
Testing Against Requirements Using UML Environment Models

Maritta Heisel1 Denis Hatebur1,2 Thomas Santen3 Dirk Seifert4

1University Duisburg-Essen, Working Group Software Engineering,

{maritta.heisel,denis.hatebur}@uni-duisburg-essen.de
2Institut für technische Systeme GmbH, d.hatebur@itesys.de

3Technische Universität Berlin, Fachgebiet Softwaretechnik, santen@cs.tu-berlin.de
4Loria – Université Nancy 2, Équipe Dedale, dirk.seifert@loria.fr

Abstract

We propose a new method for system validation by
means of testing, which is based on environment mod-
els expressed as UML state machines. A sun blind
control case study serves to illustrate the method.
This article is an abbreviated version of [4].

1 Introduction

Model-based software development proceeds by set-
ting up models of the software to be constructed. This
approach has proven useful, because it allows devel-
opers to first elaborate the most important properties
of the software before proceeding with the implemen-
tation. Often, software models are also used for code
generation. In this case, however, a problem arises:
it does not make sense any more to test the software
against its models, because these were already used
to generate it. We therefore propose to test the soft-
ware not only against its specification (i.e., against
the models), but also against its requirements, which
describe the how the environment should behave in
which the software will be operating (acceptance test-
ing). For this purpose, we have to set up a model of
the environment, too.

In this paper, we describe how UML state machines
(with a corresponding support tool Teager) can be
used to realize the described approach in the area of
reactive and/or embedded systems. For this kind of
system, state machine models are particularly use-
ful. We elaborate on two different testing approaches:
On-the-fly testing: Here, generating and executing
test cases is intertwined. This has the advantage that
state explosion is not a problem, but the disadvan-
tage that for non-deterministic systems the tests may
not be repeatable. Batch testing: Here, test cases
are generated and stored for later execution. This has
the advantage that regression tests can be performed
more simply but the disadvantage that all possible
behavior variants must be computed.

2 Terminology

Jackson’s [5] terminology serves to clearly distinguish
the different notions that have to be taken into ac-

count when developing software:

Machine is the thing we are going to build; it may
consist of software and hardware.

Environment is the part of the real world where the
machine will be integrated.

System consists of the machine and its environment.
Requirements are optative statements; they de-

scribe how the system should behave when the
machine is in action.

Specifications are implementable requirements;
they describe the behavior of the machine at
its external interfaces and form the basis for its
construction.

Domain knowledge is needed to transform require-
ments into specifications. It is expressed as
indicative statements. We distinguish between
facts and assumptions: Facts describe what
holds in the environment, no matter how we build
the machine. Assumptions describe things that
cannot always be guaranteed, but which are
needed to fulfill the requirements (e.g., rules for
user behavior).

The domain knowledge D consists of both the facts
F and the assumptions A: D ≡ F ∧ A. The relation
between requirements and specifications is S∧D ⇒ R
(i.e., we have to show that if we build the machine
such that it satisfies the specification S and integrate
it into an environment for which D holds, then the
requirements R are satisfied).

3 Example

We illustrate our testing approach with the example
of a sunblind control system. The task is to write
software that controls a sunblind, taking into account
user commands, wind, and sunshine: The sunblind
can manually be lowered or pulled up. It is automat-
ically lowered on sunshine for more than one minute.
The sunblind can be destroyed by heavy wind, which
should be avoided. The environment consists of user,
sun and wind.

To illustrate the difference between requirements
and specifications and to stress the importance of ex-
plicitly modeling the environment, we transform one

requirement concerning the sunblind control problem
into a specification, making use of domain knowledge:

R1 The sunblind is not destroyed by wind.

To make this requirement implementable, we must
know when wind can destroy the sunblind, and how a
destruction can be avoided:

F1 Heavy wind for more than 30 sec is destructive.

A1 Heavy wind for less than 30 sec is not destructive.

F2 If the sunblind is up, it cannot be destroyed by wind.

Using this domain knowledge, we can replace R1 by:
R1’ The sunblind is up if there is heavy wind for more

than 30 sec.

because F1 ∧ A1 ∧ F2 ∧R1′ ⇒ R1. Next, we use
F3 It takes less than 30 sec to pull up the sunblind.

to obtain
R1” If there is heavy wind and the sunblind is not up,

it is pulled up.

because F3 ∧R1′′ ⇒ R1′. Using the facts
F4 There is heavy wind if and only if the wind sensor

generates more than 75 pulses per sec.

F5 Turning the motor left pulls up the sunblind.

we finally obtain the specification
S1 If the wind sensor generates more than 75 pulses

per sec and the last signals to the motor have not

been turn left, followed by motor left blocked and stop

motor, then the turn left signal is sent to the motor.

(because F4∧F5∧S1 ⇒ R1′′), which is quite different
from the requirement we started out with. All in all,
we have shown F1∧F2∧F3∧F4∧F5∧A1∧S1 ⇒ R1.

4 Test approach

How would the sunblind control software (SUT, sys-
tem under test) be tested? Usually, conformance with
the specification would be checked. In our example,
we would have to verify that the machine generates
the turn left signal. However, if the specification was
not correctly derived from the requirements, the SUT
would pass the test nevertheless. We therefore pro-
pose to test the SUT against the requirements. This
means that we check whether the sunblind can enter a
state where it would be destroyed. Besides detecting
errors made in transforming requirements into spec-
ifications, testing against requirements allows us to
verify that customer needs are satisfied (acceptance
test).

In order to test the SUT against its requirements,
we need a model of the environment, because the re-
quirements refer to the environment and not to the
machine. Much like the SUT, the environment can be
modeled using UML state machines. The model ex-
plicitly contains the facts and the assumptions about
the environment. The environment model consists
of adapters and the input event generator: Adapters
transform abstract events such as pull up sun blind
into concrete ones, such as turn motor left. The input
event generator produces abstract events. To capture
stochastic properties of the environment probabilistic
state machines of Teager can be used. This reduces

Requirements
SUT

Model

Adapters

Input −

Event −

Generator

Environment Model

Test Case

Generator

tick

8a

9

1

7

CS

Violation

Violation

B

C

CS

CO

A

A

AS

3b

AO

4b

CO

6b

CO
5

CS
4a

6a
CO

CS

3a8b
AO

AS
2

Allowed

Traces

System

Under

Test

Test

Execution

Unit

Result D

CS

CO

CO: Concrete Observation AO: Abstract Observation
CS: Concrete Stimulus AS: Abstract Stimulus

tick: Request for new Stimulus Violation: Test Result

Figure 1: Test architecture for batch testing.

the number of inadequate test cases.
The requirements are translated into state ma-

chines, too. These state machines serve to inform
the tester whether a requirement is violated. They
observe the stimuli and SUT outputs at an adequate
level of abstraction. As shown in Fig. 1, the Test Case
Generator component of the tool Teager can be used
to simulate the environment model and to check the
requirements. To calculate test cases, for each tick
(1) an abstract stimulus (2) is generated by the Input-
Event-Generator in the environment model. Adapters
transform the abstract stimuli into concrete stimuli for
the Test Case Generator (3a) and send the abstract
stimuli to the Requirements (3b). The Test Case Gen-
erator sends the concrete stimuli to the SUT Model
(4a), which determines suitable responses (5), and it
stores the concrete stimuli (4b) and the determined
concrete observations (6b). The Adapters transform
the concrete observations (6a) into abstract observa-
tions that are checked by the Requirements (8a) and
used to generate reasonable stimuli (8b, e.g., isLow-
ered only after LoweredSunBlind). Violations can be
detected by checking the requirements (9) and while
transforming concrete observations into abstract ones
(7). After the requirements are checked, a new tick (1)
is generated. The generated Test Cases can be used
to test the SUT with the Test Execution Unit. Con-
crete stimuli and observations in the allowed traces
(A) are used to stimulate the SUT (B) and check the
responses (C). Test results (D) are the output of the
Test Execution Unit.

Alternatively, the environment model can be di-
rectly connected to the SUT, and within the simulated
environment the requirements are checked at runtime.
In this case no SUT model is necessary. This sce-
nario is especially useful for acceptance tests. The
test system architecture – annotated with sample ob-
servations and stimuli for the sunblind example and
with the execution order – for this “on the fly”-testing
approach is shown in Fig. 2.

State Machine Executor

Requirements

System
Under
Test

AS AO

CO

CSAdapters
Input −
Event −
Generator

Environment Model

tick

Violation

Violation

AS

AO

heavyWind, noHeavyWind,

windPulse,

destructiveWind, pulledUp, ...

motorLeftBlocked,
...

stopMotor, ...
turnMotorLeft,
turnMotorRight,

stopSunBlind, ...
pullUpSunBlind,
lowerSunBlind,

4

1

7

5

3a

2

6b

3b 6a

Figure 2: Test architecture for on-the-fly testing.

5 Patterns for environment models

Setting up the state machines for the environment
model is not a trivial task. However, we can identify
different patterns for setting up environment models,
especially for expressing requirements as state ma-
chines. The overall structure of the state machine
consists of parallel regions. That is, the environment
model is in all of the parallel machines Ri, Input-
Event-Generator and Adapter at the same time, and
the different sub-machines communicate with each
other via common events. Figure 3 shows an example
of an input event generator. Note that assumption A1
(namely, that heavy wind for less than 30 sec is not
destructive) is modeled explicitly. Moreover, proba-
bilities for the different transitions are given. These
can be processed by the Teager tool. As an example
of an adapter, we present the motor adapter, which
transforms concrete observations into abstract ones
(Fig. 4). It specifies how motor commands correspond
to events that are visible in the environment.

For modeling requirements, we have developed dif-
ferent patterns, of which we can present only one for
reasons of space. The pattern is usable when the re-
quirement has the form “When [eventRi] happens,
[controlled domain] should be in [desiredStateRi]”. Its
representation as a state machine is shown in Fig. 5.
When the event of interest happens, then the precon-
dition of the requirement is fulfilled, and the event
checkRi is generated. The state machine represent-
ing the postcondition contains the desired state and

?

/noHeavy
Wind()

0.2 /

WeakWind

noHeavyWind()
0.7 /

/ heavyWind(),
timer.start(30)

0.3 /

heavyWind(), timer.start(30)

0.8 /

Wind_Input

0..80 km/h

> 80 km/h
HeavyWind

destructiveWind()timer.timeout()/

Figure 3: Input generator for the sunblind.

Motor_

Adapter

WaitForMotorSig
lowerSunBlind ()

turnMotorRight () /

turnMotorLeft () /
pullUpSunBlind ()

stopSunBlind ()

stopMotor () /

Motor_Adapter

<< provides >> << uses >>
<<interface>>

stopMotor ()

turnMotorRight ()

turnMotorLeft ()

<<interface>>

stopSunBlind ()

pullUpSunBlind ()

lowerSunBlind ()

concr_motor_event abstr_motor_event

Figure 4: Adapter for the sunblind.

may also contain other states. Only if it is in the
desired state, the test passes; otherwise, a violation
is determined, or the test is inconclusive. The latter
happens, for example, if the actual state of the system
is not known. Then, the result of checking a require-
ment should neither be pass nor fail. In our example,
we do not initially know the (physical) state of the
sunblind. Hence, we introduce an ”unknown state”
(denoted by “?”) expressing this situation (Fig. 3).
Checking requirement R1 in this state yields an in-
conclusive result. Requirement R1 of Sect. 3 is an in-
stance of this pattern: whenever there is destructive
wind, the sunblind must be up. Figure 6 shows the
instantiated pattern. Whenever the event destructive
Wind occurs, the event checkR1 is generated. If the
sunblind is in state up, the requirement is satisfied.
Otherwise, it is violated. The Fail state corresponds
to a state where the sunblind would be destroyed.

All in all, to completely model the sunblind control
problem, 4 input event generators, 4 adapters, and 7
requirement state machines have to be set up. All the
requirements are instances of patterns.

6 Discussion

We have developed a novel approach to testing re-
active and embedded systems, based on environment
models and using UML state machines. To evaluate
our approach, we used the Teager tool suite [6, 7]. It
allows its users to generate and execute test cases or
to directly stimulate the SUT. Teager logs the stim-

Fail

DesiredStateR
satisfactionR
checkR /

checkR /
inconclusiveR checkR /

violationR

eventR /
checkR

FulfilledR

i
i

 i

Pre

Ri

Posti

i.1

i
i

i

i
i

i

?

i

Figure 5: Patterns for environment models.

checkR1 () /
inconclusiveR1 ()

checkR1 () /
violationR1 ()

checkR1 () /
violationR1 ()

Fulfilled 1

destructiveWind () /
checkR1 ()

Fail

NotUp

PullingUp

pullUpSun
Blind()

?

pulledUp ()

pullUpSunBlind()stopSunBlind (),
lowerSunBlind ()

Up

checkR1 () /
satisfactionR1 ()

lowerSunBlind ()

lowerSun
Blind ()

R1

Post 1
Pre1.1

Figure 6: State machine for requirement R1.

uli it sends to the SUT and the reactions of the SUT.
During execution, these reactions are compared to the
pre-calculated possible correct reactions to evaluate
the test execution process [8]. Using Jackson’s ter-
minology, we have defined uniform architectures and
procedures for on-the-fly as well as batch testing that
have the following characteristics:

• Requirements, facts, and assumptions are mod-
eled explicitly.

• We have defined patterns for the different state
machines: For requirements, a parallel state ma-
chine is set up for each precondition. When all
preconditions are fulfilled, the postcondition is
checked. Input generators and adapters also con-
sist of parallel state machines, one for each item
of the environment that generates stimuli or re-
ceives observations, respectively.

• Once these models have been set up manually
(but systematically), the tests are performed au-
tomatically, using the tool Teager.

To our knowledge, there neither exist approaches
for testing requirements expressed as UML state ma-
chines, nor approaches for combining conformance
testing on unit testing level with testing requirements
on acceptance testing level. A detailed overview of
the fundamental literature for classical formal testing
can be found in Brinksma’s and Tretmans’ annotated
bibliography [3]. In contrast to our work, most ap-
proaches assume that a testing process can communi-
cate synchronously with the system under test. Belli
at al. (see [2] and the work cited there) base their
testing methodology on a variant of state machines.
In contrast to our approach, they do not test against
requirements, but against a fault model that has to be
set up explicitly. Moreover, they do not execute the
state machines directly, but represent them as event
sequence graphs. Auguston et al. [1] use environment
models for test case generation. In contrast to our ap-
proach, they do not use state machines, but attributed
event grammars.

While these works have their merits, we think that
the combination of environment models and UML

state machines for testing is a particularly attrac-
tive one. Our approach has the following advantages:
When requirements change, in the test case gener-
ator only the state machine describing those require-
ments must be changed. On the other hand, changed
requirements will lead to a new SUT model. The new
SUT model can be validated while the test cases are
generated. Modeling the facts and assumptions about
the environment supports the validation of require-
ments. For example, it can be discussed if heavy wind
can be destructive to the sunblind within the time that
a sunblind needs to be pulled up. Although the model
of the environment has nearly the same complexity
as the model of the machine, a structured approach
to develop the environment model helps to identify
subproblems that can be treated separately. Some-
times, states like “sunblind destroyed” are not mod-
eled in the machine, but must be modeled in the en-
vironment to verify that this state cannot be reached.
On the other hand, states can be left out in the en-
vironment model if the machine implements features
that are not part of the requirements. The same envi-
ronment model can be (re-)used for a sunblind con-
trol that can stop at an arbitrary height and a sun-
blind control that can only open or close the sunblind
completely. Modeling the environment adds diver-
sity to the development process and thus helps to
avoid that the same mistake occurs for test develop-
ment and SUT development. This is because the test
developers, who model the environment, must think in
terms of the environment rather than the SUT behav-
ior. In the environment model, a reasonable test case
selection strategy can be defined, so that no inade-
quate test cases are generated. Atypical behavior
can be identified and tested using a dedicated envi-
ronment model.

References
[1] M. Auguston, J. B. Michael, and M.-T. Shing. Environ-

ment Behavior Models for Scenario Generation and Testing
Automation. In Workshop on Advances in Model-Based
Testing (ICSE 2005), pages 1–6. ACM, 2005.

[2] F. Belli and A. Hollmann. Holistic testing with basic stat-
echarts. In Beiträge zu den Workshops (SE 2007), Lecture
Notes in Informatics 106, pages 91–100. GI, 2007.

[3] E. Brinksma and J. Tretmans. Testing Transition Systems:
An Annotated Bibliography. LNCS, pages 187–195, 2001.

[4] M. Heisel, D. Hartebur, T. Santen, and D. Seifert. Using
UML Environment Models for Test Case Generation. In
Software Engineering 2008 - Workshopband, Lecture Notes
in Informatics. GI, 2008.

[5] M. Jackson. Problem Frames. Analyzing & Structuring
Software Development Problems. Addison-Wesley, 2001.

[6] T. Santen and D. Seifert. Teager - Test Automation for
UML State Machines. In Software Engineering 2006, Lec-
ture Notes in Informatics P-79, pages 73–83. GI, 2006.

[7] D. Seifert. The Teager Tool Suite. Test Execution and
Generation Framework for Reactive Systems. swt.cs.

tu-berlin.de/∼seifert/teager.html.

[8] D. Seifert. Automatisiertes Testen asynchroner nichtdeter-
ministischer Systeme mit Daten. Shaker Verlag, 2007. Also:
PhD dissertation, Technische Universität Berlin.

