () / pulse_time := 100

pulse_time: Integer

Wind_Adapter

<<uses>>

destructiveWind () / pulse_time := 60

heavyWind () / pulse_time := 60

timer: Timer

/pulse_time :=100, timer.ms_start (pulse_time)
timer.ms_start (pulse_time)

timer.timeout () / windPulse (),

The adapter transforms the abstract stimuli into concrete ones.

Denis Hatebur Testing Against Requirements Using UML Environment Models 15

Adapter: Concrete to Abstract Observations

stopSunBlind ()

pullUpSunBlind ()

lowerSunBlind () turnMotorLeft ()

turnMotorRight ()

stopMotor ()

<<interface>>

abstr_motor_event

Motor_

Adapter

<<interface>>

concr_motor_event

Motor_Adapter

stopMotor () /

stopSunBlind ()

turnMotorLeft () /

pullUpSunBlind ()

turnMotorRight () /

lowerSunBlind ()

WaitForMotorSig

<<uses>> <<provides>>

The adapter transforms concrete observations into abstract ones.

Denis Hatebur Testing Against Requirements Using UML Environment Models 16

Pattern for Modeling Requirements

Fail

DesiredStateR

?

isatisfactionR
checkR / i

checkR / i
inconclusiveR i

checkR / i
violationR i

i

Post i

eventR /
checkR

i
i

FulfilledR i

i.1Pre

R i

The postcondition of the
requirement is checked
when all preconditions
are fulfilled.

“When [eventRi] happens, [controlled domain] should be in
[desiredStateRi]”.

Denis Hatebur Testing Against Requirements Using UML Environment Models 17

Requirement: Example R1

Post 1Pre 1.1

Fulfilled 1

destructiveWind () /
checkR1 ()

checkR1 () /
inconclusiveR1 ()

checkR1 () /
violationR1 ()

checkR1 () /
violationR1 ()

R1

Fail

NotUp

PullingUp

pullUpSun
Blind()

?

pulledUp ()

pullUpSunBlind()stopSunBlind (),
lowerSunBlind ()

Up

checkR1 () /
satisfactionR1 ()

lowerSunBlind ()

lowerSun
Blind ()

If there is destructive wind, it must be checked if the sunblind is
up. If yes, the requirement is satisfied. Otherwise, it is violated.
The Fail state corresponds to a state where the sunblind would
be destroyed.

Denis Hatebur Testing Against Requirements Using UML Environment Models 18

Test Architecture for Generated Batch-Tests

Allowed

Traces

Violation

CO

CS

Violation

Requirements
SUT

Model

COCSAOAS

Adapters

AS

AO

Input −

Event −

Generator

Environment Model

Test Case

Generator

tick

2

8b

3b 8a

6a

3a

54a

9

1

7

CO
6b

CS
4b

System

Under

Test

CS CO

Test

Execution

Unit
Result

B C

D

CS
A

CO

A

The test case generator simulates the SUT in its environment
and stores the resulting test cases.
The test execution unit executes the test cases on the SUT.

Denis Hatebur Testing Against Requirements Using UML Environment Models 19

Tool Support: TEAGER I

swt.cs.tu-berlin.de/̃ seifert/teager.html

Denis Hatebur Testing Against Requirements Using UML Environment Models 20

Tool Support: TEAGER II

TEAGER

research prototype

clarifies UML state machine semantics

executes imported UML state machines (for model
validation and on-the-fly testing)

generates test cases according to imported UML state
machines (for batch testing)

probabilistic trigger selection
computes a complete behavioral model for a given search
depth to determine the expected behavior of the SUT

executes generated test cases

LOCs: some 18k

Denis Hatebur Testing Against Requirements Using UML Environment Models 21

Summary

Approach
based on Jackson’s terminology
uniform architecture for testing of reactive/embedded
systems
requirements are modeled explicitly with state machines
using patterns
facts and assumptions are modeled in the input-event
generator or in the adapter state machines
once these models have been set up manually (but
systematically), the tests are performed automatically, using
the tool TEAGER

Benefits
environment models allow testing against requirements
modeling patterns make approach systematic
on-the-fly as well as batch testing is supported
tool-support makes environment-based testing practical

Denis Hatebur Testing Against Requirements Using UML Environment Models 22

